Design, Physicochemical Characterization, and In Vitro Permeation of Innovative Resatorvid Topical Formulations for Targeted Skin Drug Delivery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Physicochemical Characterization of Raw Resatorvid
2.2.1. Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray (EDX) Spectroscopy
2.2.2. Particle Sizing and Size Distribution by SEM Image Analysis
2.2.3. X-ray Powder Diffraction (XRPD)
2.2.4. Differential Scanning Calorimetry (DSC)
2.2.5. Hot-Stage Microscopy (HSM)
2.2.6. Karl Fisher Titration (KFT)
2.2.7. Raman Spectroscopy
2.2.8. Attenuated Total Reflectance Fourier-Transform Infrared (ATR-FTIR) Spectroscopy
2.3. Preformulation of Resatorvid: Solubility and Compatibility
2.4. Preparation of Topical Formulations by Non-Sterile Compounding
2.5. High-Performance Liquid Chromatography (HPLC) Analysis
2.6. In Vitro Oil–Water Partitioning Coefficient (Log-P) Analysis of Resatorvid
2.7. In Vitro Permeation of Resatorvid through Strat-M® Transdermal Diffusion Membrane
2.8. In Vitro Permeation of Resatorvid Using 3D Normal Human-Derived Epidermal Keratinocytes (EpiDermTM)
2.9. In Vitro Cell Dose–Response Assay in 2D Cell Culture
2.10. Statistical Analysis
3. Results
3.1. Physicochemical Characterization of Raw Resatorvid
3.2. Preformulation of Resatorvid: Solubility and Compatibility
3.3. In Vitro Oil–Water Partitioning Coefficient (Log-P) Analysis of Resatorvid
3.4. High-Performance Liquid Chromatography (HPLC) Analysis
3.5. In Vitro Permeation of Resatorvid (TAK-242) through Strat-M® Transdermal Diffusion Membrane
3.6. In Vitro Cell Dose–Response Assay in 2D Cell Culture
3.7. In Vitro Permeation of Resatorvid (TAK-242) through 3D Normal Human-Derived Epidermal Keratinocytes (EpiDermTM)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parker, E.R. The influence of climate change on skin cancer incidence—A review of the evidence. Int. J. Womens Dermatol. 2021, 7, 17–27. [Google Scholar] [PubMed]
- Shelton, M.E.; Adamson, A.S. Review and Update on Evidence-Based Surgical Treatment Recommendations for Nonmelanoma Skin Cancer. Dermatol. Clin. 2019, 37, 425–433. [Google Scholar] [PubMed]
- Kim, R.H.; Armstrong, A.W. Nonmelanoma Skin Cancer. Dermatol. Clin. 2012, 30, 125–139. [Google Scholar] [PubMed]
- Prasad, R.; Katiyar, S.K. Crosstalk Among UV-Induced Inflammatory Mediators, DNA Damage and Epigenetic Regulators Facilitates Suppression of the Immune System. Photochem. Photobiol. 2017, 93, 930–936. [Google Scholar]
- Wang, X.; Bi, Z.; Wang, Y.; Wang, Y. Increased MAPK and NF-κB expression of Langerhans cells is dependent on TLR2 and TLR4, and increased IRF-3 expression is partially dependent on TLR4 following UV exposure. Mol. Med. Rep. 2011, 4, 541–546. [Google Scholar]
- Min, W.; Ahmad, I.; Chang, M.E.; Burns, E.M.; Qian, Q.; Yusuf, N. Baicalin Protects Keratinocytes from Toll-like Receptor-4 Mediated DNA Damage and Inflammation Following Ultraviolet Irradiation. Photochem. Photobiol. 2015, 91, 1435–1443. [Google Scholar]
- Janda, J.; Burkett, N.B.; Blohm-Mangone, K.; Huang, V.; Curiel-Lewandrowski, C.; Alberts, D.S.; Petricoin, E.F.; Calvert, V.S.; Einspahr, J.; Dong, Z. Resatorvid-based Pharmacological Antagonism of Cutaneous TLR4 Blocks UV-induced NF-κB and AP-1 Signaling in Keratinocytes and Mouse Skin. Photochem. Photobiol. 2016, 92, 816–825. [Google Scholar]
- Weng, H.; Deng, Y.; Xie, Y.; Liu, H.; Gong, F. Expression and significance of HMGB1, TLR4 and NF-κB p65 in human epidermal tumors. BMC Cancer 2013, 13, 311. [Google Scholar]
- Fan, H.; Peck, O.M.; Tempel, G.E.; Halushka, P.V.; Cook, J.A. Toll-like receptor 4 coupled GI protein signaling pathways regulate extracellular signal-regulated kinase phosphorylation and AP-1 activation independent of NFκB activation. Shock 2004, 22, 57–62. [Google Scholar]
- Ii, M.; Matsunaga, N.; Hazeki, K.; Nakamura, K.; Takashima, K.; Seya, T.; Hazeki, O.; Kitazaki, T.; Iizawa, Y. A novel cyclohexene derivative, ethyl (6R)-6-[N-(2-Chloro-4-fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242), selectively inhibits toll-like receptor 4-mediated cytokine production through suppression of intracellular signaling. Mol Pharm. 2006, 69, 1288–1295. [Google Scholar]
- Matsunaga, N.; Tsuchimori, N.; Matsumoto, T.; Ii, M. TAK-242 (resatorvid), a small-molecule inhibitor of Toll-like receptor (TLR) 4 signaling, binds selectively to TLR4 and interferes with interactions between TLR4 and its adaptor molecules. Mol. Pharmacol. 2011, 79, 34–41. [Google Scholar] [PubMed] [Green Version]
- Sha, T.; Sunamoto, M.; Kitazaki, T.; Sato, J.; Ii, M.; Iizawa, Y. Therapeutic effects of TAK-242, a novel selective Toll-like receptor 4 signal transduction inhibitor, in mouse endotoxin shock model. Eur. J. Pharmacol. 2007, 571, 231–239. [Google Scholar] [PubMed]
- Wang, D.; Tao, K.; Xion, J.; Xu, S.; Jiang, Y.; Chen, Q.; He, S. TAK-242 attenuates acute cigarette smoke-induced pulmonary inflammation in mouse via the TLR4/NF-κB signaling pathway. Biochem. Biophys. Res. Commun. 2016, 472, 508–515. [Google Scholar] [PubMed]
- Zanotti-Cavazzoni, S.L.; Goldfarb, R.D.; Dellinger, R.P.; Ortegel, J.; Trenholme, G.M.; Parrillo, J.E.; Masayuki, I.; Iizawa, Y. A cytokine production inhibitor (TAK-242) improves cardiovascular performance, inhibits cytokine release and increases survival in a porcine model of gram-negative sepsis. Crit. Care Med. 2004, 32, A15. [Google Scholar]
- Rice, T.W.; Wheeler, A.P.; Bernard, G.R.; Vincent, J.L.; Angus, D.C.; Aikawa, N.; Demeyer, I.; Sainati, S.; Amlot, N.; Cao, C. A randomized, double-blind, placebo-controlled trial of TAK-242 for the treatment of severe sepsis. Crit. Care Med. 2010, 38, 1685–1694. [Google Scholar]
- Zhang, D.; Li, H.; Li, T.; Zhou, M.; Hao, S.; Yan, H.; Yu, Z.; Li, W.; Li, K.; Hang, C. TLR4 inhibitor resatorvid provides neuroprotection in experimental traumatic brain injury: Implication in the treatment of human brain injury. Neurochem. Int. 2014, 75, 11–18. [Google Scholar]
- Blohm-Mangone, K.; Burkett, N.B.; Tahsin, S.; Myrdal, P.B.; Aodah, A.; Ho, B.; Janda, J.; McComas, M.; Saboda, K.; Roe, D.J. Pharmacological TLR4 Antagonism Using Topical Resatorvid Blocks Solar UV-Induced Skin Tumorigenesis in SKH-1 Mice. Cancer Prev. Res. 2018, 11, 265–278. [Google Scholar]
- Park, C.-W.; Mansour, H.M.M.; Oh, T.-O.; Kim, J.-Y.; Ha, J.-M.; Lee, B.-J.; Chi, S.-C.; Rhee, Y.-S.; Park, E.-S. Phase behavior of itraconazole–phenol mixtures and its pharmaceutical applications. Int. J. Pharm. 2012, 436, 652–658. [Google Scholar]
- Nyquist, R.A. Chapter 4-Alkenes and Other Compounds Containing C=C Double Bonds. In Interpreting Infrared, Raman, and Nuclear Magnetic Resonance Spectra; Nyquist, R.A., Ed.; Academic Press: San Diego, CA, USA, 2001; pp. 55–91. [Google Scholar]
- Larkin, P.J. Chapter 7-General Outline for IR and Raman Spectral Interpretation. In Infrared and Raman Spectroscopy, 2nd ed.; Larkin, P.J., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 135–151. [Google Scholar]
- Lin-Vien, D.; Colthu, N.B.; Grasselli, J.G. The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules; Academic Press: Cambridge, UK, 1991. [Google Scholar]
- Duarte, F.Í.C.; de Mendonça Costa, A.B.S.; Vieira Filho, J.F.; Freite, V.L.P.; Freire, J.V.A.; Converti, A.; Ferrari, M.; Gomes, A.P.B.; Ostrosky, E.A.; de Lima, Á.A.N. In vitro release studies of ferulic acid in semi-solid formulations with optimized synthetic membrane. J. Drug Deliv. Sci. Technol. 2021, 61, 102106. [Google Scholar]
- Dickinson, S.E.; Wondrak, G.T. TLR4-directed Molecular Strategies Targeting Skin Photodamage and Carcinogenesis. Curr. Med. Chem. 2018, 25, 5487–5502. [Google Scholar]
- Takashima, K.; Matsunaga, N.; Yoshimatsu, M.; Hazeki, K.; Kaisho, T.; Uekata, M.; Hazeki, O.; Akira, S.; Iizawa, Y.; Li, M. Analysis of binding site for the novel small-molecule TLR4 signal transduction inhibitor TAK-242 and its therapeutic effect on mouse sepsis model. Br. J. Pharmacol. 2009, 157, 1250–1262. [Google Scholar] [PubMed] [Green Version]
- Samarpita, S.; Kim, J.Y.; Rasool, M.K.; Kim, K.S. Investigation of toll-like receptor (TLR) 4 inhibitor TAK-242 as a new potential anti-rheumatoid arthritis drug. Arthritis Res. Ther. 2020, 22, 1–10. [Google Scholar]
- Trommer, H.; Neubert, R.H. Overcoming the stratum corneum: The modulation of skin penetration. A review. Ski. Pharm. Physiol. 2006, 19, 106–121. [Google Scholar]
- Haq, A.; Goodyear, B.; Ameen, D.; Joshi, V.; Michniak-Kohn, B. Strat-M® synthetic membrane: Permeability comparison to human cadaver skin. Int. J. Pharm. 2018, 547, 432–437. [Google Scholar]
- Haq, A.; Dorrani, M.; Goodyear, B.; Joshi, V.; Michniak-Kohn, B. Membrane properties for permeability testing: Skin versus synthetic membranes. Int. J. Pharm. 2018, 539, 58–64. [Google Scholar]
- Uchida, T.; Kadhum, W.R.; Kanai, S.; Todo, H.; Oshizaka, T.; Sugibayashi, K. Prediction of skin permeation by chemical compounds using the artificial membrane, Strat-M™. Eur. J. Pharm. Sci. 2015, 67, 113–118. [Google Scholar]
- Kaur, L.; Singh, K.; Paul, S.; Singh, S.; Singh, S.; Jain, S.K. A Mechanistic Study to Determine the Structural Similarities Between Artificial Membrane Strat-M™ and Biological Membranes and Its Application to Carry Out Skin Permeation Study of Amphotericin B Nanoformulations. AAPS PharmSciTech 2018, 19, 1606–1624. [Google Scholar]
- Nair, R.S.; Billa, N.; Leong, C.-O.; Morris, A.P. An evaluation of tocotrienol ethosomes for transdermal delivery using Strat-M® membrane and excised human skin. Pharm. Dev. Technol. 2021, 26, 243–251. [Google Scholar]
- Ezealisiji, K.M.; Okorie, H.N. Size-dependent skin penetration of silver nanoparticles: Effect of penetration enhancers. Appl. Nanosci. 2018, 8, 2039–2046. [Google Scholar]
- Brunaugh, A.D.; Smyth, H.D.; Williams, R.O., III. Essential Pharmaceutics; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Lu, Y.-P.; Lou, Y.-R.; Xie, J.-G.; Peng, Q.-Y.; Zhou, S.; Lin, Y.; Shih, W.J.; Conney, A.H. Caffeine and caffeine sodium benzoate have a sunscreen effect, enhance UVB-induced apoptosis, and inhibit UVB-induced skin carcinogenesis in SKH-1 mice. Carcinogenesis 2007, 28, 199–206. [Google Scholar]
- Vigato, A.A.; Querobino, S.M.; De Faria, N.C.; Candido, A.C.B.B.; Magalhães, L.G.; Cereda, C.M.S.; Tófoli, G.R.; Campos, E.V.R.; Machado, I.P.; Fraceto, L.; et al. Physico-chemical characterization and biopharmaceutical evaluation of lipid-poloxamer-based organogels for curcumin skin delivery. Front. Pharmacol. 2019, 10, 1006. [Google Scholar] [PubMed]
- Kim, K.-T.; Kim, M.-H.; Park, J.-H.; Lee, J.-Y.; Cho, H.-J.; Yoon, I.-S.; Kim, D.-D. Microemulsion-based hydrogels for enhancing epidermal/dermal deposition of topically administered 20 (S)-protopanaxadiol: In vitro and in vivo evaluation studies. J. Ginseng Res. 2018, 42, 512–523. [Google Scholar] [PubMed]
- Talegaonkar, S.; Azeem, A.; Ahmad, F.J.; Khar, R.K.; Pathan, S.A.; Khan, Z.I. Microemulsions: A novel approach to enhanced drug delivery. Recent Patents Drug Deliv. Formul. 2008, 2, 238–257. [Google Scholar]
- Kaushik, D.; Michniak-Kohn, B. Percutaneous penetration modifiers and formulation effects: Thermal and spectral analyses. AAPS Pharmscitech 2010, 11, 1068–1083. [Google Scholar] [PubMed] [Green Version]
- Essendoubi, M.; Gobinet, C.; Reynaud, R.; Angiboust, J.F.; Manfait, M.; Piot, O.J.S.R. Human skin penetration of hyaluronic acid of different molecular weights as probed by Raman spectroscopy. Ski. Res. Technol. 2016, 22, 55–62. [Google Scholar]
- TISSUE MODEL EpiDermTM. Available online: https://mattek.com/products/epiderm/ (accessed on 6 December 2021).
- Netzlaff, F.; Lehr, C.M.; Wertz, P.W.; Schaefer, U.F. The human epidermis models EpiSkin®, SkinEthic® and EpiDerm®: An evaluation of morphology and their suitability for testing phototoxicity, irritancy, corrosivity, and substance transport. Eur. J. Pharm. Biopharm. 2005, 60, 167–178. [Google Scholar]
- Chang, R.-K.; Raw, A.; Lionberger, R.; Yu, L. Generic development of topical dermatologic products: Formulation development, process development, and testing of topical dermatologic products. AAPS J. 2013, 15, 41–52. [Google Scholar]
Experimental (Log-P) | Average ± SD |
---|---|
At 35 °C, pH = 6.5 | 1.65 ± 0.029 |
At Room temperature/ambient temperature, pH = 6.5 | 1.58 ± 0.019 |
Experimental (Log-P) | Avg. Log-P ± SD |
At 35 °C, pH = 7.1 | 1.68 ± 0.013 |
At Room temperature/ambient temperature, pH = 7.1 | 1.54 ± 0.149 |
Experimental (Log-P) | Avg. Log-P ± SD |
At 35 °C, pH = 8.8 | 0.94 ± 0.023 |
At Room temperature/ambient temperature, pH = 8.8 | 0.88 ± 0.060 |
Predicted (cLogP) | Predicted value |
ChemDraw Version 16.0 | 2.53 |
Swiss ADME | 3.04 |
5% Creams and Lotions | Flux (µg/cm2/h) | Lag Time (h) | Drug Retention (µg) |
---|---|---|---|
5% (w/w) DermaBaseTM (cream formulation) | 8.72 ± 2.59 a A | - | 409.24 ± 12.67 a A |
5% (w/w) DermaBaseTM (lotion formulation) | 6.03 ± 2.01 a A | - | 570.7 ± 55.87 b A |
5% (w/w) PENcreamTM (cream formulation) | 1.68 ± 0.30 b A | - | 397.63 ± 16.22 a A |
2.5% creams and lotions | Flux (µg/cm2/h) | Lag time (h) | Drug retention (µg) |
2.5% (w/w) DermaBase (cream formulation) | 3.70 ± 0.64 a B | - | 376.03 ± 50.36 ab A |
2.5% (w/w) DermaBaseTM (lotion formulation) | 2.85 ± 0.37 a B | - | 417.97 ± 24.26 b B |
2.5% (w/w) PENcreamTM (cream formulation) | 1.66 ± 0.65 a A | - | 326.89 ± 24.56 a A |
1.25% creams and lotions | Flux (µg/cm2/h) | Lag time (h) | Drug retention (µg) |
1.25% (w/w) DermaBaseTM (cream formulation) | 2.82 ± 0.69 a B | - | 199.43 ± 16.63 a B |
1.25% (w/w) DermaBaseTM (lotion formulation) | 1.98 ± 0.29 a B | - | 153.50 ± 32.36 a C |
1.25% (w/w) PENcreamTM (cream formulation) | 2.03 ± 0.13 a A | - | 204.56 ± 12.16 a B |
5% Simple Solutions | Flux (µg/cm2/h) | Lag Time (h) | Drug Retention (µg) |
---|---|---|---|
5% (w/v) PEG-400 solution | 5.33 ± 1.05 a A | 2.4 ± 0.29 | 556.76 ± 47.72 a A |
5% (w/v) PG solution | 57.10 ± 3.90 b A | - | 1686 ± 285.15 b A |
2.5% simple solutions | Flux (µg/cm2/h) | Lag time (h) | Drug retention (µg) |
2.5% (w/v) PEG-400 solution | 9.16 ± 1.39 a A | 0.83 ± 0.15 | 498.21 ± 37.7 a A |
2.5% (w/v) PG solution | 47.87 ± 3.69 b B | - | 1242.88 ± 63.76 b B |
1.25% simple solutions | Flux (µg/cm2/h) | Lag time (h) | Drug retention (µg) |
1.25% (w/v) PEG-400 solution | 3.60 ± 1.5 a A | 1.14 ± 0.34 | 264.63 ± 9.47 a A |
1.25% (w/v) PG solution | 5.33 ± 1.05 a C | - | 938.08 ± 56.73 b B |
2.5% Gels and Serum | Flux (µg/cm2/h) | Lag Time (h) | Drug Retention (µg) |
---|---|---|---|
2.5% (w/w) Carbomer (gel formulation) | 5.76 ± 2.08 a A | - | 638.51 ± 32.19 a A |
2.5% (w/w) Hyaluronic Acid (gel/serum formulation) | 0.52 ± 0.14 b A | 1.14 ± 0.25 | 472.36 ± 52.29 b A |
2.5% (w/v) Pluronic® F-127 (gel formulation) | 8.5 ± 0.39 a A | - | 289.72 ± 20.46 c A |
1.25% gels and serum | Flux (µg/cm2/h) | Lag time (h) | Drug retention (µg) |
1.25% (w/w) Carbomer (gel formulation) | 2.77 ± 0.80 a A | 0.15 ± 0.07 | 445.06 ± 85.12 a B |
1.25% (w/w) Hyaluronic Acid (gel/serum formulation) | 1.16 ± 0.19 a A | 1.98 ± 0.34 | 415.83 ± 21.19 a A |
1.25% (w/v) Pluronic® F-127 (gel formulation) | 8.45 ± 1.51 b A | - | 235.06 ± 45.74 c A |
1.25% Creams and Lotion | Flux (µg/cm2/h) | Lag Time (h) | Drug Retention (µg) |
---|---|---|---|
1.25% (w/w) DermaBASETM (cream formulation) | 2.56 ± 0.68 | - | 14.24 ± 2.54 |
1.25% (w/w) DermaBASETM (lotion formulation) | 1.97 ± 0.38 | 0.20±0.08 | 9.38 ± 2.56 |
1.25% (w/w) PENcreamTM (cream formulation) | 7.9 ± 1.90 | - | 19.69 ± 2.16 |
1.25% simple solutions | Flux (µg/cm2/h) | Lag time (h) | Drug retention (µg) |
1.25% (w/v) PEG-400 solution | 2.39 ± 0.68 | 0.37 ± 0.11 | 21.35 ± 6.54 |
1.25% (w/v) PG solution | 11.08 ± 2.92 | 0.50 ± 0.16 | 43.07 ± 6.91 |
1.25% gels and serums | Flux (µg/cm2/h) | Lag time (h) | Drug retention (µg) |
1.25% (w/w) Carbomer (gel formulation) | 5.34 ± 1.27 | - | 51.06 ± 12.4 |
1.25% (w/w) Hyaluronic Acid (gel/serum formulation) | 6.53 ± 0.769 | 0.36 ± 0.0.18 | 24.02 ± 6.63 |
1.25% (w/v) Pluronic® F-127 (gel formulation) | 6.37 ± 0.47 | - | 18.52 ± 2.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz, V.H.; Encinas-Basurto, D.; Sun, B.; Eedara, B.B.; Dickinson, S.E.; Wondrak, G.T.; Chow, H.-H.S.; Curiel-Lewandrowski, C.; Mansour, H.M. Design, Physicochemical Characterization, and In Vitro Permeation of Innovative Resatorvid Topical Formulations for Targeted Skin Drug Delivery. Pharmaceutics 2022, 14, 700. https://doi.org/10.3390/pharmaceutics14040700
Ruiz VH, Encinas-Basurto D, Sun B, Eedara BB, Dickinson SE, Wondrak GT, Chow H-HS, Curiel-Lewandrowski C, Mansour HM. Design, Physicochemical Characterization, and In Vitro Permeation of Innovative Resatorvid Topical Formulations for Targeted Skin Drug Delivery. Pharmaceutics. 2022; 14(4):700. https://doi.org/10.3390/pharmaceutics14040700
Chicago/Turabian StyleRuiz, Victor H., David Encinas-Basurto, Bo Sun, Basanth Babu Eedara, Sally E. Dickinson, Georg T. Wondrak, H. -H. Sherry Chow, Clara Curiel-Lewandrowski, and Heidi M. Mansour. 2022. "Design, Physicochemical Characterization, and In Vitro Permeation of Innovative Resatorvid Topical Formulations for Targeted Skin Drug Delivery" Pharmaceutics 14, no. 4: 700. https://doi.org/10.3390/pharmaceutics14040700
APA StyleRuiz, V. H., Encinas-Basurto, D., Sun, B., Eedara, B. B., Dickinson, S. E., Wondrak, G. T., Chow, H.-H. S., Curiel-Lewandrowski, C., & Mansour, H. M. (2022). Design, Physicochemical Characterization, and In Vitro Permeation of Innovative Resatorvid Topical Formulations for Targeted Skin Drug Delivery. Pharmaceutics, 14(4), 700. https://doi.org/10.3390/pharmaceutics14040700