Inhibition of Candida glabrata Biofilm by Combined Effect of Dendritic Compounds and Amphotericin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Candida spp. Strains and Growth Conditions
2.2. Dendritic Compounds and Amphotericin
2.3. Biofilm Inhibition Assay, MBIC and MFCB Determinations
2.4. Biofilm Disruption Assay, MBDC and MBEC Determinations
2.5. Combination Therapy of Dendritic Compounds and Amphotericin against C. glabrata Biofilm
2.6. Resazurin Assay
2.7. Drop plate Method
2.8. Determination of the Degree of Cytotoxicity of Dendrons in Combination with Amphotericin
2.9. Confocal Laser Scanner Microscope
2.10. Data Analysis
3. Results and Discussion
3.1. Effect of Dendritic Compounds on Biofilm Development and Formation
3.2. Effect of Dendritic Compounds on Eradication of Established Biofilms
3.3. Combination Therapy of Dendritic Compounds and Amphotericin against C. glabrata Biofilm Formation
3.4. Combination Therapy of Dendritic Compounds and Amphotericin against C. glabrata Established Biofilm
3.5. Cytotoxicity
3.6. Confocal Microscopy in C. glabrata
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Cavalheiro, M.; Teixeira, M.C. Candida Biofilms: Threats, Challenges, and Promising Strategies. Front. Med. 2018, 5, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramage, G.; Vandewalle, K.; Wickes, B.L.; Lopez-Ribot, J.L. Characteristics of biofilm formation by Candida albicans. Rev. Iberoam. Micol. 2001, 18, 163–170. [Google Scholar]
- Mukherjee, P.K.; Chandra, J.; Kuhn, D.M.; Ghannoum, M.A. Mechanism of fluconazole resistance in Candida albicans biofilms: Phase-specific role of efflux pumps and membrane sterols. Infect. Immun. 2003, 71, 4333–4340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wuyts, J.; Van Dijck, P.; Holtappels, M. Fungal persister cells: The basis for recalcitrant infections? PLoS Pathog. 2018, 14, e1007301. [Google Scholar] [CrossRef] [PubMed]
- Nemati Shizari, L.; Mohammadpour Dounighi, N.; Bayat, M.; Mosavari, N. A New Amphotericin B-loaded Trimethyl Chitosan Nanoparticles as a Drug Delivery System and Antifungal Activity on Candida albicans Biofilm. Arch. Razi Inst. 2021, 76, 571–586. [Google Scholar] [CrossRef]
- Alakkad, A.; Stapleton, P.; Schlosser, C.; Murdan, S.; Odunze, U.; Schatzlein, A.; Uchegbu, I.F. Amphotericin B Polymer Nanoparticles Show Efficacy against Candida Species Biofilms. Pathogens 2022, 11, 73. [Google Scholar] [CrossRef] [PubMed]
- Heredero-Bermejo, I.; Gómez-Casanova, N.; Quintana, S.; Soliveri, J.; de la Mata, F.J.; Pérez-Serrano, J.; Sánchez-Nieves, J.; Copa-Patiño, J.L. In Vitro Activity of Carbosilane Cationic Dendritic Molecules on Prevention and Treatment of Candida Albicans Biofilms. Pharmaceutics 2020, 12, 918. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Casanova, N.; Lozano-Cruz, T.; Soliveri, J.; Gomez, R.; Ortega, P.; Copa-Patiño, J.L.; Heredero-Bermejo, I. Eradication of Candida albicans Biofilm Viability: In Vitro Combination Therapy of Cationic Carbosilane Dendrons Derived from 4-Phenylbutyric Acid with AgNO3 and EDTA. J. Fungi. 2021, 7, 574. [Google Scholar] [CrossRef]
- Zielińska, P.; Staniszewska, M.; Bondaryk, M.; Koronkiewicz, M.; Urbańczyk-Lipkowska, Z. Design and studies of multiple mechanism of anti-Candida activity of a new potent Trp-rich peptide dendrimers. Eur. J. Med. Chem. 2015, 105, 106–119. [Google Scholar] [CrossRef]
- Gyawali, A.; Kang, Y.S. Transport Alteration of 4-Phenyl Butyric Acid Mediated by a Sodium- and Proton-Coupled Monocarboxylic Acid Transporter System in ALS Model Cell Lines (NSC-34) Under Inflammatory States. J. Pharm. Sci. 2021, 110, 1374–1384. [Google Scholar] [CrossRef] [PubMed]
- Lozano-Cruz, T.; Alcarraz-Vizán, G.; de la Mata, F.J.; de Pablo, S.; Ortega, P.; Duarte, Y.; Bravo-Moraga, F.; González-Nilo, F.D.; Novials, A.; Gómez, R. Cationic Carbosilane Dendritic Systems as Promising Anti-Amyloid Agents in Type 2 Diabetes. Chemistry 2020, 26, 7609–7621. [Google Scholar] [CrossRef] [PubMed]
- Ramage, G.; Vande Walle, K.; Wickes, B.L.; Lopez-Ribot, J.L. Standardized method for in vitro antifungal susceptibility testing of Candida albicans biofilms. Antimicrob. Agents Chemother. 2001, 45, 2475–2479. [Google Scholar] [CrossRef] [Green Version]
- National Committee for Clinical Laboratory Standards. Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts: Approved Standard M27-A; NCCLS: Wayne, PA, USA, 1997. [Google Scholar]
- Quintana-Sanchez, S.; Gómez-Casanova, N.; Sánchez-Nieves, J.; Gómez, R.; Rachuna, J.; Wąsik, S.; Semaniak, J.; Maciejewska, B.; Drulis-Kawa, Z.; Ciepluch, K.; et al. The Antibacterial Effect of PEGylated Carbosilane Dendrimers on P. aeruginosa Alone and in Combination with Phage-Derived Endolysin. Int. J. Mol. Sci. 2022, 23, 1873. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, J.; Martin-Serrano, Á.; Gómez-Casanova, N.; Falanga, A.; Galdiero, S.; de la Mata, F.J.; Heredero-Bermejo, I.; Ortega, P. Effect of the Combination of Levofloxacin with Cationic Carbosilane Dendron and Peptide in the Prevention and Treatment of Staphylococcus aureus Biofilms. Polymers 2021, 13, 2127. [Google Scholar] [CrossRef] [PubMed]
- Ravi, N.S.; Aslam, R.F.; Veeraraghavan, B. A New Method for Determination of Minimum Biofilm Eradication Concentration for Accurate Antimicrobial Therapy. Methods Mol. Biol. 2019, 1946, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Sangkanu, S.; Mitsuwan, W.; Mahabusarakam, W.; Jimoh, T.O.; Wilairatana, P.; Girol, A.P.; Verma, A.K.; de Lourdes Pereira, M.; Rahmatullah, M.; Wiart, C.; et al. Anti-Acanthamoeba synergistic effect of chlorhexidine and Garcinia mangostana extract or α-mangostin against Acanthamoeba triangularis trophozoite and cyst forms. Sci. Rep. 2021, 11, 8053. [Google Scholar] [CrossRef]
- Kerekes, E.B.; Deák, É.; Takó, M.; Tserennadmid, R.; Petkovits, T.; Vágvölgyi, C.; Krisch, J. Anti-biofilm forming and anti-quorum sensing activity of selected essential oils and their main components on food-related micro-organisms. J. Appl. Microbiol. 2013, 115, 933–942. [Google Scholar] [CrossRef] [PubMed]
- Zarei Mahmoudabadi, A.; Zarrin, M.; Kiasat, N. Biofilm Formation and Susceptibility to Amphotericin B and Fluconazole in Candida albicans. Jundishapur J. Microbiol. 2014, 7, e17105. [Google Scholar] [CrossRef] [Green Version]
- Thomas, P.; Sekhar, A.C.; Upreti, R.; Mujawar, M.M.; Pasha, S.S. Optimization of single plate-serial dilution spotting (SP-SDS) with sample anchoring as an assured method for bacterial and yeast cfu enumeration and single colony isolation from diverse samples. Biotechnol. Rep. 2015, 8, 45–55. [Google Scholar] [CrossRef] [Green Version]
- Heredero-Bermejo, I.; Sánchez-Nieves, J.; Soliveri, J.; Gómez, R.; de la Mata, F.J.; Copa-Patiño, J.L.; Pérez-Serrano, J. In vitro anti-Acanthamoeba synergistic effect of chlorhexidine and cationic carbosilane dendrimers against both trophozoite and cyst forms. Int. J. Pharm. 2016, 509, 1–7. [Google Scholar] [CrossRef]
- Gupta, P.; Goel, A.; Singh, K.R.; Meher, M.K.; Gulati, K.; Poluri, K.M. Dissecting the anti-biofilm potency of kappa-carrageenan capped silver nanoparticles against Candida species. Int. J. Biol. Macromol. 2021, 172, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Janeczko, M.; Kochanowicz, E. Silymarin, a Popular Dietary Supplement Shows Anti-Candida Activity. Antibiotics 2019, 8, 206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spengler, G.; Gajdács, M.; Donadu, M.G.; Usai, M.; Marchetti, M.; Ferrari, M.; Mazzarello, V.; Zanetti, S.; Nagy, F.; Kovács, R. Evaluation of the Antimicrobial and Antivirulent Potential of Essential Oils Isolated from Juniperus oxycedrus L. ssp. Macrocarpa Aerial Parts. Microorganisms 2022, 10, 758. [Google Scholar] [CrossRef] [PubMed]
- Denega, I.; d’Enfert, C.; Bachellier-Bassi, S. Candida albicans Biofilms Are Generally Devoid of Persister Cells. Antimicrob. Agents Chemother. 2019, 63, e01979-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shanmughapriya, S.; Sornakumari, H.; Lency, A.; Kavitha, S.; Natarajaseenivasan, K. Synergistic effect of amphotericin B and tyrosol on biofilm formed by Candida krusei and Candida tropicalis from intrauterine device users. Med. Mycol. 2014, 52, 853–861. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Wang, G.; Li, Y.; Liu, Y.; Song, Y.; Zheng, W.; Zhang, N.; Hu, X.; Yan, S.; Jia, J. In vitro interactions between aspirin and amphotericin B against planktonic cells and biofilm cells of Candida albicans and C. parapsilosis. Antimicrob. Agents Chemother. 2012, 56, 3250–3260. [Google Scholar] [CrossRef] [Green Version]
- Troskie, A.M.; Rautenbach, M.; Delattin, N.; Vosloo, J.A.; Dathe, M.; Cammue, B.P.; Thevissen, K. Synergistic activity of the tyrocidines, antimicrobial cyclodecapeptides from Bacillus aneurinolyticus, with amphotericin B and caspofungin against Candida albicans biofilms. Antimicrob. Agents Chemother. 2014, 58, 3697–3707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Yin, H.; Chen, W.; Jiang, C.; Hu, J.; Xue, Y.; Yao, D.; Peng, Y.; Hu, X. Synergistic Effect of Pseudolaric Acid B with Fluconazole Against Resistant Isolates and Biofilm of Candida tropicalis. Infect. Drug Resist. 2020, 13, 2733–2743. [Google Scholar] [CrossRef]
- Sangalli-Leite, F.; Scorzoni, L.; Mesa-Arango, A.C.; Casas, C.; Herrero, E.; Gianinni, M.J.; Rodríguez-Tudela, J.L.; Cuenca-Estrella, M.; Zaragoza, O. Amphotericin B mediates killing in Cryptococcus neoformans through the induction of a strong oxidative burst. Microbes Infect. 2011, 13, 457–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Biofilm Formation | Established Biofilm | |||
---|---|---|---|---|
Molecules | MBIC (mg/L) | MFCB * (mg/L) | MBDC (mg/L) | MBEC * (mg/L) |
Dendron 1 | 8 | 8–16 | 32 | 256–512 |
Dendron 2 | 8 | 8–16 | 64 | 512 |
Amphotericin | 0.125 | 0.125 | 1 | BNE (>128) |
Dendron 1 | |||||
Individual MBIC * (mg/L) | MBIC in Combination * (mg/L) | ||||
Dendron 1 | Amphotericin | Dendron 1 | Amphotericin | FICI | Viability (%) ± SD * |
8 | 0.125 | 1 | 0.06 | 0.61 (A) | 0 ± 0 |
4 | 0.06 | 0.98 (A) | 0 ± 0 | ||
0.5 | 0.06 | - | 17.8 ± 5.3 | ||
0.25 | 0.06 | - | 19.4 ± 3.4 | ||
4 | 0.03 | - | 19.7 ± 2.47 | ||
2 | 0.03 | - | 21.7 ± 7.1 | ||
1 | 0.03 | - | 35.3 ± 2.6 | ||
Dendron 2 | |||||
Individual MBIC * (mg/L) | MBIC in Combination * (mg/L) | ||||
Dendron 2 | Amphotericin | Dendron 2 | Amphotericin | FICI | Viability (%) ± SD * |
8 | 0.125 | 2 | 0.03 | 0.49 (S) | 0 ± 0 |
0.25 | 0.06 | 0.51 (A) | 0 ± 0 | ||
4 | 0.06 | 0.98 (A) | 0 ± 0 | ||
4 | 0.03 | 0.74 (A) | 0 ± 0 | ||
4 | 0.015 | 0.62 (A) | 0 ± 0 | ||
2 | 0.06 | 0.73 (A) | 0 ± 0 | ||
1 | 0.06 | 0.61 (A) | 0 ± 0 | ||
2 | 0.015 | - | 30.1 ± 2.5 | ||
0.5 | 0.03 | - | 19.5 ± 3.4 | ||
0.5 | 0.015 | - | 33.9 ± 5.8 | ||
0.25 | 0.03 | - | 19.5 ± 2.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Casanova, N.; Torres-Cano, A.; Elias-Rodriguez, A.X.; Lozano, T.; Ortega, P.; Gómez, R.; Pérez-Serrano, J.; Copa-Patiño, J.L.; Heredero-Bermejo, I. Inhibition of Candida glabrata Biofilm by Combined Effect of Dendritic Compounds and Amphotericin. Pharmaceutics 2022, 14, 1604. https://doi.org/10.3390/pharmaceutics14081604
Gómez-Casanova N, Torres-Cano A, Elias-Rodriguez AX, Lozano T, Ortega P, Gómez R, Pérez-Serrano J, Copa-Patiño JL, Heredero-Bermejo I. Inhibition of Candida glabrata Biofilm by Combined Effect of Dendritic Compounds and Amphotericin. Pharmaceutics. 2022; 14(8):1604. https://doi.org/10.3390/pharmaceutics14081604
Chicago/Turabian StyleGómez-Casanova, Natalia, Alba Torres-Cano, Alba Xiaohe Elias-Rodriguez, Tania Lozano, Paula Ortega, Rafael Gómez, Jorge Pérez-Serrano, José Luis Copa-Patiño, and Irene Heredero-Bermejo. 2022. "Inhibition of Candida glabrata Biofilm by Combined Effect of Dendritic Compounds and Amphotericin" Pharmaceutics 14, no. 8: 1604. https://doi.org/10.3390/pharmaceutics14081604
APA StyleGómez-Casanova, N., Torres-Cano, A., Elias-Rodriguez, A. X., Lozano, T., Ortega, P., Gómez, R., Pérez-Serrano, J., Copa-Patiño, J. L., & Heredero-Bermejo, I. (2022). Inhibition of Candida glabrata Biofilm by Combined Effect of Dendritic Compounds and Amphotericin. Pharmaceutics, 14(8), 1604. https://doi.org/10.3390/pharmaceutics14081604