The Value of Bead Coating in the Manufacturing of Amorphous Solid Dispersions: A Comparative Evaluation with Spray Drying
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Naproxen Methyl Ester
2.3. Crystallization Tendency Study
2.4. Manufacturing of Amorphous Solid Dispersions
2.4.1. Spray Drying
2.4.2. Bead Coating
2.5. Physical Stability Study
2.6. Solid-State Characterization
2.6.1. Modulated Differential Scanning Calorimetry (mDSC)
2.6.2. X-ray Powder Diffraction (XRPD)
2.6.3. Scanning Electron Microscopy (SEM)
2.6.4. Thermogravimetric Analysis (TGA)
2.6.5. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR)
3. Results and Discussion
3.1. Crystallization Tendency Study
3.2. Determination of the Highest Possible Drug Loading
3.2.1. NAP–PVP-VA Formulations
Drug Load | Average Tg ± sd (°C) | Average Tg Width ± sd (°C) | Average Tm ± sd (°C) | Average Crystalline Content ± sd (%) | Residual Solvent (%) |
---|---|---|---|---|---|
Bead coating | |||||
30% | 69.0 ± 0.7 | 10.5 ± 1.7 | NA | NA | 2.0 |
35% | 62.9 ± 1.0 | 11.7 ± 1.7 | NA | NA | 2.8 |
40% | 58.4 ± 0.3 | 11.4 ± 0.6 | NA | NA | 1.0 |
45% | 53.6 ± 0.4 | 11.2 ± 1.3 | 97.2 ± 0.3 | 1.4 ± 0.06 | 0.8 |
50% | 49.8 ± 2.6 | 13.0 ± 6.4 | 108.7 ± 0.9 | 3.0 ± 1.1 | 1.0 |
Spray drying | |||||
30% | 63.5 ± 0.9 | 24.8 ± 0.7 | NA | NA | 1.8 |
35% | 59.2 ± 1.0 | 20.8 ± 0.5 | NA | NA | 1.6 |
40% | 55.2 ± 2.0 | 17.1 ± 0.4 | 93.5 ± 1.4 | 1.1 ± 0.2 | 1.3 |
45% | 50.3 ± 4.6 | 17.1 ± 1.2 | 99.9 ± 2.9 | 2.1 ± 1.7 | 1.1 |
50% | 48.2 ± 0.5 | 12.6 ± 1.3 | 110.0 ± 1.1 | 3.6 ± 0.9 | 1.0 |
3.2.2. NAPME–PVP-VA Formulations
3.3. Repeatability
3.4. Physical Stability Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Loftsson, T.; Brewster, M.E. Pharmaceutical applications of cyclodextrins: Basic science and product development. J. Pharm. Pharmacol. 2010, 62, 1607–1621. [Google Scholar] [CrossRef] [PubMed]
- Ricarte, R.G.; Van Zee, N.J.; Li, Z.; Johnson, L.M.; Lodge, T.P.; Hillmyer, M.A. Recent Advances in Understanding the Micro-and Nanoscale Phenomena of Amorphous Solid Dispersions. Mol. Pharm. 2019, 16, 4089–4103. [Google Scholar] [CrossRef] [PubMed]
- Aungst, B.J. Optimizing Oral Bioavailability in Drug Discovery: An Overview of Design and Testing Strategies and Formulation Options. J. Pharm. Sci. 2017, 106, 921–929. [Google Scholar] [CrossRef] [PubMed]
- Filo Vasconcelos, T.; Sarmento, B.; Costa, P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov. Today 2007, 12, 1068–1075. [Google Scholar] [CrossRef] [PubMed]
- Van den Mooter, G. The use of amorphous solid dispersions: A formulation strategy to overcome poor solubility and dissolution rate. Drug Discov. Today Technol. 2012, 9, e79–e85. [Google Scholar] [CrossRef]
- Mugheirbi, N.A.; O’Connell, P.; Serrano, D.R.; Healy, A.M.; Taylor, L.S.; Tajber, L. A Comparative Study on the Performance of Inert and Functionalized Spheres Coated with Solid Dispersions Made of Two Structurally Related Antifungal Drugs. Mol. Pharm. 2017, 14, 3718–3728. [Google Scholar] [CrossRef]
- Xiang, T.X.; Anderson, B.D. Effects of Molecular Interactions on Miscibility and Mobility of Ibuprofen in Amorphous Solid Dispersions with Various Polymers. J. Pharm. Sci. 2019, 108, 178–186. [Google Scholar] [CrossRef] [Green Version]
- Vasanthavada, M.; Tong, W.Q.; Joshi, Y.; Kislalioglu, M.S. Phase behavior of amorphous molecular dispersions II: Role of hydrogen bonding in solid solubility and phase separation kinetics. Pharm. Res. 2005, 22, 440–448. [Google Scholar] [CrossRef]
- Boel, E.; Smeets, A.; Vergaelen, M.; De La Rosa, V.R.; Hoogenboom, R.; Van den Mooter, G. Comparative study of the potential of poly(2-ethyl-2-oxazoline) as carrier in the formulation of amorphous solid dispersions of poorly soluble drugs. Eur. J. Pharm. Biopharm. 2019, 144, 79–90. [Google Scholar] [CrossRef] [Green Version]
- Dohrn, S.; Luebbert, C.; Lehmkemper, K.; Kyeremateng, S.O.; Degenhardt, M.; Sadowski, G. Solvent influence on the phase behavior and glass transition of Amorphous Solid Dispersions. Eur. J. Pharm. Biopharm. 2021, 158, 132–142. [Google Scholar] [CrossRef]
- Dedroog, S.; Boel, E.; Kindts, C.; Appeltans, B.; Van den Mooter, G. The underestimated contribution of the solvent to the phase behavior of highly drug loaded amorphous solid dispersions. Int. J. Pharm. 2021, 609, 121201. [Google Scholar] [CrossRef] [PubMed]
- Que, C.; Deac, A.; Zemlyanov, D.Y.; Qi, Q.Q.; Indulkar, A.S.; Gao, Y.; Zhang, G.G.Z.; Taylor, L.S. Impact of Drug-Polymer Intermolecular Interactions on Dissolution Performance of Copovidone-Based Amorphous Solid Dispersions. Mol. Pharm. 2021, 18, 3496–3508. [Google Scholar] [CrossRef] [PubMed]
- Thompson, S.A.; Davis, D.A.; Moon, C.; Williams, R.O. Increasing Drug Loading of Weakly Acidic Telmisartan in Amorphous Solid Dispersions through pH Modification during Hot-Melt Extrusion. Mol. Pharm. 2022, 19, 318–331. [Google Scholar] [CrossRef] [PubMed]
- Sun, N.; Wei, X.; Wu, B.; Chen, J.; Lu, Y.; Wu, W. Enhanced dissolution of silymarin/polyvinylpyrrolidone solid dispersion pellets prepared by a one-step fluid-bed coating technique. Powder Technol. 2008, 182, 72–80. [Google Scholar] [CrossRef]
- Boel, E.; Panini, P.; Van den Mooter, G. Development of a surface coating technique with predictive value for bead coating in the manufacturing of amorphous solid dispersions. Pharmaceutics 2020, 12, 878. [Google Scholar] [CrossRef]
- Kim, J.Y.; An, S.H.; Rhee, Y.S.; Park, C.W.; Park, E.S. A Comparative Study Between Spray-Drying and Fluidized Bed Coating Processes for the Preparation of Pramipexole Controlled-Release Microparticles for Orally Disintegrating Tablets. Dry. Technol. 2014, 32, 935–945. [Google Scholar] [CrossRef]
- Verreck, G.; Vandecruys, R.; De Conde, V.; Baert, L.; Peeters, J.; Brewster, M.E. The Use of Three Different Solid Dispersion Formulations-Melt Extrusion, Film-Coated Beads, and a Glass Thermoplastic System-To Improve the Bioavailability of a Novel Microsomal Triglyceride Transfer Protein Inhibitor. J. Pharm. Sci. 2004, 93, 1217–1228. [Google Scholar] [CrossRef]
- Lugtu-Pe, J.A.; Ghaffari, A.; Chen, K.; Kane, A.; Wu, X.Y. Development of controlled release amorphous solid dispersions (CRASD) using polyvinyl acetate-based release retarding materials: Effect of dosage form design. Eur. J. Pharm. Sci. 2018, 124, 319–327. [Google Scholar] [CrossRef]
- Drzewinski, W. Esters of (R)-2-(6-hydroxynaphthalene-2-yl)octane. Liq. Cryst. 2013, 40, 1060–1066. [Google Scholar] [CrossRef]
- Van Eerdenbrugh, B.; Baird, J.A.; Taylor, L.S. Crystallization tendency of active pharmaceutical ingredients following rapid solvent evaporation—Classification and comparison with crystallization tendency from undercooled melts. J. Pharm. Sci. 2010, 99, 3826–3838. [Google Scholar] [CrossRef]
- Edueng, K.; Bergström, C.A.S.; Gråsjö, J.; Mahlin, D. Long-term physical (in)stability of spray-dried amorphous drugs: Relationship with glass-forming ability and physicochemical properties. Pharmaceutics 2019, 11, 425. [Google Scholar] [CrossRef] [Green Version]
- Minecka, A.; Kaminska, E.; Tarnacka, M.; Grudzka-Flak, I.; Bartoszek, M.; Wolnica, K.; Dulski, M.; Kaminski, K.; Paluch, M. Impact of Intermolecular Interactions, Dimeric Structures on the Glass Forming Ability of Naproxen, and a Series of Its Derivatives. Mol. Pharm. 2018, 15, 4764–4776. [Google Scholar] [CrossRef] [PubMed]
- Van Eerdenbrugh, B.; Raina, S.; Hsieh, Y.L.; Augustijns, P.; Taylor, L.S. Classification of the crystallization behavior of amorphous active pharmaceutical ingredients in aqueous environments. Pharm. Res. 2014, 31, 969–982. [Google Scholar] [CrossRef] [PubMed]
- Haser, A.; Cao, T.; Lubach, J.; Listro, T.; Acquarulo, L.; Zhang, F. Melt extrusion vs. spray drying: The effect of processing methods on crystalline content of naproxen-povidone formulations. Eur. J. Pharm. Sci. 2017, 102, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Boel, E.; Giacomini, F.; Van den Mooter, G. Solvent influence on manufacturability, phase behavior and morphology of amorphous solid dispersions prepared via bead coating. Eur. J. Pharm. Biopharm. 2021, 167, 175–188. [Google Scholar] [CrossRef]
- Lehmkemper, K.; Kyeremateng, S.O.; Heinzerling, O.; Degenhardt, M.; Sadowski, G. Impact of Polymer Type and Relative Humidity on the Long-Term Physical Stability of Amorphous Solid Dispersions. Mol. Pharm. 2017, 14, 4374–4386. [Google Scholar] [CrossRef] [PubMed]
- Janssens, S.; Van den Mooter, G. Review: Physical chemistry of solid dispersions. J. Pharm. Pharmacol. 2009, 61, 1571–1586. [Google Scholar] [CrossRef]
- Patel, B.B.; Patel, J.K.; Chakraborty, S.; Shukla, D. Revealing facts behind spray dried solid dispersion technology used for solubility enhancement. Saudi Pharm. J. 2015, 23, 352–365. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Van den Mooter, G. Spray drying formulation of amorphous solid dispersions. Adv. Drug Deliv. Rev. 2016, 100, 27–50. [Google Scholar] [CrossRef]
- Lowinger, M.; Baumann, J.; Vodak, D.T.; Moser, J. Practical considerations for spray dried formulation and process development. In Discovering and Developing Molecules with Optimal Drug-Like Properties, 1st ed.; Templeton, A., Byrn, S., Haskell, R., Prisinzano, T., Eds.; Springer: New York, NY, USA, 2015; pp. 383–435. [Google Scholar] [CrossRef]
- Paudel, A.; Loyson, Y.; Van den Mooter, G. An investigation into the effect of spray drying temperature and atomizing conditions on miscibility, physical stability, and performance of naproxen-PVP K25 solid dispersions. J. Pharm. Sci. 2013, 102, 1249–1267. [Google Scholar] [CrossRef]
- Christensen, F.N.; Bertelsen, P. Qualitative Description of the Wurster-Based Fluid-Bed Coating Process. Drug Dev. Ind. Pharm. 1997, 23, 451–463. [Google Scholar] [CrossRef]
- Kojima, Y.; Ohta, T.; Shiraki, K.; Takano, R.; Maeda, H.; Ogawa, Y. Effects of spray drying process parameters on the solubility behavior and physical stability of solid dispersions prepared using a laboratory-scale spray dryer. Drug Dev. Ind. Pharm. 2013, 39, 1484–1493. [Google Scholar] [CrossRef] [PubMed]
- Langrish, T.A.G. Assessing the rate of solid-phase crystallization for lactose: The effect of the difference between material and glass-transition temperatures. Food Res. Int. 2008, 41, 630–636. [Google Scholar] [CrossRef]
- Worku, Z.A.; Aarts, J.; Singh, A.; Van den Mooter, G. Drug−Polymer Miscibility across a Spray Dryer: A Case Study of Naproxen and Miconazole Solid Dispersions. Mol. Pharm. 2014, 11, 1094–1101. [Google Scholar] [CrossRef] [PubMed]
- Dedroog, S.; Huygens, C.; Van den Mooter, G. Chemically identical but physically different: A comparison of spray drying, hot melt extrusion and cryo-milling for the formulation of high drug loaded amorphous solid dispersions of naproxen. Eur. J. Pharm. Biopharm. 2019, 135, 1–12. [Google Scholar] [CrossRef]
- Dedroog, S.; Pas, T.; Vergauwen, B.; Huygens, C.; Van den Mooter, G. Solid-state analysis of amorphous solid dispersions: Why DSC and XRPD may not be regarded as stand-alone techniques. J. Pharm. Biomed. Anal. 2020, 178, 112937. [Google Scholar] [CrossRef]
- Guns, S.; Dereymaker, A.; Kayaert, P.; Mathot, V.; Martens, J.A.; Van den Mooter, G. Comparison Between Hot-Melt Extrusion and Spray-Drying for Manufacturing Solid Dispersions of the Graft Copolymer of Ethylene Glycol and Vinylalcohol. Pharm. Res. 2011, 28, 673–682. [Google Scholar] [CrossRef]
- Bhugra, C.; Rambhatla, S.; Bakri, A.; Duddu, P.S.; Miller, P.D.; Pikal, J.M.; Lechuga-Ballesteros, D. Prediction of the onset of crystallization of amorphous sucrose below the calorimetric glass transition temperature from correlations with mobility. J. Pharm. Sci. 2007, 96, 1258–1269. [Google Scholar] [CrossRef]
- Chan, S.Y.; Qi, S.; Craig, D.Q.M. An investigation into the influence of drug-polymer interactions on the miscibility, processability and structure of polyvinylpyrrolidone-based hot melt extrusion formulations. Int. J. Pharm. 2015, 496, 95–106. [Google Scholar] [CrossRef]
- Jara, M.O.; Warnken, Z.N.; Williams, R.O. Amorphous solid dispersions and the contribution of nanoparticles to in vitro dissolution and in vivo testing: Niclosamide as a case study. Pharmaceutics 2021, 13, 97. [Google Scholar] [CrossRef]
NAP | NAPME | |
---|---|---|
Day 0 | 97.31 ± 1.18 | 94.30 ± 3.18 |
Day 1 | 96.21 ± 3.50 | 97.93 ± 0.68 |
Day 7 | 96.16 ± 1.96 | 96.82 ± 0.94 |
Drug Load | Average Tg ± sd (°C) | Average Tg Width ± sd (°C) | Average Tm ± sd (°C) | Average Crystalline Content ± sd (%) | Residual Solvent (%) |
---|---|---|---|---|---|
Bead coating | |||||
5% | 95.3 ± 0.03 | 13.4 ± 0.2 | NA | NA | 4.4 |
10% | 81.8 ± 1.6 | 13.2 ± 1.4 | NA | NA | 3.3 |
15% | 69.1 ± 2.1 | 19.2 ± 3.6 | NA | NA | 3.4 |
20% | 57.4 ± 1.3 | 17.9 ± 0.8 | NA | NA | 3.1 |
25% | 53.2 ± 1.7 | 21.0 ± 2.3 | 64.9 ± 0.6 | 4.5 ± 0.4 | 2.9 |
Spray drying | |||||
5% | 95.8 ± 0.8 | 13.9 ± 2.4 | NA | NA | 4.5 |
10% | 85.3 ± 0.3 | 17.9 ± 0.1 | NA | NA | 3.7 |
15% | 73.1 ± 1.3 | 18.5 ± 3.6 | 62.5 ± 0.6 | 9.5 ± 1.4 | 3.4 |
20% | 64.2 ± 4.1 | 17.5 ± 5.6 | 63.1 ± 1.2 | 12.6 ± 3.5 | 2.8 |
25% | 55.8 ± 5.6 | 20.4 ± 1.2 | 66.7 ± 2.0 | 16.4 ± 2.8 | 3.2 |
Average Tg ± sd (°C) | Average Tg Width ± sd (°C) | Average Tm ± sd (°C) | Average Crystalline Content ± sd (%) | Residual Solvent (%) | NAP Characteristic Bragg Peaks on Diffractogram? |
---|---|---|---|---|---|
Bead coating | |||||
58.4 ± 0.3 | 11.4 ± 0.6 | NA | NA | 1.0 | No |
54.5 ± 1.8 | 13.4 ± 0.5 | NA | NA | 1.7 | No |
56.6 ± 0.5 | 11.0 ± 1.9 | NA | NA | 1.5 | No |
58.0 ± 0.4 | 11.4 ± 0.3 | NA | NA | 1.2 | No |
58.5 ± 0.3 | 9.8 ± 1.2 | NA | NA | 1.2 | No |
Spray drying | |||||
55.2 ± 2.0 | 17.1 ± 0.4 | 93.5 ± 1.4 | 1.1 ± 0.2 | 1.3 | Yes |
55.6 ± 0.8 | 16.3 ± 0.4 | NA | NA | 1.4 | Yes |
54.8 ± 0.9 | 16.0 ± 1.2 | NA | NA | 1.3 | No |
54.7 ± 0.9 | 15.4 ± 1.2 | NA | NA | 1.0 | No |
56.6 ± 0.7 | 17.6 ± 1.9 | NA | NA | 1.5 | No |
Sample | First Indication of Crystallinity (Based on XRPD) | ||
---|---|---|---|
4 °C/0% RH | 40 °C/0% RH | 40 °C/75% RH | |
BC 40 (milled) | Day 42 | Day 28 | |
BC 40 (beads as such) | Day 42 | ||
SD 40 | Day 9 | Day 14 | |
SD 35 | Day 49 | Day 49 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boel, E.; Reniers, F.; Dehaen, W.; Van den Mooter, G. The Value of Bead Coating in the Manufacturing of Amorphous Solid Dispersions: A Comparative Evaluation with Spray Drying. Pharmaceutics 2022, 14, 613. https://doi.org/10.3390/pharmaceutics14030613
Boel E, Reniers F, Dehaen W, Van den Mooter G. The Value of Bead Coating in the Manufacturing of Amorphous Solid Dispersions: A Comparative Evaluation with Spray Drying. Pharmaceutics. 2022; 14(3):613. https://doi.org/10.3390/pharmaceutics14030613
Chicago/Turabian StyleBoel, Eline, Felien Reniers, Wim Dehaen, and Guy Van den Mooter. 2022. "The Value of Bead Coating in the Manufacturing of Amorphous Solid Dispersions: A Comparative Evaluation with Spray Drying" Pharmaceutics 14, no. 3: 613. https://doi.org/10.3390/pharmaceutics14030613
APA StyleBoel, E., Reniers, F., Dehaen, W., & Van den Mooter, G. (2022). The Value of Bead Coating in the Manufacturing of Amorphous Solid Dispersions: A Comparative Evaluation with Spray Drying. Pharmaceutics, 14(3), 613. https://doi.org/10.3390/pharmaceutics14030613