Enzyme Encapsulation by Facile Self-Assembly Silica-Modified Magnetic Nanoparticles for Glucose Monitoring in Urine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of Glucose Oxidase Embedded into Silica Nanoparticles
2.3. Characterization
2.4. Activity Assay
2.5. Evaluation of the Embedded Glucose Oxidase
2.6. Measurement Procedure for Glucose
2.7. Interference Study
2.8. Assay of Glucose in Urine
3. Results and Discussion
3.1. Preparation of the Embedded Glucose Oxidase
3.2. Evaluation of Magnetic Embedded Enzymes
3.3. Characterization of Magnetic Embedded Enzymes
3.4. Assay of Glucose
3.5. Interference Experiments
3.6. Assay of Glucose in Urine Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, T.; Kim, I.; Cheong, D.Y.; Roh, S.; Jung, H.G.; Lee, S.W.; Kim, H.S.; Yoon, D.S.; Hong, Y.; Lee, G. Selective colorimetric urine glucose detection by paper sensor functionalized with polyaniline nanoparticles and cell membrane. Anal. Chim. Acta 2021, 1158, 338387. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.Y.; Cheung, C.M.G.; Larsen, M.; Sharma, S.; Simo, R. Diabetic retinopathy. Nat. Rev. Dis. Primers 2016, 2, 16012. [Google Scholar] [CrossRef] [PubMed]
- Mann, J.F.E.; Orsted, D.D.; Brown-Frandsen, K.; Marso, S.P.; Poulter, N.R.; Rasmussen, S.; Tornoe, K.; Zinman, B.; Buse, J.B.; Committee, L.S. Investigators. Liraglutide and renal outcomes in type 2 diabetes. N. Engl. J. Med. 2017, 377, 839–848. [Google Scholar] [CrossRef] [Green Version]
- Fiorentino, T.V.; Prioletta, A.; Zuo, P.; Folli, F. Hyperglycemia-induced oxidative stress and its role in diabetes mellitus related cardiovascular diseases. Curr. Pharm. Design 2013, 19, 5695–5703. [Google Scholar] [CrossRef] [PubMed]
- Strachan, M.W.J.; Reynolds, R.M.; Marioni, R.E.; Price, J.F. Cognitive function, dementia and type 2 diabetes mellitus in the elderly. Nat. Rev. Endocrinol. 2011, 7, 108–114. [Google Scholar] [CrossRef]
- Naveen Prasad, S.; Weerathunge, P.; Karim, M.N.; Anderson, S.; Hashmi, S.; Mariathomas, P.D.; Bansal, V.; Ramanathan, R. Non-invasive detection of glucose in human urine using a color-generating copper NanoZyme. Anal. Bioanal. Chem. 2021, 413, 1279–1291. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.Q.; Gong, Y.X.; Yu, K.X. Rapid quantitative detection of glucose content in glucose injection by reaction headspace gas chromatography. J. Chromatogr. A 2017, 1520, 143–146. [Google Scholar] [CrossRef]
- Du, Y.; Yan, J.L.; Zhou, W.Z.; Yang, X.Y.; Wang, E.K. Direct electrochemical detection of glucose in human plasma on capillary electrophoresis microchips. Electrophoresis 2004, 25, 3853–3859. [Google Scholar] [CrossRef]
- Buriova, E.; Medova, M.; Macasek, F.; Bruder, P. Separation and detection of oxidation products of fluorodeoxyglucose and glucose by high-performance liquid chromatography-electrospray ionisation mass spectrometry. J. Chromatogr. A 2004, 1034, 133–137. [Google Scholar] [CrossRef]
- Jiang, S.; Zhang, Y.; Yang, Y.; Huang, Y.; Ma, G.; Luo, Y.; Huang, P.; Lin, J. Glucose oxidase-instructed fluorescence amplification strategy for intracellular glucose detection. ACS Appl. Mater. Interfaces 2019, 11, 10554–10558. [Google Scholar] [CrossRef]
- Yee, Y.C.; Hashim, R.; Mohd Yahya, A.R.; Bustami, Y. Colorimetric analysis of glucose oxidase-magnetic cellulose nanocrystals (CNCs) for glucose detection. Sensors 2019, 19, 2511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fereja, T.H.; Kitte, S.A.; Zafar, M.N.; Halawa, M.I.; Han, S.; Zhang, W.; Xu, G. Highly sensitive and selective non-enzymatic glucose detection based on indigo carmine/hemin/H2O2 chemiluminescence. Analyst 2020, 145, 1041–1046. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Sun, H.; Li, Y.; Liu, X.; Du, X.; Wang, X.; Xu, P. Biosensor based on glucose oxidase-nanoporous gold co-catalysis for glucose detection. Biosens. Bioelectron. 2015, 66, 350–355. [Google Scholar] [CrossRef]
- Lee, H.; Hong, Y.J.; Baik, S.; Hyeon, T.; Kim, D.H. Enzyme-based glucose sensor: From invasive to wearable device. Adv. Healthc. Mater. 2018, 7, e1701150. [Google Scholar] [CrossRef] [Green Version]
- Kiyatkin, E.A.; Wakabayashi, K.T. Parsing glucose entry into the brain: Novel findings obtained with enzyme-based glucose biosensors. ACS Chem. Neurosci. 2015, 6, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.N.; Hu, Q.Q.; Shu, H.; Wang, L.; Cui, X.; Han, J.L.; Bashir, K.; Luo, Z.M.; Chang, C.; Fu, Q. Fluorescent biosensor based on magnetic cross-linking enzyme aggregates/CdTe quantum dots for the detection of H2O2-bioprecursors. New J. Chem. 2020, 44, 17984–17992. [Google Scholar] [CrossRef]
- An, H.; Song, J.; Wang, T.; Xiao, N.; Zhang, Z.; Cheng, P.; Ma, S.; Huang, H.; Chen, Y. Metal-organic framework disintegrants: Enzyme preparation platforms with boosted activity. Angew. Chem. Int. Ed. Engl. 2020, 59, 16764–16769. [Google Scholar] [CrossRef]
- Chen, G.N.; Shu, H.; Wang, L.; Bashir, K.; Wang, Q.; Cui, X.; Li, X.; Luo, Z.M.; Chang, C.; Fu, Q. Facile one-step targeted immobilization of an enzyme based on silane emulsion self-assembled molecularly imprinted polymers for visual sensors. Analyst 2019, 145, 268–276. [Google Scholar] [CrossRef]
- Heble, A.Y.; Santelli, J.; Armstrong, A.M.; Mattrey, R.F.; Lux, J. Catalase-loaded silica nanoparticles formulated via direct surface modification as potential oxygen generators for hypoxia relief. ACS Appl. Mater. Interfaces 2021, 13, 5945–5954. [Google Scholar] [CrossRef]
- Hartmann, M.; Kostrov, X. Immobilization of enzymes on porous silicas--benefits and challenges. Chem. Soc. Rev. 2013, 42, 6277–6289. [Google Scholar] [CrossRef]
- Stober, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26, 62–69. [Google Scholar] [CrossRef]
- Ellerby, L.M.; Nishida, C.R.; Nishida, F.; Yamanaka, S.A.; Dunn, B.; Valentine, J.S.; Zink, J.I. Encapsulation of proteins in transparent porous silicate glasses prepared by the sol-gel method. Science 1992, 255, 1113–1115. [Google Scholar] [CrossRef] [PubMed]
- Kato, M.; Sakai-Kato, K.; Matsumoto, N.; Toyo’oka, T. A protein-encapsulation technique by the sol-gel method for the preparation of monolithic columns for capillary electrochromatography. Anal. Chem. 2002, 74, 1915–1921. [Google Scholar] [CrossRef] [PubMed]
- Cao, A.; Ye, Z.; Cai, Z.; Dong, E.; Yang, X.; Liu, G.; Deng, X.; Wang, Y.; Yang, S.T.; Wang, H.; et al. A facile method to encapsulate proteins in silica nanoparticles: Encapsulated green fluorescent protein as a robust fluorescence probe. Angew. Chem. Int. Ed. Engl. 2010, 49, 3022–3025. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Hu, Q.; Schulz, F.; Parak, W.J.; Wang, L.; Cui, X.; Yang, K.; Luo, Z.; Zeng, A.; Fu, Q. Aqueous-based silica nanoparticles as carriers for catalytically active biomacromolecules. ACS Appl. Nano Mater. 2021, 4, 9060–9067. [Google Scholar] [CrossRef]
- Chen, G.N.; Guo, P.Q.; Wang, Y.; Wang, L.; Shu, H.; Li, Y.; Jing, W.H.; Chang, C.; Fu, Q. Preparation of molecularly imprinted polymers and application in a biomimetic biotin-avidin-ELISA for the detection of bovine serum albumin. Talanta 2019, 198, 55–62. [Google Scholar]
- Cheraghipour, E.; Javadpour, S. Cationic albumin-conjugated magnetite nanoparticles, novel candidate for hyperthermia cancer therapy. Int. J. Hyperth. 2013, 29, 511–519. [Google Scholar] [CrossRef]
- Hu, Q.; Chen, G.; Han, J.; Wang, L.; Cui, X.; Wang, P.; Chang, C.; Fu, Q. Determination of sarcosine based on magnetic cross-linked enzyme aggregates for diagnosis of prostate cancer. Biochem. Eng. J. 2021, 172, 108039. [Google Scholar] [CrossRef]
- Pečar, D. Immobilization of glucose oxidase on eupergit C: Impact of aeration, kinetic and operational stability studies of free and immobilized enzyme. Chem. Biochem. Eng. Q. 2019, 32, 511–522. [Google Scholar] [CrossRef]
- Wang, S.; Su, P.; Yang, Y. Online immobilized enzyme microreactor for the glucose oxidase enzymolysis and enzyme inhibition assay. Anal. Biochem. 2012, 427, 139–143. [Google Scholar] [CrossRef]
- Kandimalla, V.B.; Tripathi, V.S.; Ju, H. A conductive ormosil encapsulated with ferrocene conjugate and multiwall carbon nanotubes for biosensing application. Biomaterials 2006, 27, 1167–1174. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, P.; Rodriguez, J.A.; Galan, C.A.; Castrillejo, Y.; Barrado, E. Amperometric flow system for blood glucose determination using an immobilized enzyme magnetic reactor. Biosens. Bioelectron. 2013, 41, 244–248. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.T.; Yang, K.L. Combined cross-linked enzyme aggregates of horseradish peroxidase and glucose oxidase for catalyzing cascade chemical reactions. Enzyme Microb. Technol. 2017, 100, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Xie, F. Selective adsorption of Copper (II) ions in mixed solution by Fe3O4-MnO2-EDTA magnetic nanoparticles. Appl. Surf. Sci. 2020, 507, 145090. [Google Scholar] [CrossRef]
- Li, H.; Zhu, L.; Zhu, X.; Zhang, H. Glucose detection via glucose-induced disaggregation of ammonium-modified tetraphenylethylene from polyanion. Sens. Actuator B-Chem. 2017, 246, 819–825. [Google Scholar] [CrossRef]
- Kang, B.-H.; Park, M.; Jeong, K.-H. Colorimetric Schirmer strip for tear glucose detection. BioChip J. 2017, 11, 294–299. [Google Scholar] [CrossRef]
- Zhang, H.; Li, X.; Qian, Z.M.; Wang, S.; Yang, F.Q. Glucose oxidase-mediated sodium alginate gelation: Equipment-Free detection of glucose in fruit samples. Enzyme Microb. Technol. 2021, 148, 109805. [Google Scholar] [CrossRef]
- Lopes, J.H.; Colson, F.X.; Barralet, J.E.; Merle, G. Electrically wired enzyme/TiO2 composite for glucose detection. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 76, 991–996. [Google Scholar] [CrossRef]
Detection Method | Detection Range (μg mL−1) | References |
---|---|---|
Fluorescent probe | 9–900 | [10] |
Fluorescent probe | 0.72–9 | [35] |
Colorimetric assay | 18–360 | [36] |
Colorimetric assay | 252–1260 | [37] |
Electrochemical sensor | 1.8–255.6 | [38] |
Colorimetric strip | 504–19,800 | Commercial strip |
Colorimetric strip | 20–160 | This work |
Spiked (mg mL−1) | Found (mg mL−1) | Recovery (%) | RSD (%) |
---|---|---|---|
0 | —— | —— | —— |
0.5 | 0.496 ± 0.017 | 99.2 | 3.4 |
1 | 0.943 ± 0.016 | 94.3 | 1.7 |
2 | 2.359 ± 0.048 | 118.0 | 2.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Z.; Chen, G.; Yang, K.; Wang, L.; Cui, X.; Xu, J.; Fu, Q. Enzyme Encapsulation by Facile Self-Assembly Silica-Modified Magnetic Nanoparticles for Glucose Monitoring in Urine. Pharmaceutics 2022, 14, 1154. https://doi.org/10.3390/pharmaceutics14061154
Luo Z, Chen G, Yang K, Wang L, Cui X, Xu J, Fu Q. Enzyme Encapsulation by Facile Self-Assembly Silica-Modified Magnetic Nanoparticles for Glucose Monitoring in Urine. Pharmaceutics. 2022; 14(6):1154. https://doi.org/10.3390/pharmaceutics14061154
Chicago/Turabian StyleLuo, Zhimin, Guoning Chen, Ke Yang, Lu Wang, Xia Cui, Jiameng Xu, and Qiang Fu. 2022. "Enzyme Encapsulation by Facile Self-Assembly Silica-Modified Magnetic Nanoparticles for Glucose Monitoring in Urine" Pharmaceutics 14, no. 6: 1154. https://doi.org/10.3390/pharmaceutics14061154
APA StyleLuo, Z., Chen, G., Yang, K., Wang, L., Cui, X., Xu, J., & Fu, Q. (2022). Enzyme Encapsulation by Facile Self-Assembly Silica-Modified Magnetic Nanoparticles for Glucose Monitoring in Urine. Pharmaceutics, 14(6), 1154. https://doi.org/10.3390/pharmaceutics14061154