Formulated Curcumin Prevents Paclitaxel-Induced Peripheral Neuropathy through Reduction in Neuroinflammation by Modulation of α7 Nicotinic Acetylcholine Receptors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Drugs
2.3. Quantitation of Curcumin by High-Performance-Liquid-Chromatography Tandem-Mass Spectrometry (HPLC-MS/MS)
2.4. Mechanical Sensitivity: Von Frey Filaments Test
2.5. Cold Sensitivity: Acetone Test
2.6. Voluntary Wheel-Running Activity
2.7. Measurement of Caudal Nerve Conduction
2.8. Quantification of Intra-Epidermal Nerve Fibers (IENFs) by Immunohistochemistry
2.9. Electronic Microscopy of Sciatic Nerve
2.10. Inflammatory-Marker Analysis by Multiplex Assay
2.11. Statistical Tests and Analysis
3. Results
3.1. Study of Bioavailability and Tolerability of Curcumin- and Meriva-Enriched Diets
3.2. Curcumin- and Meriva-Enriched Diets Reduce Signs of Paclitaxel-Induced Peripheral Neuropathy
3.3. Curcumin and Meriva Diets Reduce Mitochondria Damage in Myelinated and Non-Myelinated Nerve Fibers
3.4. Only Curcumin Prevents the Decrease in Intraepidermal Nerve-Fiber Density
3.5. Meriva-Diet Decreases Neuroinflammation in Spinal Cord
3.6. Meriva-Diet Increases α7 nAchR mRNA Expression in the Spinal Cord
3.7. Anti-Inflammatory Effects of Meriva Are Reduced in α7 nAChR KO Mice
Groups (n = 6/Group) | % Change from Control | SEM | p Value | |
---|---|---|---|---|
IL1α | KO/PAC/Reg-diet | 2.30 | ±3.178 | 0.8348 |
KO/PAC/Meriva-diet | −6.56 | ±3.327 | 0.2825 | |
IL1β | KO/PAC/Reg-diet | 14.80 | ±3.066 | 0.0038 |
KO/PAC/Meriva-diet | 12.80 | ±2.069 | 0.0110 | |
IL3 | KO/PAC/Reg-diet | 53.10 | ±4.133 | <0.0001 |
KO/PAC/Meriva-diet | 50.60 | ±3.839 | <0.0001 | |
IL2 | KO/PAC/Reg-diet | −0.57 | ±7.498 | 0.9896 |
KO/PAC/Meriva-diet | −4.39 | ±5.485 | 0.5709 | |
IL4 | KO/PAC/Reg-diet | 13.50 | ±3.478 | 0.0234 |
KO/PAC/Meriva-diet | 13.90 | ±3.28 | 0.0191 | |
IL5 | KO/PAC/Reg-diet | 2.60 | ±5.498 | 0.9342 |
KO/PAC/Meriva-diet | −2.19 | ±7.057 | 0.9511 | |
IL6 | KO/PAC/Reg-diet | 21.40 | ±8.614 | 0.2493 |
KO/PAC/Meriva-diet | −1.75 | ±11.55 | 0.9887 | |
IL10 | KO/PAC/Reg-diet | −3.85 | ±1.082 | 0.4577 |
KO/PAC/Meriva-diet | −3.09 | ±1.871 | 0.5921 | |
IL12(p40) | KO/PAC/Reg-diet | 17.60 | ±2.311 | <0.0001 |
KO/PAC/Meriva-diet | 15.30 | ±1.892 | 0.0001 | |
IL12(p70) | KO/PAC/Reg-diet | 3.00 | ±2.646 | 0.7291 |
KO/PAC/Meriva-diet | 7.30 | ±4.433 | 0.2147 | |
IL13 | KO/PAC/Reg-diet | −1.91 | ±4.262 | 0.9366 |
KO/PAC/Meriva-diet | −7.47 | ±5.359 | 0.4165 | |
IL17 | KO/PAC/Reg-diet | 22.70 | ±4.109 | 0.0029 |
KO/PAC/Meriva-diet | 27.00 | ±4.498 | 0.0006 | |
Eotaxin | KO/PAC/Reg-diet | −1.98 | ±4.039 | 0.9027 |
KO/PAC/Meriva-diet | −6.13 | ±3.82 | 0.4192 | |
G-CSF | KO/PAC/Reg-diet | 6.70 | ±1.387 | 0.0018 |
KO/PAC/Meriva-diet | 5.40 | ±0.7903 | 0.0096 | |
GM-CSF | KO/PAC/Reg-diet | 3.90 | ±0.583 | <0.0001 |
KO/PAC/Meriva-diet | 4.00 | ±0.3372 | <0.0001 | |
IFN-g | KO/PAC/Reg-diet | 2.30 | ±1.767 | 0.6014 |
KO/PAC/Meriva-diet | −0.92 | ±2.457 | 0.919 | |
KC | KO/PAC/Reg-diet | 31.40 | ±4.992 | 0.0002 |
KO/PAC/Meriva-diet | 33.90 | ±3.99 | <0.0001 | |
MCP-1 | KO/PAC/Reg-diet | 3.00 | ±0.5581 | 0.0018 |
KO/PAC/Meriva-diet | 2.20 | ±0.4738 | 0.0187 | |
MIP-1α | KO/PAC/Reg-diet | −24.26 | ±1.665 | <0.0001 |
KO/PAC/Meriva-diet | −24.18 | ±2.026 | <0.0001 | |
MIP-1β | KO/PAC/Reg-diet | 14.40 | ±2.169 | 0.0011 |
KO/PAC/Meriva-diet | 9.80 | ±2.659 | 0.0195 | |
RANTES | KO/PAC/Reg-diet | −13.91 | ±4.046 | 0.0331 |
KO/PAC/Meriva-diet | −23.93 | ±3.386 | 0.0006 | |
TNF-α | KO/PAC/Reg-diet | 18.10 | ±6.755 | 0.0703 |
KO/PAC/Meriva-diet | 17.00 | ±5.577 | 0.0899 |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Katona, I.; Weis, J. Diseases of the Peripheral Nerves. Handb. Clin. Neurol. 2017, 145, 453–474. [Google Scholar] [CrossRef] [PubMed]
- Pachman, D.R.; Qin, R.; Seisler, D.K.; Smith, E.M.L.; Beutler, A.S.; Ta, L.E.; Lafky, J.M.; Wagner-Johnston, N.D.; Ruddy, K.J.; Dakhil, S.; et al. Clinical Course of Oxaliplatin-Induced Neuropathy: Results from the Randomized Phase III Trial N08CB (Alliance). J. Clin. Oncol. 2015, 33, 3416–3422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ewertz, M.; Qvortrup, C.; Eckhoff, L. Chemotherapy-Induced Peripheral Neuropathy in Patients Treated with Taxanes and Platinum Derivatives. Acta Oncol. 2015, 54, 587–591. [Google Scholar] [CrossRef]
- Park, S.B.; Lin, C.S.-Y.; Krishnan, A.V.; Friedlander, M.L.; Lewis, C.R.; Kiernan, M.C. Early, Progressive, and Sustained Dysfunction of Sensory Axons Underlies Paclitaxel-Induced Neuropathy. Muscle Nerve 2011, 43, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Gornstein, E.L.; Schwarz, T.L. Neurotoxic Mechanisms of Paclitaxel Are Local to the Distal Axon and Independent of Transport Defects. Exp. Neurol. 2017, 288, 153–166. [Google Scholar] [CrossRef] [Green Version]
- Staff, N.P.; Fehrenbacher, J.C.; Caillaud, M.; Damaj, M.I.; Segal, R.A.; Rieger, S. Pathogenesis of Paclitaxel-Induced Peripheral Neuropathy: A Current Review of In Vitro and In Vivo Findings Using Rodent and Human Model Systems. Exp. Neurol. 2020, 324, 113121. [Google Scholar] [CrossRef]
- Caillaud, M.; Patel, N.H.; Toma, W.; White, A.; Thompson, D.; Mann, J.; Tran, T.H.; Roberts, J.L.; Poklis, J.L.; Bigbee, J.W.; et al. A Fenofibrate Diet Prevents Paclitaxel-Induced Peripheral Neuropathy in Mice. Cancers 2020, 13, 69. [Google Scholar] [CrossRef]
- Miaskowski, C.; Mastick, J.; Paul, S.M.; Abrams, G.; Cheung, S.; Sabes, J.H.; Kober, K.M.; Schumacher, M.; Conley, Y.P.; Topp, K.; et al. Impact of Chemotherapy-Induced Neurotoxicities on Adult Cancer Survivors’ Symptom Burden and Quality of Life. J. Cancer Surviv. 2018, 12, 234–245. [Google Scholar] [CrossRef]
- Caillaud, M.; Aung Myo, Y.P.; McKiver, B.D.; Osinska Warncke, U.; Thompson, D.; Mann, J.; Del Fabbro, E.; Desmoulière, A.; Billet, F.; Damaj, M.I. Key Developments in the Potential of Curcumin for the Treatment of Peripheral Neuropathies. Antioxidants 2020, 9, 950. [Google Scholar] [CrossRef] [PubMed]
- Agthong, S.; Kaewsema, A.; Charoensub, T. Curcumin Ameliorates Functional and Structural Abnormalities in Cisplatin-Induced Neuropathy. Exp. Neurobiol. 2015, 24, 139–145. [Google Scholar] [CrossRef] [Green Version]
- Al Moundhri, M.S.; Al-Salam, S.; Al Mahrouqee, A.; Beegam, S.; Ali, B.H. The Effect of Curcumin on Oxaliplatin and Cisplatin Neurotoxicity in Rats: Some Behavioral, Biochemical, and Histopathological Studies. J. Med. Toxicol. 2013, 9, 25–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Priyadarsini, K. The Chemistry of Curcumin: From Extraction to Therapeutic Agent. Molecules 2014, 19, 20091–20112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esatbeyoglu, T.; Huebbe, P.; Ernst, I.M.A.; Chin, D.; Wagner, A.E.; Rimbach, G. Curcumin—From Molecule to Biological Function. Angew. Chem. Int. Ed. Engl. 2012, 51, 5308–5332. [Google Scholar] [CrossRef]
- Caillaud, M.; Chantemargue, B.; Richard, L.; Vignaud, L.; Favreau, F.; Faye, P.-A.; Vignoles, P.; Sturtz, F.; Trouillas, P.; Vallat, J.-M.; et al. Local Low Dose Curcumin Treatment Improves Functional Recovery and Remyelination in a Rat Model of Sciatic Nerve Crush through Inhibition of Oxidative Stress. Neuropharmacology 2018, 139, 98–116. [Google Scholar] [CrossRef] [PubMed]
- Caillaud, M.; Msheik, Z.; Ndong-Ntoutoume, G.M.-A.; Vignaud, L.; Richard, L.; Favreau, F.; Faye, P.-A.; Sturtz, F.; Granet, R.; Vallat, J.-M.; et al. Curcumin–Cyclodextrin/Cellulose Nanocrystals Improve the Phenotype of Charcot-Marie-Tooth-1A Transgenic Rats Through the Reduction of Oxidative Stress. Free. Radic. Biol. Med. 2020, 161, 246–262. [Google Scholar] [CrossRef]
- Kandhare, A.D.; Raygude, K.S.; Ghosh, P.; Ghule, A.E.; Bodhankar, S.L. Therapeutic Role of Curcumin in Prevention of Biochemical and Behavioral Aberration Induced by Alcoholic Neuropathy in Laboratory Animals. Neurosci. Lett. 2012, 511, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Bagdas, D.; Gurun, M.S.; Flood, P.; Papke, R.L.; Damaj, M.I. New Insights on Neuronal Nicotinic Acetylcholine Receptors as Targets for Pain and Inflammation: A Focus on A7 NAChRs. Curr. Neuropharmacol. 2018, 16, 415–425. [Google Scholar] [CrossRef] [PubMed]
- El Nebrisi, E.G.; Bagdas, D.; Toma, W.; Al Samri, H.; Brodzik, A.; Alkhlaif, Y.; Yang, K.-H.S.; Howarth, F.C.; Damaj, I.M.; Oz, M. Curcumin Acts as a Positive Allosteric Modulator of A7-Nicotinic Acetylcholine Receptors and Reverses Nociception in Mouse Models of Inflammatory Pain. J. Pharmacol. Exp. Ther. 2018, 365, 190–200. [Google Scholar] [CrossRef] [Green Version]
- Wahlström, B.; Blennow, G. A Study on the Fate of Curcumin in the Rat. Acta Pharmacol. et Toxicol. 1978, 43, 86–92. [Google Scholar] [CrossRef]
- Shoba, G.; Joy, D.; Joseph, T.; Majeed, M.; Rajendran, R.; Srinivas, P.S. Influence of Piperine on the Pharmacokinetics of Curcumin in Animals and Human Volunteers. Planta Med. 1998, 64, 353–356. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.A.; Euden, S.A.; Platton, S.L.; Cooke, D.N.; Shafayat, A.; Hewitt, H.R.; Marczylo, T.H.; Morgan, B.; Hemingway, D.; Plummer, S.M.; et al. Phase I Clinical Trial of Oral Curcumin: Biomarkers of Systemic Activity and Compliance. Clin. Cancer Res. 2004, 10, 6847–6854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuomo, J.; Appendino, G.; Dern, A.S.; Schneider, E.; McKinnon, T.P.; Brown, M.J.; Togni, S.; Dixon, B.M. Comparative Absorption of a Standardized Curcuminoid Mixture and Its Lecithin Formulation. J. Nat. Prod. 2011, 74, 664–669. [Google Scholar] [CrossRef] [PubMed]
- Belcaro, G.; Cesarone, M.R.; Dugall, M.; Pellegrini, L.; Ledda, A.; Grossi, M.G.; Togni, S.; Appendino, G. Efficacy and Safety of Meriva®, a Curcumin-Phosphatidylcholine Complex, during Extended Administration in Osteoarthritis Patients. Altern. Med. Rev. 2010, 15, 337–344. [Google Scholar] [PubMed]
- Belcaro, G.; Hosoi, M.; Pellegrini, L.; Appendino, G.; Ippolito, E.; Ricci, A.; Ledda, A.; Dugall, M.; Cesarone, M.R.; Maione, C.; et al. A Controlled Study of a Lecithinized Delivery System of Curcumin (Meriva®) to Alleviate the Adverse Effects of Cancer Treatment. Phytother. Res. 2014, 28, 444–450. [Google Scholar] [CrossRef]
- Aubry, A.V.; Khandaker, H.; Ravenelle, R.; Grunfeld, I.S.; Bonnefil, V.; Chan, K.L.; Cathomas, F.; Liu, J.; Schafe, G.E.; Burghardt, N.S. A Diet Enriched with Curcumin Promotes Resilience to Chronic Social Defeat Stress. Neuropsychopharmacology 2019, 44, 733–742. [Google Scholar] [CrossRef]
- Kunati, S.R.; Yang, S.; William, B.M.; Xu, Y. An LC-MS/MS Method for Simultaneous Determination of Curcumin, Curcumin Glucuronide and Curcumin Sulfate in a Phase II Clinical Trial. J. Pharm. Biomed. Anal. 2018, 156, 189–198. [Google Scholar] [CrossRef]
- Ulker, E.; Caillaud, M.; Patel, T.; White, A.; Rashid, D.; Alqasem, M.; Lichtman, A.H.; Bryant, C.D.; Damaj, M.I. C57BL/6 Substrain Differences in Formalin-Induced Pain-like Behavioral Responses. Behav. Brain Res. 2020, 390, 112698. [Google Scholar] [CrossRef]
- Caillaud, M.; Patel, N.H.; White, A.; Wood, M.; Contreras, K.M.; Toma, W.; Alkhlaif, Y.; Roberts, J.L.; Tran, T.H.; Jackson, A.B.; et al. Targeting Peroxisome Proliferator-Activated Receptor-α (PPAR-α) to Reduce Paclitaxel-Induced Peripheral Neuropathy. Brain Behav. Immun. 2021, 93, 172–185. [Google Scholar] [CrossRef]
- Contreras, K.M.; Caillaud, M.; Neddenriep, B.; Bagdas, D.; Roberts, J.L.; Ulker, E.; White, A.B.; Aboulhosn, R.; Toma, W.; Khalefa, T.; et al. Deficit in Voluntary Wheel Running in Chronic Inflammatory and Neuropathic Pain Models in Mice: Impact of Sex and Genotype. Behav. Brain Res. 2021, 399, 113009. [Google Scholar] [CrossRef]
- Toma, W.; Kyte, S.L.; Bagdas, D.; Alkhlaif, Y.; Alsharari, S.D.; Lichtman, A.H.; Chen, Z.-J.; Del Fabbro, E.; Bigbee, J.W.; Gewirtz, D.A.; et al. Effects of Paclitaxel on the Development of Neuropathy and Affective Behaviors in the Mouse. Neuropharmacology 2017, 117, 305–315. [Google Scholar] [CrossRef] [Green Version]
- Flatters, S.J.L.; Bennett, G.J. Studies of Peripheral Sensory Nerves in Paclitaxel-Induced Painful Peripheral Neuropathy: Evidence for Mitochondrial Dysfunction. Pain 2006, 122, 245–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Surguchov, A.; Bernal, L.; Surguchev, A.A. Phytochemicals as Regulators of Genes Involved in Synucleinopathies. Biomolecules 2021, 11, 624. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, B.B.; Surh, Y.-J.; Shishodia, S. (Eds.) The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease; Advances in Experimental Medicine and Biology; Springer: Boston, MA, USA, 2007; ISBN 978-0-387-46400-8. [Google Scholar]
- Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of Curcumin: Problems and Promises. Mol. Pharm. 2007, 4, 807–818. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, H.; Shakeri, A.; Rashidi, B.; Jalili, A.; Banikazemi, Z.; Sahebkar, A. Phytosomal Curcumin: A Review of Pharmacokinetic, Experimental and Clinical Studies. Biomed. Pharmacother. 2017, 85, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Bose, S.; Panda, A.K.; Mukherjee, S.; Sa, G. Curcumin and Tumor Immune-Editing: Resurrecting the Immune System. Cell Div. 2015, 10, 6. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, R.; Mahmoodi, H. Improvement of Peripheral Nerve Regeneration Following Nerve Repair by Silicone Tube Filled with Curcumin: A Preliminary Study in the Rat Model. Int. J. Surg. 2013, 11, 819–825. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Guan, Z.; Wang, X.; Sun, D.; Wang, D.; Li, Y.; Pei, B.; Ye, M.; Xu, J.; Yue, X. Curcumin Alleviates Oxaliplatin-Induced Peripheral Neuropathic Pain through Inhibiting Oxidative Stress-Mediated Activation of NF-ΚB and Mitigating Inflammation. Biol. Pharm. Bull. 2020, 43, 348–355. [Google Scholar] [CrossRef] [Green Version]
- Babu, A.; Prasanth, K.G.; Balaji, B. Effect of Curcumin in Mice Model of Vincristine-Induced Neuropathy. Pharm. Biol. 2015, 53, 838–848. [Google Scholar] [CrossRef]
- Greeshma, N.; Prasanth, K.G.; Balaji, B. Tetrahydrocurcumin Exerts Protective Effect on Vincristine Induced Neuropathy: Behavioral, Biochemical, Neurophysiological and Histological Evidence. Chem. Biol. Interact. 2015, 238, 118–128. [Google Scholar] [CrossRef]
- Cunha, F.Q.; Poole, S.; Lorenzetti, B.B.; Ferreira, S.H. The Pivotal Role of Tumour Necrosis Factor Alpha in the Development of Inflammatory Hyperalgesia. Br. J. Pharmacol. 1992, 107, 660–664. [Google Scholar] [CrossRef]
- Binshtok, A.M.; Wang, H.; Zimmermann, K.; Amaya, F.; Vardeh, D.; Shi, L.; Brenner, G.J.; Ji, R.-R.; Bean, B.P.; Woolf, C.J.; et al. Nociceptors Are Interleukin-1beta Sensors. J. Neurosci. 2008, 28, 14062–14073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalynovska, N.; Diallo, M.; Sotakova-Kasparova, D.; Palecek, J. Losartan Attenuates Neuroinflammation and Neuropathic Pain in Paclitaxel-Induced Peripheral Neuropathy. J. Cell. Mol. Med. 2020, 24, 7949–7958. [Google Scholar] [CrossRef] [PubMed]
- Burgos, E.; Gómez-Nicola, D.; Pascual, D.; Martín, M.I.; Nieto-Sampedro, M.; Goicoechea, C. Cannabinoid Agonist WIN 55,212-2 Prevents the Development of Paclitaxel-Induced Peripheral Neuropathy in Rats. Possible Involvement of Spinal Glial Cells. Eur. J. Pharmacol. 2012, 682, 62–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tracey, K.J. Reflex Control of Immunity. Nat. Rev. Immunol. 2009, 9, 418–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosas-Ballina, M.; Olofsson, P.S.; Ochani, M.; Valdés-Ferrer, S.I.; Levine, Y.A.; Reardon, C.; Tusche, M.W.; Pavlov, V.A.; Andersson, U.; Chavan, S.; et al. Acetylcholine-Synthesizing T Cells Relay Neural Signals in a Vagus Nerve Circuit. Science 2011, 334, 98–101. [Google Scholar] [CrossRef] [Green Version]
- Hogg, R.C.; Raggenbass, M.; Bertrand, D. Nicotinic Acetylcholine Receptors: From Structure to Brain Function. Rev. Physiol. Biochem. Pharmacol. 2003, 147, 1–46. [Google Scholar] [CrossRef]
- Albuquerque, E.X.; Pereira, E.F.R.; Alkondon, M.; Rogers, S.W. Mammalian Nicotinic Acetylcholine Receptors: From Structure to Function. Physiol. Rev. 2009, 89, 73–120. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Yang, G.; He, Y.; Xu, H.; Fan, H.; An, J.; Zhang, L.; Zhang, R.; Cao, G.; Hao, D.; et al. Involvement of A7nAChR in the Protective Effects of Genistein Against β-Amyloid-Induced Oxidative Stress in Neurons via a PI3K/Akt/Nrf2 Pathway-Related Mechanism. Cell Mol. Neurobiol. 2021, 41, 377–393. [Google Scholar] [CrossRef]
- Cao, K.; Xiang, J.; Dong, Y.-T.; Xu, Y.; Guan, Z.-Z. Activation of A7 Nicotinic Acetylcholine Receptor by Its Selective Agonist Improved Learning and Memory of Amyloid Precursor Protein/Presenilin 1 (APP/PS1) Mice via the Nrf2/HO-1 Pathway. Med. Sci. Monit. 2022, 28, e933978. [Google Scholar] [CrossRef]
- Tomeh, M.A.; Hadianamrei, R.; Zhao, X. A Review of Curcumin and Its Derivatives as Anticancer Agents. Int. J. Mol. Sci. 2019, 20, 1033. [Google Scholar] [CrossRef] [Green Version]
- Chandran, B.; Goel, A. A Randomized, Pilot Study to Assess the Efficacy and Safety of Curcumin in Patients with Active Rheumatoid Arthritis. Phytother. Res. 2012, 26, 1719–1725. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, Y.; Mukai, S.; Yamada, S.; Matsuoka, M.; Tarumi, E.; Hashimoto, T.; Tamura, C.; Imaizumi, A.; Nishihira, J.; Nakamura, T. Short-Term Effects of Highly-Bioavailable Curcumin for Treating Knee Osteoarthritis: A Randomized, Double-Blind, Placebo-Controlled Prospective Study. J. Orthop. Sci. 2014, 19, 933–939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caillaud, M.; Thompson, D.; Toma, W.; White, A.; Mann, J.; Roberts, J.L.; Bigbee, J.W.; Gewirtz, D.A.; Damaj, M.I. Formulated Curcumin Prevents Paclitaxel-Induced Peripheral Neuropathy through Reduction in Neuroinflammation by Modulation of α7 Nicotinic Acetylcholine Receptors. Pharmaceutics 2022, 14, 1296. https://doi.org/10.3390/pharmaceutics14061296
Caillaud M, Thompson D, Toma W, White A, Mann J, Roberts JL, Bigbee JW, Gewirtz DA, Damaj MI. Formulated Curcumin Prevents Paclitaxel-Induced Peripheral Neuropathy through Reduction in Neuroinflammation by Modulation of α7 Nicotinic Acetylcholine Receptors. Pharmaceutics. 2022; 14(6):1296. https://doi.org/10.3390/pharmaceutics14061296
Chicago/Turabian StyleCaillaud, Martial, Danielle Thompson, Wisam Toma, Alyssa White, Jared Mann, Jane L. Roberts, John W. Bigbee, David A. Gewirtz, and M. Imad Damaj. 2022. "Formulated Curcumin Prevents Paclitaxel-Induced Peripheral Neuropathy through Reduction in Neuroinflammation by Modulation of α7 Nicotinic Acetylcholine Receptors" Pharmaceutics 14, no. 6: 1296. https://doi.org/10.3390/pharmaceutics14061296
APA StyleCaillaud, M., Thompson, D., Toma, W., White, A., Mann, J., Roberts, J. L., Bigbee, J. W., Gewirtz, D. A., & Damaj, M. I. (2022). Formulated Curcumin Prevents Paclitaxel-Induced Peripheral Neuropathy through Reduction in Neuroinflammation by Modulation of α7 Nicotinic Acetylcholine Receptors. Pharmaceutics, 14(6), 1296. https://doi.org/10.3390/pharmaceutics14061296