Transdermal Glipizide Delivery System Based on Chitosan-Coated Deformable Liposomes: Development, Ex Vivo, and In Vivo Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of GLP-Loaded Deformable Liposomes and CS-Coated Liposomes
2.2.2. Physicochemical Characterization of the Formulations
Vesicle Size Distribution and Zeta Potential Measurements
Determination of the Entrapment Efficiency (EE)
The Vesicle Deformability Study
Morphological Characterization
2.2.3. In Vitro Release Study
2.2.4. Physical Stability of the Liposomes and CS-Coated Liposomes
2.2.5. Preparation of GLP-Loaded CL, DL, and CS-Coated Liposomes Transdermal Films
2.2.6. Evaluation of GLP-Loaded CL, DL, and CS-Coated Liposomes Transdermal Films
2.2.7. Ex Vivo Skin Permeation Study
2.2.8. Permeation Parameters
2.2.9. Scanning Electron Microscopy (SEM)
2.2.10. In Vivo Study
Experimental Animals
Pharmacokinetics Evaluation
Pharmacokinetics (PK) Analysis
Induction of Hyperglycemia
2.2.11. Statistical Data Analysis
3. Results and Discussion
3.1. Physicochemical Characterization of GLP-Loaded CLs, DL, and CS-Coated CLs and DLs
3.1.1. Vesicle Size Distribution and Zeta Potential Measurements
3.1.2. Determination of the Entrapment Efficiency (EE)
3.1.3. Deformability of Liposomes
3.1.4. Morphology of Liposomes
3.2. In Vitro Release Study
3.3. Stability of the Liposomes
3.4. Evaluation of GLP-Loaded Liposome- and CS-Coated Liposomes-Based Transdermal Films
3.5. Ex Vivo Skin Permeation Studies
3.6. Permeation Parameters
3.7. Scanning Electron Microscopy (SEM) of Transdermal Film
3.8. Pharmacokinetic Studies
3.9. Blood Glucose Levels
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goyal, S.; Rai, J.K.; Narang, R.; Rajesh, K. Sulfonyl ureas for antidiabetic therapy, an overview for glipizide. Int. J. Pharm. Pharm. Sci. 2010, 2, 1–6. [Google Scholar]
- Emami, J.; Boushehri, M.S.; Varshosaz, J. Preparation, characterization and optimization of glipizide controlled release nanoparticles. Res. Pharm. Sci. 2014, 9, 301–314. [Google Scholar] [PubMed]
- Sun, P.; Li, P.; Li, Y.M.; Wei, Q.; Tian, L.H. A pH-sensitive chitosan-tripolyphosphate hydrogel beads for controlled glipizide delivery. J. Biomed. Mater. Res. B Appl. Biomater. 2011, 97, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Behin, S.R.; Punitha, I.S.; Saju, F. Development of matrix dispersion transdermal therapeutic system containing glipizide. Der Pharma. Lett. 2013, 5, 278–286. [Google Scholar]
- Subash, M.P.; Pandey, V.P. Formulation and evaluation of glimepiride-loaded liposomes by ethanol-injection method. Asian J. Pharm. Clin. Res. 2016, 9, 192–196. [Google Scholar]
- Chandran, M.S.; Pandey, V. Formulation and evaluation of gliclazide loaded liposomes. Sch. Res. Libr. Der Pharma. Lett. 2016, 8, 60–68. [Google Scholar]
- Singh, M.; Balamurugan, M.; Gupta, A.; Yadav, S.; Sharma, A.; Acharya, A.Y.; Ramasamy, M. Antidiabetic activity of glibenclamide loaded liposomes in alloxan induced diabetic. Ars Pharm. 2007, 48, 31–36. [Google Scholar]
- Benson, H. Transfersomes for transdermal drug delivery. Expert Opin. Drug Deliv. 2006, 3, 727–737. [Google Scholar] [CrossRef]
- El Sayed, M.M.; Abdallah, O.Y.; Naggar, V.F.; Khalafallah, N.M. Deformable liposomes and ethosomes: Mechanism of enhanced skin delivery. Int. J. Pharm. 2006, 322, 60–66. [Google Scholar] [CrossRef]
- Hussain, A.; Singh, S.; Sharma, D.; Webster, T.J.; Shafaat, K.; Faruk, A. Elastic liposomes as novel carriers: Recent advances in drug delivery. Int. J. Nanomed. 2017, 12, 5087–5108. [Google Scholar] [CrossRef] [Green Version]
- Rajan, R.; Jose, S.; Mukund, V.B.; Vasudevan, D.T. Transferosomes-A vesicular transdermal de-livery system for enhanced drug permeation. J. Adv. Pharm. Technol. Res. 2011, 2, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Pawar, A.Y. Transfersome: A novel technique which improves transdermal permeability. Asian J. Pharm. 2016, 10, 425–436. [Google Scholar]
- Ujjwal, N.; Sakshi, S. Transfersomes: Novel approach for transdermal delivery. Eur. J. Pharm. Med. Res. 2015, 2, 218–233. [Google Scholar]
- Çağdaş, M.; Sezer, A.D.; Bucak, S. Liposomes as potential drug carrier systems for drug delivery. In Application of Nanotechnology in Drug Delivery; Intech: London, UK, 2014; pp. 1–50. [Google Scholar]
- Park, S.N.; Jo, N.R.; Jeon, S.H. Chitosan-coated liposomes for enhanced skin permeation of resveratrol. J. Indust. Eng. Chem. 2014, 20, 1481–1485. [Google Scholar] [CrossRef]
- Mady, M.M.; Darwish, M.M.; Khalil, S.; Khalil, W.M. Biophysical studies on chitosan-coated liposomes. Eur. Biophys. J. 2009, 38, 1127–1133. [Google Scholar] [CrossRef]
- Yadav, A.V.; Urade, M.N. Formulation and evaluation of chitosan based transdermal patches of lornoxicam for prolonged drug release and to study the effect of permeation enhancer. Ind. J. Pharm. Edu. Res. 2019, 53, 88–96. [Google Scholar] [CrossRef] [Green Version]
- Ali, H.S.; Hanafy, A.F. Glibenclamide nanocrystals in a biodegradable chitosan patch for transdermal delivery: Engineering, formulation, and evaluation. J. Pharm. Sci. 2017, 106, 402–410. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Li, R.; Liu, Q.; Bai, C.; Qin, B.; Ma, Y.; Han, J. Ultradeformable liposomes: A novel vesicular carrier for enhanced transdermal delivery of procyanidins: Effect of surfactants on the formation, stability, and transdermal delivery. AAPS Pharm. Sci. Tech. 2017, 18, 1823–1832. [Google Scholar] [CrossRef]
- Dhawan, S.; Singla, A. Performance liquid chromatographic analysis of glipizide: Application to in vitro and in vivo studies. J. Chromat. Sci. 2003, 41, 295–300. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Vardhan, H.; Kotla, N.G.; Maddiboyina, B.; Sharma, D.; Webster, T.J. The role of surfactants in the formulation of elastic liposomal gels containing a synthetic opioid analgesic. Int. J. Nanomed. 2016, 11, 1475–1482. [Google Scholar]
- Chen, H.; Pan, H.; Li, P.; Wang, H.; Wang, X.; Pan, W.; Yuan, Y. The potential use of novel chitosan-coated deformable liposomes in an ocular drug delivery system. Colloids Surf. B Biointerfaces 2016, 143, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, T.A.; Khalid, M.; Aljaeid, B.M.; Fahmy, U.A.; Abd-Allah, F.I. Transdermal glimepiride delivery system based on optimized ethosomal nano-vesicles: Preparation, characterization, in vitro, ex vivo and clinical evaluation. Int. J. Pharm. 2016, 500, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Kamran, M.; Ahad, A.; Aqil, M.; Imam, S.S.; Sultana, Y.; Ali, A. Design, formulation and optimization of novel soft nano-carriers for transdermal olmesartan medoxomil delivery: In vitro characterization and in vivo pharmacokinetic assessment. Int. J. Pharm. 2016, 505, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Fotaki, N.; Brown, W.; Kochling, J.; Chokshi, H.; Miao, H.; Tang, K.; Gray, V. Rationale for selection of dissolution media: Three case studies. Dissolut. Technol. 2013, 20, 6–13. [Google Scholar] [CrossRef]
- Ahmed, T.A.; Khalid, M. Transdermal film-loaded finasteride microplates to enhance drug skin permeation: Two-step optimization study. Eur. J. Pharm. Sci. 2016, 88, 246–256. [Google Scholar] [CrossRef]
- Prajapati, S.T.; Patel, C.G.; Patel, C.N. Formulation and evaluation of transdermal patch of repaglinide. Int. Sch. Res. Notices 2011, 2011, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Suksaeree, J.; Siripornpinyo, P.; Chaiprasit, S. Formulation, characterization, and in vitro evaluation of transdermal patches for inhibiting crystallization of mefenamic acid. J. Drug Deliv. 2017, 2017, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Prabhakar, D.; Sreekanth, J.; Jayaveera, K. Transdermal drug delivery patches: A review. J. Drug Deliv. Ther. 2013, 3, 213–221. [Google Scholar] [CrossRef]
- Singh, A.; Bali, A. Formulation and characterization of transdermal patches for controlled delivery of duloxetine hydrochloride. J. Anal. Sci. Technol. 2016, 7, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Ghosal, K.; Rajabalaya, R.; Maiti, A.K.; Chowdhury, B.; Nanda, A. Evaluation of physicochemical properties and in-vitro release profile of glipizide-matrix patch. Braz. J. Pharm. Sci. 2010, 46, 213–218. [Google Scholar] [CrossRef] [Green Version]
- Shinde, A.J.; Shinde, A.L.; More, H.N. Design and evaluation of transdermal drug delivery system of gliclazide. Asian J. Pharm. 2014, 4. [Google Scholar] [CrossRef]
- Furqan, H.; Shalini, S. Development and evaluation of transdermal therapeutics systems of an antihypertensive drugs. Int. Res. J. Pharmacy. 2015, 6, 213–218. [Google Scholar] [CrossRef]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh, D.F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leonyza, A.; Surini, S. Optimization of sodium deoxycholate-based transfersomes for percutaneous delivery of peptides and proteins. Int. J. App. Pharm. 2019, 11, 329–332. [Google Scholar] [CrossRef] [Green Version]
- Andersen, T.; Vanić, Ž.; Flaten, G.E.; Mattsson, S.; Tho, I.; Škalko-Basnet, N. Pectosomes and chitosomes as delivery systems for metronidazole: The one-pot preparation method. Pharmaceutics 2013, 5, 445–456. [Google Scholar] [CrossRef] [Green Version]
- Qushawy, M.; Nasr, A.; Abd-Alhaseeb, M.; Swidan, S. Design, optimization and characterization of a transfersomal gel using miconazole nitrate for the treatment of candida skin infections. Pharmaceutics 2018, 10, 26. [Google Scholar] [CrossRef] [Green Version]
- Mouez, M.A.; Nasr, M.; Abdel-Mottaleb, M.; Geneidi, A.S.; Mansour, S. Composite chitosan-transfersomal vesicles for improved transnasal permeation and bioavailability of verapamil. Int. J. Biol. Macromol. 2016, 93, 591–599. [Google Scholar] [CrossRef]
- Aggarwal, N.; Goindi, S. Preparation and evaluation of antifungal efficacy of griseofulvin loaded deformable membrane vesicles in optimized guinea pig model of Microsporum canis—Dermatophytosis. Int. J. Pharm. 2012, 437, 277–287. [Google Scholar] [CrossRef]
- Alomrani, A.H.; Shazly, G.A.; Amara, A.A.; Badran, M.M. Itraconazole-hydroxypropyl-β-cyclodextrin loaded deformable liposomes: In vitro skin penetration studies and antifungal efficacy using Candida albicans as model. Colloids Surf. B Biointerfaces 2014, 121, 74–81. [Google Scholar] [CrossRef]
- Guan, P.; Lu, Y.; Qi, J.; Niu, M.; Lian, R.; Hu, F.; Wu, W. Enhanced oral bioavailability of cyclosporine A by liposomes containing a bile salt. Int. J. Nanomed. 2011, 6, 965–974. [Google Scholar]
- Mahajan, N.M.; Zode, G.H.; Mahapatra, D.K.; Thakre, S.; Dumore, N.; Gangane, P.S. Formulation development and evaluation of transdermal patch of piroxicam for treating dysmenorrhea. J. Appl. Pharm. Sci. 2018, 8, 35–41. [Google Scholar]
- Alshraim, M.O.; Sangi, S.; Harisa, G.I.; Alomrani, A.H.; Yusuf, O.; Badran, M.M. Chitosan-coated flexible liposomes magnify the anticancer activity and bioavailability of docetaxel: Impact on composition. Molecules 2019, 24, 250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alomrani, A.; Badran, M.; Harisa, G.I.; ALshehry, M.; Alhariri, M.; Alshamsan, A.; Alkholief, M. The use of chitosan-coated flexible liposomes as a remarkable carrier to enhance the antitumor efficacy of 5-fluorouracil against colorectal cancer. Saudi Pharm. J. 2019, 27, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Mengoni, T.; Adrian, M.; Pereira, S.; Santos-Carballal, B.; Kaiser, M.; Goycoolea, F. A Chitosan-based liposome formulation enhances the in vitro wound healing efficacy of substance p neuropeptide. Pharmaceutics 2017, 9, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Opatha, S.A.T.; Titapiwatanakun, V.; Chutoprapat, R. Transfersomes: A promising nanoencapsulation technique for transdermal drug delivery. Pharmaceutics 2020, 12, 855. [Google Scholar] [CrossRef]
- Patel, D.P.; Setty, C.M.; Mistry, G.N.; Patel, S.L.; Patel, T.J.; Mistry, P.C.; Rana, A.K.; Patel, P.K.; Mishra, R.S. Development and evaluation of ethyl cellulose-based transdermal films of furosemide for improved in vitro skin permeation. AAPS Pharm. Sci. Tech. 2009, 10, 437–442. [Google Scholar] [CrossRef] [Green Version]
- Ternullo, S.; Schulte, W.L.V.; Holsæter, A.M.; Škalko-Basnet, N. Curcumin-in-deformable liposomes-in-chitosan-hydrogel as a novel wound dressing. Pharmaceutics 2020, 12, 8. [Google Scholar] [CrossRef] [Green Version]
Codes/Ingredients (Molar Ratio) | Lipoid S100 | Cholesterol | Tween 80 | Na-Deoxycholate | Chitosan (% w/v) | GLP (% w/v) |
---|---|---|---|---|---|---|
GLP-CL GLP-CS-CL | 10.0 10.0 | 3.0 3.0 | 0.0 0.0 | 0.0 0.0 | 0.0 0.1 | 0.5 0.5 |
GLP-DL1 GLP-CS-DL1 | 9.0 9.0 | 3.0 3.0 | 1.0 1.0 | 0.0 0.0 | 0.0 0.1 | 0.5 0.5 |
GLP-DL2 GLP-CS-DL2 | 9.0 9.0 | 3.0 3.0 | 0.0 0.0 | 1.0 1.0 | 0.0 0.1 | 0.5 0.5 |
GLP-DL3 GLP-CS-DL3 | 9.0 9.0 | 3.0 3.0 | 0.5 0.5 | 0.5 0.5 | 0.0 0.1 | 0.5 0.5 |
Formulation Codes | Particle Size (nm ± SD) | PDI (±SD) | Zeta Potential (mV ± SD) | EE% (mean ± SD) |
---|---|---|---|---|
GLP-CL | 109.57 ± 5.94 | 0.248 ± 0.01 | −25.71 ± 5.90 | 79.48 ± 0.55 |
GLP-CS-CL | 178.03 ± 8.69 | 0.389 ± 0.03 | 14.26 ± 1.22 | 64.61 ± 0.5 |
GLP-DL1 | 154.92 ±15.82 | 0.472 ± 0.04 | −29.80 ± 3.36 | 98.65 ± 0.01 |
GLP-CS-DL1 | 182.90 ± 1.67 | 0.423 ± 0.03 | 16.10 ± 1.05 | 88.59 ± 0.37 |
GLP-DL2 | 144.16 ± 5.20 | 0.478 ± 0.04 | −27.36 ± 2.24 | 87.32 ± 0.46 |
GLP-CS-DL2 | 157.50 ± 2.04 | 0.444 ± 0.01 | 17.43 ± 1.17 | 51.91 ± 1.25 |
GLP-DL3 | 247.80 ± 5.75 | 0.498 ± 0.05 | −28.57 ± 5.41 | 93.25 ± 0.12 |
GLP-CS-DL3 | 255.40 ± 6.36 | 0.382 ± 0.12 | 24.43 ± 2.83 | 54.57 ± 1.73 |
Formulation Codes | Correlation Coefficient (R2) | ||||
---|---|---|---|---|---|
Zero-Order | First-Order | Higuchi’s Model | Korsmeyer–Peppas Model | ||
R² | N | ||||
GLP-CL | 0.8466 | 0.9099 | 0.9665 | 0.9264 | 0.6282 |
GLP-CS-CL | 0.8891 | 0.9307 | 0.9789 | 0.9884 | 0.5737 |
GLP-DL1 | 0.8751 | 0.9544 | 0.9759 | 0.9568 | 0.7405 |
GLP-CS-DL1 | 0.8862 | 0.9294 | 0.9701 | 0.9754 | 0.8440 |
GLP-DL2 | 0.8973 | 0.9575 | 0.9832 | 0.9813 | 0.6691 |
GLP-CS-DL2 | 0.9090 | 0.9399 | 0.9798 | 0.9873 | 0.7287 |
GLP-DL3 | 0.8955 | 0.9631 | 0.9833 | 0.9776 | 0.6977 |
GLP-CS-DL3 | 0.8731 | 0.9136 | 0.9723 | 0.9827 | 0.6022 |
Formulations Codes | Thickness (mm) ± SD | Weight Variation (mg) ± SD | Moisture Uptake(%) ± SD | Folding Endurance |
---|---|---|---|---|
GLP-CL-TDF | 0.202 ± 0.017 | 41.48 ± 2.24 | 12.71 ± 2.98 | <100 |
GLP-CS-CL-TDF | 0.168 ± 0.032 | 36.74 ± 8.14 | 16.11 ± 2.96 | <100 |
GLP-DL1-TDF | 0.250 ± 0.017 | 55.14 ± 3.29 | 13.02 ± 1.17 | >100 |
GLP-CS-DL1-TDF | 0.184 ± 0.009 | 43.58 ± 1.11 | 14.19 ± 3.27 | >100 |
GLP-DL2-TDF | 0.232 ± 0.010 | 51.06 ± 2.32 | 13.68 ± 1.26 | <100 |
GLP-CS-DL2-TDF | 0.168 ± 0.035 | 36.74 ± 8.63 | 16.81 ± 3.21 | <100 |
GLP-DL3-TDF | 0.200 ± 0.032 | 45.84 ± 10.25 | 5.32 ± 0.69 | >100 |
GLP-CS-DL3-TDF | 0.157 ± 0.021 | 30.96 ± 6.14 | 16.10 ± 4.72 | >100 |
Formulations Code | Cumulative Drug Permeated After 24 h | Flux, J (µg/cm2/h) | Permeability Coefficient Kpx10−4 (cm h−1) | Lag Time (h) | R2 |
---|---|---|---|---|---|
GLP-DL1-TDF | 40.645 ± 1.392 | 2.725 ± 0.071 | 169.497 ± 3.325 | 7.092 ± 1.233 | 0.984 ± 0.013 |
GLP-CS-DL1-TDF | 85.117 ± 5.008 | 8.436 ± 0.915 | 281.605 ± 13.524 | 2.165 ± 0.136 | 0.986 ± 0.012 |
GLP-DL3-TDF | 45.834 ± 3.208 | 4.322 ± 0.798 | 204.825 ± 5.792 | 4.043 ± 0.838 | 0.978 ± 0.027 |
GLP-CS-DL3-TDF | 57.273 ± 2.358 | 5.421 ± 0.829 | 213.402 ± 8.221 | 3.778 ± 0.341 | 0.988 ± 0.007 |
Parameters | Oral GLP | GLP-TDF | GLP-CS-DL1-TDF | GLP-CS-DL3-TDF |
---|---|---|---|---|
Cmax (µg/mL) | 13.63 ± 1.18 | 2.42 ± 0.47 | 7.87 ± 1.06 | 4.82 ± 1.03 |
Tmax (h) | 2.00 ± 0.49 | 12.00 ± 00 | 12.00 ± 0.00 | 12.00 ± 0.00 |
AUC (0→24) (µg-h/mL) | 70.58 ± 7.26 | 43.02 ± 4.51 | 164.12 ± 23.12 | 96.22 ± 11.78 |
AUC (0→∞) (µg-h/mL) | 70.57 ± 7.27 | 47.71 ± 5.21 | 189.07 ± 30.6 | 109.24 ± 14.97 |
t1/2 (h) | 2.25 ± 0.61 | 7.96 ± 0.23 | 9.73 ± 0.47 | 8.34 ± 0.68 |
MRT (h) | 4.96 ± 0.55 | 24.44 ± 0.38 | 27.09 ± 1.08 | 23.97 ± 2.16 |
Time (h) | Normal Control | Oral GLP | GLP-TDF | GLP-CS-DL1-TDF | GLP-CS-DL3-TDF |
---|---|---|---|---|---|
0 | 109 ± 8.18 | 335 ± 20.67 | 356 ± 14.11 | 354 ± 17.15 | 348 ± 16.50 |
0.5 | 119 ± 13.27 | 349 ± 21.81 | 356 ± 26.37 | 357 ± 22.91 | 368 ± 26.76 |
1 | 136 ± 9.62 | 353 ± 23.01 | 338 ± 21.73 | 354 ± 21.78 | 354 ± 22.56 |
2 | 113 ± 15.11 | 299 ± 21.89 | 331 ± 9.75 | 293 ± 22.17 | 303 ± 25.11 |
4 | 121 ± 5.35 | 216 ± 17.67 | 310 ± 19.08 | 252 ± 19.47 | 268 ± 23.52 |
6 | 115 ± 11.95 | 186 ± 15.95 | 305 ± 21.84 | 228 ± 15.56 | 205 ± 18.68 |
8 | 108 ± 17.53 | 138 ± 11.36 | 274 ± 18.74 | 163 ± 10.81 | 199 ± 15.17 |
24 | 128 ± 7.03 | 150 ± 10.61 | 319 ± 22.14 | 138 ± 15.53 | 173 ± 9.54 |
48 | 137 ± 11.02 | 227 ± 7.07 | 344 ± 24.54 | 236 ± 17.89 | 331 ± 8.51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badran, M.M.; Alouny, N.N.; Aldosari, B.N.; Alhusaini, A.M.; Abou El Ela, A.E.S. Transdermal Glipizide Delivery System Based on Chitosan-Coated Deformable Liposomes: Development, Ex Vivo, and In Vivo Studies. Pharmaceutics 2022, 14, 826. https://doi.org/10.3390/pharmaceutics14040826
Badran MM, Alouny NN, Aldosari BN, Alhusaini AM, Abou El Ela AES. Transdermal Glipizide Delivery System Based on Chitosan-Coated Deformable Liposomes: Development, Ex Vivo, and In Vivo Studies. Pharmaceutics. 2022; 14(4):826. https://doi.org/10.3390/pharmaceutics14040826
Chicago/Turabian StyleBadran, Mohamed M., Nadia N. Alouny, Basmah N. Aldosari, Ahlam M. Alhusaini, and Amal El Sayeh Abou El Ela. 2022. "Transdermal Glipizide Delivery System Based on Chitosan-Coated Deformable Liposomes: Development, Ex Vivo, and In Vivo Studies" Pharmaceutics 14, no. 4: 826. https://doi.org/10.3390/pharmaceutics14040826
APA StyleBadran, M. M., Alouny, N. N., Aldosari, B. N., Alhusaini, A. M., & Abou El Ela, A. E. S. (2022). Transdermal Glipizide Delivery System Based on Chitosan-Coated Deformable Liposomes: Development, Ex Vivo, and In Vivo Studies. Pharmaceutics, 14(4), 826. https://doi.org/10.3390/pharmaceutics14040826