How to Treat Melanoma? The Current Status of Innovative Nanotechnological Strategies and the Role of Minimally Invasive Approaches like PTT and PDT
Abstract
:1. Introduction
2. Melanoma
3. Nanotechnology Applied to Melanoma Therapy
3.1. Lipid-Based Systems
3.1.1. Liposomes
Nanosystem Composition | Compound(s) | Model(s) | Summary of Experimental Assays and Conditions | Main Conclusions | Reference |
---|---|---|---|---|---|
DSPC:chol:DSPE-PEG | Hispolon or DOX | In vitro: murine B16BL6 cell line | Cell viability assay: MTT (0.5 to 50 μM of hispolon and up to 1 μM of DOX) Cell uptake assay: coumarin-6 Cell death assay: Annexin V/PI | Combination of hispolon and DOX liposomes exhibited a greater cytotoxicity compared to their use alone. | [89] |
SPC:chol:DSPE-PEG | Ruthenium (II) triazolopyrimidine complex | In vitro: human A375 and Hs294T cell lines | Cell viability assay: MTT (0.4 to 2.5 μM) | Liposomes allowed a reduction of more than 10-fold in the IC50 value in relation to its free form. | [90] |
DOTAP:chol:C8-ceramide:DSPE-PEG | DOX | In vitro: murine B16BL6 cell line | Cell viability assay: MTT (0.5 μg/mL of DOX and 10 mg/mL of C8-ceramide) | Co-delivery of DOX and C8-ceramide in a liposomal formulation displayed higher cytotoxicity in comparison with DOX liposomes without ceramide or even DOX solution. | [96] |
HSPC:DSPE-PEG | Curcumin | In vitro: human MUG-Mel2 cell line | Cell viability assay: MTT (5 and 10 μM) without and with PDT application (380–500 nm; 2.5 J/cm2, 2 min) Cell proliferation assay: wound healing Cell death assays: annexin V-FITC/7-AAD and immunocytochemistry | After PDT treatment, curcumin liposomes demonstrated increased phototoxicity and decreased motility in melanoma cells. In turn, in healthy cells (HaCat), a reduced toxicity was observed. | [97] |
DMPC:chol:DSPE-PEG or DMPC:CHEMS:DSPE-PEG | Copper (II) complex—Cuphen | In vitro: murine B16F10 cell line | Cell viability assay: MTS (0.2 to 12 μM) | In vivo assays demonstrated the safety and high impairment of tumor progression of Cuphen liposomal formulations in comparison to the free form. | [98] |
In vivo: male C57BL/6 mice; s.c. injection of B16F10 cells | i.v. injection of Cuphen in free form and loaded in two different liposomal formulations (2.5 mg/kg) | ||||
HSPC:chol:DSPE-PEG | DOX and Fab’-anti-PD-L1 | In vitro: murine B16OVA cell line | Cell viability assay: SRB (0.001 to 100 µM) | Targeted liposomes evidenced the immune system modulation and superior antitumor effect compared to all the other treatments. | [99] |
In vivo: female C57BL/6 mice; s.c. injection of B16OVA cells | i.v. injection of free DOX, non-targeted DOX liposomes, non-targeted DOX liposomes + free α-PD-L1 and Fab’-anti-PD-L1 DOX liposomes (3 mg/kg) | ||||
Lecithin:SC:chol:peptide TD | Vemurafenib | In vitro: murine B16F10 and human A375 cell lines | Cell viability assay: MTT (0 to 50 μg/mL of vemurafenib and 0 to 1.25 mg/mL of lecithin) | The modification of vemurafenib liposomes with peptide TD potentiated the transdermal delivery of the compound, resulting in negligible adverse side effects compared to oral and i.v. routes. | [100] |
In vivo: male BALB/c nude mice; s.c. injection of A375 cells | oral, i.v. and transdermal administration of different formulations of vemurafenib (1.25 and 2.5 mg/mL) | ||||
DOTAP:DOPE:chol:PEG | Anti-PD-1 siRNA | In vitro: murine B16F0 cell line | Cell viability assay: MTT (20 nM) | Anti-PD-1 siRNA liposomes demonstrated efficacy in silencing PD-1 mRNA expression in T cells, increasing the antitumor immune response. | [101] |
In vivo: female C57BL/6 mice; s.c. injection of B16F0 cells | i.v. administration of Doxil (5 and 10 mg/kg), liposomal scramble siRNA (5 µg/kg), liposomal siRNA (5 µg/kg), and liposomal siRNA (5 µg/kg) + Doxil (5 mg/kg) | ||||
DOTAP:DOPE:C6-ceramide:SC | Curcumin and anti-STAT3 siRNA | In vitro: murine B16F10 cell line | Cell viability assay: MTT (250 μM of curcumin and 0.5 nM of siRNA) | Topical iontophoretic administration of a curcumin and anti-STAT3 siRNA nanosystem demonstrated similar tumor inhibition efficacy as observed for i.t. injection, but significantly higher compared to liposomes of each of the compounds individually by either route. | [102] |
In vivo: female C57BL/6 mice; s.c. injection of B16F10 cells | Topical (iontophoretic and passively) and i.t. administration of curcumin (3 mg/kg) and STAT3 siRNA (0.6 mg/kg) formulations alone or in combination | ||||
DPPC:chol | 5-ALA | In vitro: murine B16F10 cell line | Cell viability assay: WST-1 (630 nm; 50 J/cm2, 20 min) ROS detection assay: DHE Mitochondrial membrane potential assay: mitotraker | The combination of PDT and liposomes suggested greater phototoxicity compared to the non-liposomal form. In addition, in vivo assays demonstrated a higher ability to skin penetration in comparison to the free compound. | [103] |
In vivo: male BALB/c nude mice; s.c. injection of B16F10 cells | Topical administration of free 5-ALA and incorporated in a liposomal formulation for PDT application | ||||
DPPC:MPPC:DSPE-PEG | ICG and poly I:C | In vivo: C57BL/6 mice; s.c. injection of B16F10 cells, followed by a metastatic model by i.v. injection of B16F10 cells | i.t. administration of empty liposomes, ICG loaded liposomes and co-loaded ICG and poly I:C liposomes for PTT application (808 nm; 1 W/cm2, 5 min) | When submitted to PTT, both ICG liposomes and liposomes co-loaded with ICG and poly I:C promoted anticancer effects. However, only the second formulation prevented lung metastases. | [91] |
3.1.2. Solid Lipid Nanoparticles
Nanosystem Composition | Compound(s) | Model(s) | Summary of Experimental Assays and Conditions | Main Conclusions | Reference |
---|---|---|---|---|---|
Glyceryl behenate, sorbitan isostearate and polyoxyethylene-40 hydrogenated | ClAlPc | In vitro: murine B16F10 cell line | Cell viability assay: MTT without (200 and 400 μg/mL) and with (400 μg/mL) application of PDT (670 nm; 0.5, 1 and 2 J/cm2) | ClAlP SLNPs demonstrated remarkable phototoxic effects on melanoma cells compared to free ClAlPc. | [113] |
Compritol 888, poloxamer 188 and tween 80 | Curcumin and resveratrol | In vitro: murine B16F10 and human SK-MEL-28 cell lines | Cell viability assay: MTT (0.1 to 60 μg/mL of curcumin and 0.03 to 20 μg/mL of resveratrol) Cell proliferation assays: IncuCyte (same concentrations of MTT) and ECIS (60 and 20 μg/mL of curcumin and resveratrol, respectively) | The combination of the two compounds, either in solution or included in SLNPs, reduced the cancer cells viability compared to their use alone. | [114] |
Cetyl palmitate, tricaprin and pluronic F68 | PTX and IR-780 | In vitro: murine B16 cell line | Cell viability assay: CCK-8 solution (0.1 to 10 μg/mL of PTX and 0.067 to 6.67 μg/mL of IR-780) after single (808 nm; 1 W/cm2, 5 min) or dual PTT treatment (repeated 24 h later) ROS detection assay: H2DCFDA Cell death assay: annexin V-FITC/PI | The combination of PTX/IR-780 SLNPs concentrated in DMNs with a dual PTT treatment inhibited dramatically the tumor growth, and a 100% cure rate was achieved. | [115] |
In vivo: female C57 mice; s.c. injection of B16 cells | Administration of DMNs loading PTX and/or IR-780 SLNPs for single (808 nm; 1 W/cm2, 5 min) and dual (repeated 24 h later) PTT treatment | ||||
Sodium behenate and PVA | TMZ-C12 | In vitro: human JR8 and A2058 and murine B16F10 melanoma cell lines | Cell viability assay: WST-1 (5 to 50 μM) Clonogenic assay: crystal violet/methanol (5 to 50 μM) | TMZ SLNPs demonstrated their greater cytotoxicity and anti-angiogenic activity in vitro compared to free TMZ. In vivo performance in terms of tumor growth inhibition and animal survival was also improved. | [116] |
In vivo: female C57BL6/J mice; s.c. injection of B16F10 cells | i.v. injection of free TMZ, empty SLNPs and TMZ SLNPs (0.5 μmol/g) | ||||
SLT, GMS, TPGS and tween 20 | DHA-dFdC | In vitro: murine B16F10 cell line | Cell viability assay: MTT (0.0001 to 10 μM) | DHA-dFdC SLNPs increased the chemical stability, plasma half-life and cytotoxicity of the compound in melanoma cells. Also its in vivo antitumor efficacy was improved compared to the free compound. | [117] |
In vivo: female C57BL/6 mice; s.c. injection of B16F10 cells | i.v. injection of DHA-dFdC solution, empty SLNPs and DHA-dFdC SLNPs (50 mg/kg) |
3.1.3. Nanostructured Lipid Carriers
Nanosystem Composition | Compound(s) | Model(s) | Summary of Experimental Assays and Conditions | Main Conclusions | Reference |
---|---|---|---|---|---|
Precirol ATO 5, OA and tween 80 | LEM2 | In vitro: human A375 cell line | Cell viability assays: SRB (0.010 to 5 μM) and trypan blue (1 and 2 μM) DNA damage assay: cell cycle arrest (PI) (1 and 2 μM) | LEM2-loaded NLCs potentiate in vitro cell death of cancer cells in a dose-dependent manner, increasing the percentage of cell cycle arrest in the G2/M phase. | [130] |
Stearic acid, GMS, SLT, OA and pluronic F68 | DTX | In vitro: murine B16 cell line | Cell viability assay: MTT (0.01 to 10 μM) | In vitro and in vivo assays demonstrated the greatest antitumor efficacy of DTX NLCs. In addition, lower in vivo side effects were achieved compared to duopafei. | [131] |
In vivo: female Kunming mice; s.c. injection of B16 cells | i.v. injection of duopafei (10 mg/kg) and DTX NLCs (10 and 20 mg/kg) | ||||
Stearylamine, IPM, SLT, TPGS and pluronic F68 | Tripterine | In vitro: murine B16BL6 cell line | Cell viability assay: MTT (2 to 10 μg/mL) Cell uptake assay: HPLC | Cationic NLCs exhibited greater antitumor activity compared to neutral or anionic ones. | [132] |
In vivo: male C57BL/6 mice; s.c. injection of B16BL6 cells | Topical administration of compound solution, neutral, anionic and cationic NLCs (6 mg/kg) and i.p. injection of CTX as positive control (20 mg/kg) |
3.2. Polymeric-Based Nanoparticles
Nanosystem Composition | Compound(s) | Model(s) | Summary of Experimental Assays and Conditions | Main Conclusions | Reference |
---|---|---|---|---|---|
Chitosan | S-nitroso-MSA | In vitro: murine B16F10 cell line | Cell viability assays (5, 10, 20, and 40 μg/mL): MTT, trypan blue and LDH release ROS detection assay: CM-H2DCFDA and MitoSOX Red Cell death assays: annexin V-FITC/PI and caspase-3 activity | Nanoformulation exhibited high cytotoxicity selectively on cancer cells. | [145] |
PLGA and PVA | Xanthohumol | In vitro: murine B16F10 cell line | Cell viability assay: MTT (2 to 40 μM) Cell proliferation assay: wound healing | Loaded PLGA NPs showed high cytotoxicity as well as inhibition of proliferation and migration. | [146] |
PMMA and sodium lauryl sulfate | α-terpineol | In vitro: murine B16F10 and human SK-MEL-28 cell lines | Cell viability assay: MTT (5, 50 and 500 μg/mL) | Nanosystem exhibited a large and selective cytotoxic effect in both melanoma cell lines tested. | [149] |
PLA and PVA | DTIC and zinc phthalocyanine | In vitro: human MV3 cell line | Cell viability assay: MTT (20 and 100 μg of DTIC) after PDT application (660 nm; 28 J/cm2, 2.5 min) | In vitro assays demonstrated the added value of combined therapy in reducing cancer cell viability. | [150] |
PLGA and PVA | ICG and NextA | In vitro: murine SM1 and B16F10 cell lines | Cell viability assay: Cell Titer-Glo ATP (0.5 to 2.0 mg/mL of NPs) with and without application of PTT HDAC activity assay: HDAC-Glo I/II | The combination of photothermal and epigenetic therapies increased the in vitro expression of immunological markers. Moreover, in an in vivo context, a delayed tumor progression and an improved median survival were achieved. | [151] |
In vivo: female C57BL/6 mice; s.c. injection of SM1 cells | i.t. administration of different formulation combinations (50 mg/kg of NPs) followed or not by PTT application (808 nm; 0.4 W, 10 min) | ||||
PLGA and poloxamer 407 | Apatinib | In vitro: murine B16 cell line | Cell viability assay: CCK-8 solution (4, 20 and 40 μg/mL) | In vitro and in vivo experiments demonstrated the high performance of Apa-PLGA NPs. | [152] |
In vivo: male C57BL/6 mice; injection of B16 cells | i.t. administration of free apatinib at different concentrations (2, 4 and 6 mg/kg), empty PLGA NPs and Apa-PLGA NPs (6 mg/kg) | ||||
PCL, span 80, caprylic/caprictriglycerides and polysorbate 80 | Resveratrol | In vitro: murine B16F10 cell line | Cell viability assay: MTT (1, 3, 10, 30, 100 and 300 μM) | Confirming the in vitro cytotoxicity results, the in vivo study demonstrated an increase in areas of inflammation and necrosis as well as a reduction of metastases and pulmonary hemorrhage compared to the free compound. | [153] |
In vivo: male and female C57BL/6J mice; s.c. injection of B16F10 cells | i.p. administration of free resveratrol, empty PCL NPs and resveratrol-PCL NPs (5 mg/kg) | ||||
Chitosan, sodium alginate and calcium chloride | DOX | In vitro: murine B16F10 and B16OVA cell lines | Cell viability assay: alamar blue solution (1 to 100 μM) | In vitro assays suggested a greater intracellular accumulation and cytotoxicity of the nanosystem compared to the free drug. However, a similar effect between both was observed in the in vivo inhibition of tumor progression. | [154] |
In vivo: female C57BL/6 mice; s.c. injection of B16OVA cells | i.v. injection of free DOX, empty NPs and DOX NPs (3 mg/kg) |
3.3. Metallic-Based Nanoparticles
Nanosystem Composition | Compound(s) | Model(s) | Summary of Experimental Assays and Conditions | Main Conclusions | Reference |
---|---|---|---|---|---|
MoO3 NPs | Non-applicable | In vitro: human G361 cell line | Cell viability assay: MTT (50–400 μg/μL) | MoO3 NPs showed selective cytotoxicity against malignant skin cells compared to healthy cells. | [165] |
AgPt NPs | Non-applicable | In vitro: human A375 cell line | Cell viability assays: MTS (10–250 µg/mL) | NPs demonstrated antitumor activity in the A375 cell line while being safe for healthy cells. | [166] |
Pd NPs | Non-applicable | In vitro: human A375 cell line | Cell viability assays (0–40 μg/mL): MTT and NRU DNA damage assays: comet, cell cycle arrest (EtBr) ROS detection assay: H2DCFDA oxidative stress detection assay: BCA Cell death assays: DAPI, AO/EtBr and caspase-3 activity | In vitro assays demonstrated cytotoxic and genotoxic activity of Pd NPs on melanoma cells. | [169] |
Cu NPs | Non-applicable | In vitro: human A375 cell line | Cell viability assay: MTT (up to 4.5 μg/mL) Cell membrane fluidity assay: TMA-DPH DNA damage assays: comet (EtBr), chromosomal condensation (DAPI) and cell cycle arrest (PI) ROS detection assay: H2DCFDA Mitochondrial membrane potential assay: JC-1 Cell death assays: annexin V-FITC/PI and caspase-3 activity | Cu NPs promoted DNA damage, cell cycle arrest in the G2/M phase and depolarization of mitochondrial membrane potential. | [170] |
Cu2O NPs | Non-applicable | In vitro: murine B16F10 cell line | Cell viability assay: MTT (2.5, 5 and 10 μg/mL) ROS detection assay: H2DCFDA Mitochondrial membrane potential assay: JC-1 Cell death assays: annexin V-FITC/PI and caspase-3 and caspase-9 activities | Cu2O NPs reduced selectively cancer cell lines viability in vitro. Similarly, in an in vivo context, a significant anti-tumor efficacy, impaired tumor growth progression and inhibition of lung metastasis was observed. | [171] |
In vivo: subcutaneous and metastatic models; male C57BL/6 mice; s.c. and i.v. injection of B16F10 cells, respectively | i.v. and i.t. administration of Cu2O NPs in subcutaneous (16 mg/kg) and metastatic (2 mg/kg) model, respectively | ||||
Au NPs | DOX | In vitro: murine B16 and human SK-MEL-28 cell lines | Cell viability assay: SRB | Au-DOX was efficiently internalized and demonstrated great cytotoxicity in melanoma cells. In vivo assays also demonstrated its sustained inhibition of tumor progression over time when compared to DOX alone. | [172] |
In vivo: male C57BL/6 mice; s.c. injection of B16 cells and female nude mice, s.c. injection of SKMEL-28 cells | Administration of free DOX, Au NPs and Au-DOX conjugation (100 μM of DOX or 4 μL of Au) | ||||
Ag and TiO2 based NPs | Non-applicable | In vitro: murine B16F10 cell line | Cell viability assay: MTT (75, 100, 150 and 200 μg/mL) | The formulation allied to PTT treatment markedly reduced tumor cells viability in vitro as well as the tumor volume in an in vivo model. | [173] |
In vivo: male and female C57BL/6J mice; s.c. injection of B16F10 cells | i.t. administration of formulation (100 μg/mL) followed or not by PTT application (808 nm; 2 W/cm2, 1 min) | ||||
Fe3O4 and Au based NPs | Non-applicable | In vivo: male C57BL/6 mice; s.c. injection of B16F10 cells | i.v. administration of NPs (150 μg Au/mL) with and without PTT treatment (808 nm; 2.5 W/cm2, 6 min) | The magnetically target NPs associated with PTT impaired significantly the tumor growth in comparison to control group. | [174] |
3.4. Hybrid Nanoparticles
Nanosystem Composition | Compound(s) | Model(s) | Summary of Experimental Assays and Conditions | Main Conclusions | Reference |
---|---|---|---|---|---|
IO NPs loaded liposomes (DMPC: CHEMS:DSPE-PEG) | Copper (II) complex—Cuphen | In vitro: human MNT-1 and murine B16F10 cell lines | Cell viability assay: MTT of free Cuphen (0.5 to 7 μM), free IO NPs (1 to 7.5 mg/mL) and their combination (Cuphen at 1 and 5 µM and IO NPs at 2 mg/mL) | IO NPs did not influence the cytotoxicity of Cuphen and when loaded in liposomes the magnetic properties were verified. | [191] |
Gold coated loaded liposomes (HSPC) | Curcumin | In vitro: murine B16F10 cell line | Cell viability assays: PI and MTT of free curcumin, curcumin-liposomes and curcumin-lip/Au NPs (100 μg/mL) after PTT (780 nm; 650 mW, 5 min) Cell uptake assay: DAPI | Curcumin was efficiently internalized by cancer cells when incorporated into the formulation. Furthermore, its adjuvant effect in combination with PTT was shown. | [192] |
BSA coated Ag NPs | Non-applicable | In vitro: murine B16F10 cell line | Cell viability assay: WST-1 without (10−8 to 10−2 M of Ag) and with (2.7 × 10−3 M of Ag) application of PTT (690 nm; 0.8, 0.9 and 1 W, 10 min) ROS detection assay: H2DCFDA | The formulation demonstrated its cytotoxicity by increasing the generation of ROS, while also exhibiting its added value as a photothermal agent. | [194] |
Chitosan coated loaded liposomes (DMPC:chol) | ICG | In vitro: murine B16F10 cell line | Cell viability assay: MTT of free ICG and chitosan coated or uncoated IGC-liposomes (40 μM) without and with application of PDT (785 nm; 100 mW/cm2, 2.5 min) Cell uptake assay: fluorescence intensity | Chitosan coated ICG-liposomes increased the cellular uptake of ICG and consequently its photocytotoxicity, compared to uncoated ones. | [195] |
HAOA coated Au NPs | Non-applicable | In vitro: murine B16F10 cell line | Cell viability assay: MTT without (5, 30 and 60 μM) and with (5 μM) application of PTT (811 nm; 0.04 W/cm2, 3 min) | The laser activation of HAOA-coated Au NPs demonstrated a reduction on cancer cell viability compared to observed for healthy cells (HaCat). | [196] |
EGF-conjugated HAOA coated Au NPs | Non-applicable | In vitro: murine B16F10 and human A375 cell lines | Cell viability assay: MTT (25 to 100 μM) without application of PTT | The safety of the formulation without laser irradiation was confirmed in vitro. In turn, in vivo experiments showed that 5 min of laser irradiation promoted the greatest tumor volume reduction, about 80%. | [197] |
In vivo: male hairless SCID mice; s.c. injection of A375 cells | i.t. injection of EGF-conjugated coated Au NPs (20 mg/kg) followed by NIR laser irradiation (811 nm; 2.5 W/cm2, 5 or 10 min) | ||||
Liposome (EPC:chol:DDAB:DSPE-PEG) containing HSA-loaded NPs | CHL | In vitro: murine B16F10 cell line | Cell uptake pathway assay: coumarin-6 | CHL-hybrid NPs exhibited a more pronounced antitumor effect and increased overall survival compared to all the other formulations. | [198] |
In vivo: male C57BL/6 mice; s.c. injection of B16F10 cells | i.v. injection of CHL solution, CHL-liposomes, CHL-Alb NPs and CHL-Alb/liposome hybrid NPs (5 mg/kg) |
3.5. Examples of Patented Nanomedicine Products
3.6. Landscape of Clinical Trials Using Different Types of Nanosystems
3.7. Regulation of Nano-Based Products
4. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Laversanne, M.; Weiderpass, E.; Soerjomataram, I. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer 2021, 127, 3029–3030. [Google Scholar] [CrossRef] [PubMed]
- Dimitriou, F.; Krattinger, R.; Ramelyte, E.; Barysch, M.J.; Micaletto, S.; Dummer, R.; Goldinger, S.M. The World of Melanoma: Epidemiologic, Genetic, and Anatomic Differences of Melanoma Across the Globe. Curr. Oncol. Rep. 2018, 20, 87. [Google Scholar] [CrossRef] [PubMed]
- Garbe, C.; Peris, K.; Hauschild, A.; Saiag, P.; Middleton, M.; Bastholt, L.; Grob, J.-J.; Malvehy, J.; Newton-Bishop, J.; Stratigos, A.J.; et al. Diagnosis and treatment of melanoma. European consensus-based interdisciplinary guideline—Update 2016. Eur. J. Cancer 2016, 63, 201–217. [Google Scholar] [CrossRef]
- Davey, M.G.; Miller, N.; McInerney, N.M. A Review of Epidemiology and Cancer Biology of Malignant Melanoma. Cureus 2021, 13, e15087. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer Cancer Tomorrow—Estimated Number of New Cases from 2020 to 2040 of Melanoma of Skin. Available online: https://gco.iarc.fr/tomorrow/en/dataviz/isotype?cancers=16&single_unit=50000&group_cancers=1&multiple_cancers=1 (accessed on 9 August 2022).
- International Agency for Research on Cancer Cancer Tomorrow—Estimated Number of Deaths from 2020 to 2040 of Melanoma of Skin. Available online: https://gco.iarc.fr/tomorrow/en/dataviz/isotype?cancers=16&single_unit=5000&group_cancers=1&multiple_cancers=1&types=1 (accessed on 9 August 2022).
- Silva, G.S.; Rosenbach, M. Climate change and dermatology: An introduction to a special topic, for this special issue. Int. J. Women’s Dermatol. 2021, 7, 3–7. [Google Scholar] [CrossRef]
- Parker, E.R. The influence of climate change on skin cancer incidence—A review of the evidence. Int. J. Women’s Dermatol. 2021, 7, 17–27. [Google Scholar] [CrossRef]
- Matthews, N.H.; Li, W.-Q.; Qureshi, A.A.; Weinstock, M.A.; Cho, E. Epidemiology of Melanoma. In Cutaneous Melanoma, Etiology and Therapy; Ward, W.H., Farma, J.M., Eds.; Codon Publications: Brisbane, Australia, 2017; Volume 6, pp. 139–149. ISBN 978-0-9944381-4-0. [Google Scholar]
- Baroni, A.; Buommino, E.; De Gregorio, V.; Ruocco, E.; Ruocco, V.; Wolf, R. Structure and function of the epidermis related to barrier properties. Clin. Dermatol. 2012, 30, 257–262. [Google Scholar] [CrossRef]
- Carr, S.; Smith, C.; Wernberg, J. Epidemiology and Risk Factors of Melanoma. Surg. Clin. N. Am. 2020, 100, 1–12. [Google Scholar] [CrossRef]
- Kozar, I.; Margue, C.; Rothengatter, S.; Haan, C.; Kreis, S. Many ways to resistance: How melanoma cells evade targeted therapies. Biochim. Biophys. Acta-Rev. Cancer 2019, 1871, 313–322. [Google Scholar] [CrossRef]
- Ostrowski, S.M.; Fisher, D.E. Biology of Melanoma. Hematol. Oncol. Clin. N. Am. 2021, 35, 29–56. [Google Scholar] [CrossRef]
- Coricovac, D.; Dehelean, C.; Moaca, E.A.; Pinzaru, I.; Bratu, T.; Navolan, D.; Boruga, O. Cutaneous melanoma-a long road from experimental models to clinical outcome: A review. Int. J. Mol. Sci. 2018, 19, 1566. [Google Scholar] [CrossRef]
- Merlino, G.; Herlyn, M.; Fisher, D.E.; Bastian, B.C.; Flaherty, K.T.; Davies, M.A.; Wargo, J.A.; Curiel-Lewandrowski, C.; Weber, M.J.; Leachman, S.A.; et al. The state of melanoma: Challenges and opportunities. Pigment Cell Melanoma Res. 2016, 29, 404–416. [Google Scholar] [CrossRef]
- Borgheti-Cardoso, L.N.; Viegas, J.S.R.; Silvestrini, A.V.P.; Caron, A.L.; Praça, F.G.; Kravicz, M.; Bentley, M.V.L.B. Nanotechnology approaches in the current therapy of skin cancer. Adv. Drug Deliv. Rev. 2020, 153, 109–136. [Google Scholar] [CrossRef]
- Prasad, M.; Lambe, U.P.; Brar, B.; Shah, I.; Manimegalai, J.; Ranjan, K.; Rao, R.; Kumar, S.; Mahant, S.; Khurana, S.K.; et al. Nanotherapeutics: An insight into healthcare and multi-dimensional applications in medical sector of the modern world. Biomed. Pharmacother. 2018, 97, 1521–1537. [Google Scholar] [CrossRef]
- Xie, Z.; Fan, T.; An, J.; Choi, W.; Duo, Y.; Ge, Y.; Zhang, B.; Nie, G.; Xie, N.; Zheng, T.; et al. Emerging combination strategies with phototherapy in cancer nanomedicine. Chem. Soc. Rev. 2020, 49, 8065–8087. [Google Scholar] [CrossRef]
- Silva, C.O.; Pinho, J.O.; Lopes, J.M.; Almeida, A.J.; Gaspar, M.M.; Reis, C. Current trends in cancer nanotheranostics: Metallic, polymeric, and lipid-based systems. Pharmaceutics 2019, 11, 22. [Google Scholar] [CrossRef]
- Wróbel, S.; Przybyło, M.; Stępień, E. The Clinical Trial Landscape for Melanoma Therapies. J. Clin. Med. 2019, 8, 368. [Google Scholar] [CrossRef]
- Dzwierzynski, W.W. Melanoma Risk Factors and Prevention. Clin. Plast. Surg. 2021, 48, 543–550. [Google Scholar] [CrossRef]
- Horrell, E.M.W.; Wilson, K.; D’Orazio, J.A. Melanoma-Epidemiology, Risk Factors, and the Role of Adaptive Pigmentation. In Melanoma-Current Clinical Management and Future Therapeutics; Murph, M., Ed.; IntechOpen: London, UK, 2015; ISBN 978-953-51-7237-6. [Google Scholar]
- O’Neill, C.H.; Scoggins, C.R. Melanoma. J. Surg. Oncol. 2019, 120, 873–881. [Google Scholar] [CrossRef]
- Imbernón-Moya, A.; Podlipnik, S.; Malvehy, J.; Puig, S. Initial Evaluation of Patients with Pigmented Skin Lesions. Actas Dermosifiliogr. 2016, 107, 616–618. [Google Scholar] [CrossRef]
- Apalla, Z.; Lallas, A.; Sotiriou, E.; Lazaridou, E.; Ioannides, D. Epidemiological trends in skin cancer. Dermatol. Pract. Concept. 2017, 7, 1–6. [Google Scholar] [CrossRef]
- Cormier, J.; Voss, R.; Woods, T.; Cromwell, K.; Nelson, K. Improving outcomes in patients with melanoma: Strategies to ensure an early diagnosis. Patient Relat. Outcome Meas. 2015, 6, 229. [Google Scholar] [CrossRef]
- Bayda, S.; Adeel, M.; Tuccinardi, T.; Cordani, M.; Rizzolio, F. The history of nanoscience and nanotechnology: From chemical-physical applications to nanomedicine. Molecules 2020, 25, 112. [Google Scholar] [CrossRef]
- Rafique, M.; Tahir, M.B.; Rafique, M.S.; Hamza, M. History and fundamentals of nanoscience and nanotechnology. In Nanotechnology and Photocatalysis for Environmental Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–25. [Google Scholar]
- Naves, L.B.; Dhand, C.; Venugopal, J.R.; Rajamani, L.; Ramakrishna, S.; Almeida, L. Nanotechnology for the treatment of melanoma skin cancer. Prog. Biomater. 2017, 6, 13. [Google Scholar] [CrossRef]
- Leon, L.; Chung, E.J.; Rinaldi, C. A brief history of nanotechnology and introduction to nanoparticles for biomedical applications. In Nanoparticles for Biomedical Applications. Fundamental Concepts, Biological Interactions and Clinical Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–4. [Google Scholar]
- Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol. 2018, 9, 1050. [Google Scholar] [CrossRef]
- Allan, J.; Belz, S.; Hoeveler, A.; Hugas, M.; Okuda, H.; Patri, A.; Rauscher, H.; Silva, P.; Slikker, W.; Sokull-Kluettgen, B.; et al. Regulatory landscape of nanotechnology and nanoplastics from a global perspective. Regul. Toxicol. Pharmacol. 2021, 122, 104885. [Google Scholar] [CrossRef]
- Lövestam, G.; Rauscher, H.; Roebben, G.; Klüttgen, B.S.; Gibson, N.; Putaud, J.-P.; Stamm, H. Considerations on a Definition of Nanomaterial for Regulatory Purposes; Publications Office: Luxembourg, 2010. [Google Scholar]
- He, Z.; Liu, K.; Byrne, H.J.; Cullen, P.J.; Tian, F.; Curtin, J.F. Combination Strategies for Targeted Delivery of Nanoparticles for Cancer Therapy. In Applications of Targeted Nano Drugs and Delivery Systems; Elsevier: Amsterdam, The Netherlands, 2019; pp. 191–219. [Google Scholar]
- El-Sayed, A.; Kamel, M. Advances in nanomedical applications: Diagnostic, therapeutic, immunization, and vaccine production. Environ. Sci. Pollut. Res. 2020, 27, 19200–19213. [Google Scholar] [CrossRef]
- Pelaz, B.; Alexiou, C.; Alvarez-Puebla, R.A.; Alves, F.; Andrews, A.M.; Ashraf, S.; Balogh, L.P.; Ballerini, L.; Bestetti, A.; Brendel, C.; et al. Diverse Applications of Nanomedicine. ACS Nano 2017, 11, 2313–2381. [Google Scholar] [CrossRef]
- Cheng, L.; Wang, X.; Gong, F.; Liu, T.; Liu, Z. 2D Nanomaterials for Cancer Theranostic Applications. Adv. Mater. 2020, 32, 1902333. [Google Scholar] [CrossRef]
- Wang, X.; Fan, L.; Cheng, L.; Sun, Y.; Wang, X.; Zhong, X.; Shi, Q.; Gong, F.; Yang, Y.; Ma, Y.; et al. Biodegradable Nickel Disulfide Nanozymes with GSH-Depleting Function for High-Efficiency Photothermal-Catalytic Antibacterial Therapy. iScience 2020, 23, 101281. [Google Scholar] [CrossRef] [PubMed]
- Halwani, A.A. Development of Pharmaceutical Nanomedicines: From the Bench to the Market. Pharmaceutics 2022, 14, 106. [Google Scholar] [CrossRef] [PubMed]
- Ding, C.; Li, Z. A review of drug release mechanisms from nanocarrier systems. Mater. Sci. Eng. C 2017, 76, 1440–1453. [Google Scholar] [CrossRef] [PubMed]
- Wong, P.T.; Choi, S.K. Mechanisms of Drug Release in Nanotherapeutic Delivery Systems. Chem. Rev. 2015, 115, 3388–3432. [Google Scholar] [CrossRef] [PubMed]
- Wisse, E.; Jacobs, F.; Topal, B.; Frederik, P.; De Geest, B. The size of endothelial fenestrae in human liver sinusoids: Implications for hepatocyte-directed gene transfer. Gene Ther. 2008, 15, 1193–1199. [Google Scholar] [CrossRef]
- Poon, W.; Zhang, Y.N.; Ouyang, B.; Kingston, B.R.; Wu, J.L.Y.; Wilhelm, S.; Chan, W.C.W. Elimination Pathways of Nanoparticles. ACS Nano 2019, 13, 5785–5798. [Google Scholar] [CrossRef]
- Beiu, C.; Giurcaneanu, C.; Grumezescu, A.M.; Holban, A.M.; Popa, L.G.; Mihai, M.M. Nanosystems for Improved Targeted Therapies in Melanoma. J. Clin. Med. 2020, 9, 318. [Google Scholar] [CrossRef]
- Brys, A.K.; Gowda, R.; Loriaux, D.B.; Robertson, G.P.; Mosca, P.J. Nanotechnology-based strategies for combating toxicity and resistance in melanoma therapy. Biotechnol. Adv. 2016, 34, 565–577. [Google Scholar] [CrossRef]
- Gherasim, O.; Popescu, R.C.; Gherasim, T.G.; Grumezescu, V.; Andronescu, E. Pharmacotherapy and nanotechnology. In Nanoparticles in Pharmacotherapy; William Andrew: Norwich, NY, USA, 2019; pp. 1–21. [Google Scholar]
- Pautu, V.; Leonetti, D.; Lepeltier, E.; Clere, N.; Passirani, C. Nanomedicine as a potent strategy in melanoma tumor microenvironment. Pharmacol. Res. 2017, 126, 31–53. [Google Scholar] [CrossRef]
- Macedo, A.S.; Castro, P.M.; Roque, L.; Thomé, N.G.; Reis, C.P.; Pintado, M.E.; Fonte, P. Novel and revisited approaches in nanoparticle systems for buccal drug delivery. J. Control. Release 2020, 320, 125–141. [Google Scholar] [CrossRef]
- Anselmo, A.C.; Mitragotri, S. Nanoparticles in the clinic: An update. Bioeng. Transl. Med. 2019, 4, e10143. [Google Scholar] [CrossRef]
- De Lázaro, I.; Mooney, D.J. Obstacles and opportunities in a forward vision for cancer nanomedicine. Nat. Mater. 2021, 20, 1469–1479. [Google Scholar] [CrossRef]
- Anselmo, A.C.; Mitragotri, S. Nanoparticles in the clinic. Bioeng. Transl. Med. 2016, 1, 10–29. [Google Scholar] [CrossRef]
- Mishra, H.; Mishra, P.K.; Ekielski, A.; Jaggi, M.; Iqbal, Z.; Talegaonkar, S. Melanoma treatment: From conventional to nanotechnology. J. Cancer Res. Clin. Oncol. 2018, 144, 2283–2302. [Google Scholar] [CrossRef]
- Deng, H.; Zhang, Z. The application of nanotechnology in immune checkpoint blockade for cancer treatment. J. Control. Release 2018, 290, 28–45. [Google Scholar] [CrossRef]
- Pinho, J.O.; Lopes, J.; Albino, M.; Reis, C.; Matias, M.; Gaspar, M.M. Advances in nanotechnology-related strategies against melanoma. In Mitochondrial Dysfunction and Nanotherapeutics; Academic Press: Cambridge, MA, USA, 2021; pp. 385–424. [Google Scholar]
- Chen, J.; Zhang, X.D. Nanodelivery of Anticancer Agents in Melanoma: Encouraging, But a Long Way to Go. In Nanoscience in Dermatology; Elsevier: Amsterdam, The Netherlands, 2016; pp. 189–201. [Google Scholar]
- Cassano, R.; Cuconato, M.; Calviello, G.; Serini, S.; Trombino, S. Recent Advances in Nanotechnology for the Treatment of Melanoma. Molecules 2021, 26, 785. [Google Scholar] [CrossRef]
- Tang, J.Q.; Hou, X.Y.; Yang, C.S.; Li, Y.X.; Xin, Y.; Guo, W.W.; Wei, Z.P.; Liu, Y.Q.; Jiang, G. Recent developments in nanomedicine for melanoma treatment. Int. J. Cancer 2017, 141, 646–653. [Google Scholar] [CrossRef]
- Pivetta, T.P.; Botteon, C.E.A.; Ribeiro, P.A.; Marcato, P.D.; Raposo, M. Nanoparticle Systems for Cancer Phototherapy: An Overview. Nanomaterials 2021, 11, 3132. [Google Scholar] [CrossRef]
- Grzybowski, A.; Sak, J.; Pawlikowski, J. A brief report on the history of phototherapy. Clin. Dermatol. 2016, 34, 532–537. [Google Scholar] [CrossRef]
- Correia, J.H.; Rodrigues, J.A.; Pimenta, S.; Dong, T.; Yang, Z. Photodynamic Therapy Review: Principles, Photosensitizers, Applications, and Future Directions. Pharmaceutics 2021, 13, 1332. [Google Scholar] [CrossRef]
- Mitton, D.; Ackroyd, R. A brief overview of photodynamic therapy in Europe. Photodiagn. Photodyn. Ther. 2008, 5, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Van Straten, D.; Mashayekhi, V.; de Bruijn, H.S.; Oliveira, S.; Robinson, D.J. Oncologic Photodynamic Therapy: Basic Principles, Current Clinical Status and Future Directions. Cancers 2017, 9, 19. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Lovell, J.F.; Yoon, J.; Chen, X. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol. 2020, 17, 657–674. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Li, D.; Lee, C.; Xie, J. Nanoparticle Phototherapy in the Era of Cancer Immunotherapy. Trends Chem. 2020, 2, 1082–1095. [Google Scholar] [CrossRef]
- Han, H.S.; Choi, K.Y. Advances in Nanomaterial-Mediated Photothermal Cancer Therapies: Toward Clinical Applications. Biomedicines 2021, 9, 305. [Google Scholar] [CrossRef]
- Yang, Z.; Sun, Z.; Ren, Y.; Chen, X.; Zhang, W.; Zhu, X.; Mao, Z.; Shen, J.; Nie, S. Advances in nanomaterials for use in photothermal and photodynamic therapeutics. Mol. Med. Rep. 2019, 20, 5–15. [Google Scholar] [CrossRef]
- Yue, J.; Mei, Q.; Wang, P.; Miao, P.; Dong, W.F.; Li, L. Light-triggered multifunctional nanoplatform for efficient cancer photo-immunotherapy. J. Nanobiotechnol. 2022, 20, 181. [Google Scholar] [CrossRef]
- Ng, C.W.; Li, J.; Pu, K. Recent Progresses in Phototherapy-Synergized Cancer Immunotherapy. Adv. Funct. Mater. 2018, 28, 1804688. [Google Scholar] [CrossRef]
- Wang, X.; Zhong, X.; Zha, Z.; He, G.; Miao, Z.; Lei, H.; Luo, Q.; Zhang, R.; Liu, Z.; Cheng, L. Biodegradable CoS2 nanoclusters for photothermal-enhanced chemodynamic therapy. Appl. Mater. Today 2020, 18, 100464. [Google Scholar] [CrossRef]
- Zhao, L.; Xing, Y.; Wang, R.; Yu, F.F.; Yu, F. Self-Assembled Nanomaterials for Enhanced Phototherapy of Cancer. ACS Appl. Bio Mater. 2020, 3, 86–106. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, S.; Cheng, G.; Yu, P.; Chang, J. Light-Responsive Nanomaterials for Cancer Therapy. Engineering 2022, 13, 18–30. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, L. Multifunctional two-dimensional nanocomposites for photothermal-based combined cancer therapy. Nanoscale 2019, 11, 15685–15708. [Google Scholar] [CrossRef]
- Liu, S.; Song, R.; Li, X.; Zhou, F. Synergistic therapeutic strategies for cancer treatment based on nanophototherapy. Nanophotonics 2021, 10, 3391–3395. [Google Scholar] [CrossRef]
- Wang, X.; Zhong, X.; Cheng, L. Titanium-based nanomaterials for cancer theranostics. Coord. Chem. Rev. 2021, 430, 213662. [Google Scholar] [CrossRef]
- Wang, X.; Zhong, X.; Lei, H.; Geng, Y.; Zhao, Q.; Gong, F.; Yang, Z.; Dong, Z.; Liu, Z.; Cheng, L. Hollow Cu2Se Nanozymes for Tumor Photothermal-Catalytic Therapy. Chem. Mater. 2019, 31, 6174–6186. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, L. Multifunctional Prussian blue-based nanomaterials: Preparation, modification, and theranostic applications. Coord. Chem. Rev. 2020, 419, 213393. [Google Scholar] [CrossRef]
- Layek, B.; Gidwani, B.; Tiwari, S.; Joshi, V.; Jain, V.; Vyas, A. Recent Advances in Lipid-based Nanodrug Delivery Systems in Cancer Therapy. Curr. Pharm. Des. 2020, 26, 3218–3233. [Google Scholar] [CrossRef] [PubMed]
- None, H.; Barkat, M.A.; Das, S.S.; Pottoo, F.H.; Beg, S.; Rahman, Z. Lipid-Based Nanosystem As Intelligent Carriers for Versatile Drug Delivery Applications. Curr. Pharm. Des. 2020, 26, 1167–1180. [Google Scholar]
- Shrestha, H.; Bala, R.; Arora, S. Lipid-Based Drug Delivery Systems. J. Pharm. 2014, 2014, 801820. [Google Scholar] [CrossRef]
- Predoi, M.-C.; Mîndrilă, I.; Buteică, S.; Mărginean, O.; Mîndrilă, B.; Niculescu, M. Pigmented melanoma cell migration study on murine syngeneic B16F10 melanoma cells or tissue transplantation models. J. Mind Med. Sci. 2019, 6, 327–333. [Google Scholar] [CrossRef]
- Fidler, I.J.; Nicolson, G.L. Organ selectivity for implantation survival and growth of B16 melanoma variant tumor lines. J. Natl. Cancer Inst. 1976, 57, 1199–1202. [Google Scholar] [CrossRef] [PubMed]
- Gubala, V.; Johnston, L.J.; Liu, Z.; Krug, H.; Moore, C.J.; Ober, C.K.; Schwenk, M.; Vert, M. Engineered Nanomaterials and Human Health: Part 1. Preparation, Functionalization and Characterization (IUPAC Technical Report). Pure Appl. Chem. 2018, 90, 1283–1324. [Google Scholar] [CrossRef]
- Gregoriadis, G. Liposomes in Drug Delivery: How It All Happened. Pharmaceutics 2016, 8, 19. [Google Scholar] [CrossRef]
- Perrie, Y. Gregory Gregoriadis: Introducing liposomes to drug delivery. J. Drug Target. 2008, 16, 518–519. [Google Scholar] [CrossRef]
- Pinho, J.O.; Matias, M.; Gaspar, M.M. Emergent nanotechnological strategies for systemic chemotherapy against melanoma. Nanomaterials 2019, 9, 1455. [Google Scholar] [CrossRef]
- Obeid, M.A.; Tate, R.J.; Mullen, A.B.; Ferro, V.A. Lipid-based nanoparticles for cancer treatment. In Lipid Nanocarriers for Drug Targeting; Grumezescu, A.M., Ed.; William Andrew Publishing: Norwich, NY, USA, 2018; pp. 313–359. ISBN 9780128136874. [Google Scholar]
- Yingchoncharoen, P.; Kalinowski, D.S.; Richardson, D.R. Lipid-Based Drug Delivery Systems in Cancer Therapy: What Is Available and What Is yet to Come. Pharmacol. Rev. 2016, 68, 701. [Google Scholar] [CrossRef]
- Al Saqr, A.; Aldawsari, M.F.; Alrbyawi, H.; Poudel, I.; Annaji, M.; Mulabagal, V.; Ramani, M.V.; Gottumukkala, S.; Tiwari, A.K.; Dhanasekaran, M.; et al. Co-Delivery of Hispolon and Doxorubicin Liposomes Improves Efficacy against Melanoma Cells. AAPS PharmSciTech 2020, 21, 304. [Google Scholar] [CrossRef]
- Fandzloch, M.; Jaromin, A.; Zaremba-Czogalla, M.; Wojtczak, A.; Lewińska, A.; Sitkowski, J.; Wiśniewska, J.; Łakomska, I.; Gubernator, J. Nanoencapsulation of a ruthenium(II) complex with triazolopyrimidine in liposomes as a tool for improving its anticancer activity against melanoma cell lines. Dalton Trans. 2020, 49, 1207–1219. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, W.; Park, H.B.; Kwak, M.; Oh, J.; Lee, P.C.W.; Jin, J.O. Indocyanine green and poly I:C containing thermo-responsive liposomes used in immune-photothermal therapy prevent cancer growth and metastasis. J. Immunother. Cancer 2019, 7, 220. [Google Scholar] [CrossRef]
- Nave, M.; Castro, R.E.; Rodrigues, C.M.P.; Casini, A.; Soveral, G.; Gaspar, M.M. Nanoformulations of a potent copper-based aquaporin inhibitor with cytotoxic effect against cancer cells. Nanomedicine 2016, 11, 1817–1830. [Google Scholar] [CrossRef]
- Merino, M.; Contreras, A.; Casares, N.; Troconiz, I.F.; ten Hagen, T.L.M.; Berraondo, P.; Zalba, S.; Garrido, M.J. A new immune-nanoplatform for promoting adaptive antitumor immune response. Nanomed. Nanotechnol. Biol. Med. 2019, 17, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Filipczak, N.; Jaromin, A.; Piwoni, A.; Mahmud, M.; Sarisozen, C.; Torchilin, V.; Gubernator, J. A Triple Co-Delivery Liposomal Carrier That Enhances Apoptosis via an Intrinsic Pathway in Melanoma Cells. Cancers 2019, 11, 1982. [Google Scholar] [CrossRef]
- Matos, C.P.; Albino, M.; Lopes, J.; Viana, A.S.; Côrte-Real, L.; Mendes, F.; Pessoa, J.C.; Tomaz, A.I.; Reis, C.P.; Gaspar, M.M.; et al. New iron(III) anti-cancer aminobisphenolate/phenanthroline complexes: Enhancing their therapeutic potential using nanoliposomes. Int. J. Pharm. 2022, 623, 121925. [Google Scholar] [CrossRef]
- Chen, L.; Alrbyawi, H.; Poudel, I.; Arnold, R.D.; Babu, R.J. Co-delivery of Doxorubicin and Ceramide in a Liposomal Formulation Enhances Cytotoxicity in Murine B16BL6 Melanoma Cell Lines. AAPS PharmSciTech 2019, 20, 99. [Google Scholar] [CrossRef] [PubMed]
- Woźniak, M.; Nowak, M.; Lazebna, A.; Więcek, K.; Jabłońska, I.; Szpadel, K.; Grzeszczak, A.; Gubernator, J.; Ziółkowski, P. The Comparison of In Vitro Photosensitizing Efficacy of Curcumin-Loaded Liposomes Following Photodynamic Therapy on Melanoma MUG-Mel2, Squamous Cell Carcinoma SCC-25, and Normal Keratinocyte HaCaT Cells. Pharmaceuticals 2021, 14, 374. [Google Scholar] [CrossRef] [PubMed]
- Pinho, J.O.; Amaral, J.D.; Castro, R.E.; Rodrigues, C.M.; Casini, A.; Soveral, G.; Gaspar, M.M. Copper complex nanoformulations featuring highly promising therapeutic potential in murine melanoma models. Nanomedicine 2019, 14, 835–850. [Google Scholar] [CrossRef] [PubMed]
- Merino, M.; Lozano, T.; Casares, N.; Lana, H.; Troconiz, I.F.; ten Hagen, T.L.M.; Kochan, G.; Berraondo, P.; Zalba, S.; Garrido, M.J. Dual activity of PD-L1 targeted Doxorubicin immunoliposomes promoted an enhanced efficacy of the antitumor immune response in melanoma murine model. J. Nanobiotechnol. 2021, 19, 102. [Google Scholar] [CrossRef]
- Zou, L.; Ding, W.; Zhang, Y.; Cheng, S.; Li, F.; Ruan, R.; Wei, P.; Qiu, B. Peptide-modified vemurafenib-loaded liposomes for targeted inhibition of melanoma via the skin. Biomaterials 2018, 182, 1–12. [Google Scholar] [CrossRef]
- Barati, M.; Mirzavi, F.; Nikpoor, A.R.; Sankian, M.; Namdar Ahmadabad, H.; Soleimani, A.; Mashreghi, M.; Tavakol Afshar, J.; Mohammadi, M.; Jaafari, M.R. Enhanced antitumor immune response in melanoma tumor model by anti-PD-1 small interference RNA encapsulated in nanoliposomes. Cancer Gene Ther. 2021, 29, 814–824. [Google Scholar] [CrossRef]
- Jose, A.; Labala, S.; Ninave, K.M.; Gade, S.K.; Venuganti, V.V.K. Effective Skin Cancer Treatment by Topical Co-delivery of Curcumin and STAT3 siRNA Using Cationic Liposomes. AAPS PharmSciTech 2018, 19, 166–175. [Google Scholar] [CrossRef]
- Lin, M.W.; Huang, Y.B.; Chen, C.L.; Wu, P.C.; Chou, C.Y.; Wu, P.C.; Hung, S.Y. A formulation study of 5-aminolevulinic encapsulated in DPPC liposomes in melanoma treatment. Int. J. Med. Sci. 2016, 13, 483–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Saqr, A.; Majrashi, M.; Alrbyawi, H.; Govindarajulu, M.; Fujihashi, A.; Gottumukkala, S.; Poudel, I.; Arnold, R.D.; Babu, R.J.; Dhanasekaran, M. Elucidating the anti-melanoma effect and mechanisms of Hispolon. Life Sci. 2020, 256, 117702. [Google Scholar] [CrossRef] [PubMed]
- Ndagi, U.; Mhlongo, N.; Soliman, M.E. Metal complexes in cancer therapy—An update from drug design perspective. Drug Des. Develop. Ther. 2017, 11, 599–616. [Google Scholar] [CrossRef] [PubMed]
- Riaz, M.K.; Riaz, M.A.; Zhang, X.; Lin, C.; Wong, K.H.; Chen, X.; Zhang, G.; Lu, A.; Yang, Z. Surface Functionalization and Targeting Strategies of Liposomes in Solid Tumor Therapy: A Review. Int. J. Mol. Sci. 2018, 19, 195. [Google Scholar] [CrossRef]
- Gurunathan, S.; Kang, M.H.; Qasim, M.; Kim, J.H. Nanoparticle-Mediated Combination Therapy: Two-in-One Approach for Cancer. Int. J. Mol. Sci. 2018, 19, 3264. [Google Scholar] [CrossRef]
- García-Pinel, B.; Porras-Alcalá, C.; Ortega-Rodríguez, A.; Sarabia, F.; Prados, J.; Melguizo, C.; López-Romero, J.M. Lipid-Based Nanoparticles: Application and Recent Advances in Cancer Treatment. Nanomaterials 2019, 9, 638. [Google Scholar] [CrossRef]
- Talegaonkar, S.; Bhattacharyya, A. Potential of Lipid Nanoparticles (SLNs and NLCs) in Enhancing Oral Bioavailability of Drugs with Poor Intestinal Permeability. AAPS PharmSciTech 2019, 20, 121. [Google Scholar] [CrossRef]
- Bayón-Cordero, L.; Alkorta, I.; Arana, L. Application of Solid Lipid Nanoparticles to Improve the Efficiency of Anticancer Drugs. Nanomaterials 2019, 9, 474. [Google Scholar] [CrossRef]
- Ghasemiyeh, P.; Mohammadi-Samani, S. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages. Res. Pharm. Sci. 2018, 13, 288. [Google Scholar]
- Salvi, V.R.; Pawar, P. Nanostructured lipid carriers (NLC) system: A novel drug targeting carrier. J. Drug Deliv. Sci. Technol. 2019, 51, 255–267. [Google Scholar] [CrossRef]
- Goto, P.L.; Siqueira-Moura, M.P.; Tedesco, A.C. Application of aluminum chloride phthalocyanine-loaded solid lipid nanoparticles for photodynamic inactivation of melanoma cells. Int. J. Pharm. 2017, 518, 228–241. [Google Scholar] [CrossRef]
- Palliyage, G.H.; Hussein, N.; Mimlitz, M.; Weeder, C.; Alnasser, M.H.A.; Singh, S.; Ekpenyong, A.; Tiwari, A.K.; Chauhan, H. Novel Curcumin-Resveratrol Solid Nanoparticles Synergistically Inhibit Proliferation of Melanoma Cells. Pharm. Res. 2021, 38, 851–871. [Google Scholar] [CrossRef]
- Qin, W.; Quan, G.; Sun, Y.; Chen, M.; Yang, P.; Feng, D.; Wen, T.; Hu, X.; Pan, X.; Wu, C. Dissolving Microneedles with Spatiotemporally controlled pulsatile release Nanosystem for Synergistic Chemo-photothermal Therapy of Melanoma. Theranostics 2020, 10, 8179. [Google Scholar] [CrossRef]
- Clemente, N.; Ferrara, B.; Gigliotti, C.L.; Boggio, E.; Capucchio, M.T.; Biasibetti, E.; Schiffer, D.; Mellai, M.; Annovazzi, L.; Cangemi, L.; et al. Solid Lipid Nanoparticles Carrying Temozolomide for Melanoma Treatment. Preliminary In Vitro and In Vivo Studies. Int. J. Mol. Sci. 2018, 19, 255. [Google Scholar] [CrossRef]
- Valdes, S.A.; Alzhrani, R.F.; Rodriguez, A.; Lansakara-P, D.S.P.; Thakkar, S.G.; Cui, Z. A solid lipid nanoparticle formulation of 4-(N)-docosahexaenoyl 2′, 2′-difluorodeoxycytidine with increased solubility, stability, and antitumor activity. Int. J. Pharm. 2019, 570, 118609. [Google Scholar] [CrossRef]
- Tupal, A.; Sabzichi, M.; Ramezani, F.; Kouhsoltani, M.; Hamishehkar, H. Dermal delivery of doxorubicin-loaded solid lipid nanoparticles for the treatment of skin cancer. J. Microencapsul. 2016, 33, 372–380. [Google Scholar] [CrossRef]
- Cassano, R.; Mellace, S.; Marrelli, M.; Conforti, F.; Trombino, S. α-Tocopheryl linolenate solid lipid nanoparticles for the encapsulation, protection, and release of the omega-3 polyunsaturated fatty acid: In Vitro anti-melanoma activity evaluation. Colloids Surf. B Biointerfaces 2017, 151, 128–133. [Google Scholar] [CrossRef]
- Athawale, R.B.; Jain, D.S.; Singh, K.K.; Gude, R.P. Etoposide loaded solid lipid nanoparticles for curtailing B16F10 melanoma colonization in lung. Biomed. Pharmacother. 2014, 68, 231–240. [Google Scholar] [CrossRef]
- Valizadeh, A.; Khaleghi, A.A.; Roozitalab, G.; Osanloo, M. High anticancer efficacy of solid lipid nanoparticles containing Zataria multiflora essential oil against breast cancer and melanoma cell lines. BMC Pharmacol. Toxicol. 2021, 22, 52. [Google Scholar] [CrossRef]
- Kim, M.M.; Darafsheh, A. Light Sources and Dosimetry Techniques for Photodynamic Therapy. Photochem. Photobiol. 2020, 96, 280–294. [Google Scholar] [CrossRef]
- Obaid, G.; Broekgaarden, M.; Bulin, A.L.; Huang, H.C.; Kuriakose, J.; Liu, J.; Hasan, T. Photonanomedicine: A Convergence of Photodynamic Therapy and Nanotechnology. Nanoscale 2016, 8, 12471. [Google Scholar] [CrossRef]
- Brevi, A.; Cogrossi, L.L.; Grazia, G.; Masciovecchio, D.; Impellizzieri, D.; Lacanfora, L.; Grioni, M.; Bellone, M. Much More Than IL-17A: Cytokines of the IL-17 Family Between Microbiota and Cancer. Front. Immunol. 2020, 11, 2914. [Google Scholar] [CrossRef]
- Vitiello, G.A.; Miller, G. Targeting the interleukin-17 immune axis for cancer immunotherapy. J. Exp. Med. 2020, 217, e20190456. [Google Scholar] [CrossRef]
- Liu, Q.; Peng, Z.; Shen, L.; Shen, L. Prognostic and Clinicopathological Value of Ki-67 in Melanoma: A Meta-Analysis. Front. Oncol. 2021, 11, 737760. [Google Scholar] [CrossRef]
- Tu, T.J.; Ma, M.W.; Monni, S.; Rose, A.E.; Yee, H.; Darvishian, F.; Polsky, D.; Berman, R.S.; Shapiro, R.L.; Pavlick, A.C.; et al. A High Proliferative Index of Recurrent Melanoma Is Associated with Worse Survival. Oncology 2011, 80, 181–187. [Google Scholar] [CrossRef]
- Li, L.T.; Jiang, G.; Chen, Q.; Zheng, J.N. Predic Ki67 is a promising molecular target in the diagnosis of cancer (Review). Mol. Med. Rep. 2015, 11, 1566–1572. [Google Scholar] [CrossRef]
- Subramaniam, B.; Siddik, Z.H.; Nagoor, N.H. Optimization of nanostructured lipid carriers: Understanding the types, designs, and parameters in the process of formulations. J. Nanopart. Res. 2020, 22, 141. [Google Scholar] [CrossRef]
- Malta, R.; Loureiro, J.B.; Costa, P.; Sousa, E.; Pinto, M.; Saraiva, L.; Amaral, M.H. Development of lipid nanoparticles containing the xanthone LEM2 for topical treatment of melanoma. J. Drug Deliv. Sci. Technol. 2021, 61, 102226. [Google Scholar] [CrossRef]
- Liu, D.; Liu, Z.; Wang, L.; Zhang, C.; Zhang, N. Nanostructured lipid carriers as novel carrier for parenteral delivery of docetaxel. Colloids Surf. B Biointerfaces 2011, 85, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhou, L.; Yuan, L.; Zhang, Z.; Liu, X.; Wu, Q. Formulation, characterization, and evaluation of in vitro skin permeation and in vivo pharmacodynamics of surface-charged tripterine-loaded nanostructured lipid carriers. Int. J. Nanomed. 2012, 7, 3023. [Google Scholar]
- Singh, P.; Singh, M.; Kanoujia, J.; Arya, M.; Saraf, S.K.; Saraf, S.A. Process optimization and photostability of silymarin nanostructured lipid carriers: Effect on UV-irradiated rat skin and SK-MEL 2 cell line. Drug Deliv. Transl. Res. 2016, 6, 597–609. [Google Scholar] [CrossRef]
- Mohammadian, J.; Mahmoudi, S.; Pourmohammad, P.; Pirouzpanah, M.; Salehnia, F.; Maroufi, N.F.; Samadi, N.; Sabzichi, M. Formulation of Stattic as STAT3 inhibitor in nanostructured lipid carriers (NLCs) enhances efficacy of doxorubicin in melanoma cancer cells. Naunyn-Schmiedebergs Arch. Pharmacol. 2020, 393, 2315–2323. [Google Scholar] [CrossRef]
- Kamal, M.M.; Akter, S.; Lin, C.N.; Nazzal, S. Sulforaphane as an anticancer molecule: Mechanisms of action, synergistic effects, enhancement of drug safety, and delivery systems. Arch. Pharm. Res. 2020, 43, 371–384. [Google Scholar] [CrossRef] [PubMed]
- Gomes, S.; Raimundo, L.; Soares, J.; Loureiro, J.B.; Leão, M.; Ramos, H.; Monteiro, M.N.; Lemos, A.; Moreira, J.; Pinto, M.; et al. New inhibitor of the TAp73 interaction with MDM2 and mutant p53 with promising antitumor activity against neuroblastoma. Cancer Lett. 2019, 446, 90–102. [Google Scholar] [CrossRef]
- Martins, C.; Chauhan, V.M.; Araújo, M.; Abouselo, A.; Barrias, C.C.; Aylott, J.W.; Sarmento, B. Advanced polymeric nanotechnology to augment therapeutic delivery and disease diagnosis. Nanomedicine 2020, 15, 2287–2309. [Google Scholar] [CrossRef]
- Banik, B.L.; Brown, J.L. Polymeric Biomaterials in Nanomedicine. In Natural and Synthetic Biomedical Polymers; Kumbar, S.G., Laurencin, C.T., Deng, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 387–395. ISBN 978-0-12-396983-5. [Google Scholar]
- Banik, B.L.; Fattahi, P.; Brown, J.L. Polymeric nanoparticles: The future of nanomedicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2016, 8, 271–299. [Google Scholar] [CrossRef]
- Reis, C.P.; Neufeld, R.J.; Ribeiro, A.J.; Veiga, F. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2006, 2, 8–21. [Google Scholar] [CrossRef]
- Pinto Reis, C.; Neufeld, R.J.; Veiga, F.; Ribeiro, A.J. Preparation of Drug-Loaded Polymeric Nanoparticles. In Nanomedicine in Cancer; Balogh, L.P., Ed.; Pan Stanford: Stanford, CA, USA, 2018; pp. 171–214. ISBN 9781315114361. [Google Scholar]
- Karlsson, J.; Vaughan, H.J.; Green, J.J. Biodegradable Polymeric Nanoparticles for Therapeutic Cancer Treatments. Annu. Rev. Chem. Biomol. Eng. 2018, 9, 105–127. [Google Scholar] [CrossRef]
- Han, J.; Zhao, D.; Li, D.; Wang, X.; Jin, Z.; Zhao, K. Polymer-Based Nanomaterials and Applications for Vaccines and Drugs. Polymers 2018, 10, 31. [Google Scholar] [CrossRef]
- Amaral, M.; Cruz, N.; Rosa, A.; Nogueira, B.; Costa, D.; Santos, F.; Brazão, M.; Policarpo, P.; Mateus, R.; Kobozev, Y.; et al. An update of advanced nanoplatforms for Glioblastoma Multiforme Management. EXCLI J. 2021, 20, 1544–1570. [Google Scholar]
- Ferraz, L.S.; Watashi, C.M.; Colturato-Kido, C.; Pelegrino, M.T.; Paredes-Gamero, E.J.; Weller, R.B.; Seabra, A.B.; Rodrigues, T. Antitumor Potential of S-Nitrosothiol-Containing Polymeric Nanoparticles against Melanoma. Mol. Pharm. 2018, 15, 1160–1168. [Google Scholar] [CrossRef]
- Fonseca, M.; Macedo, A.S.; Lima, S.A.C.; Reis, S.; Soares, R.; Fonte, P. Evaluation of the Antitumour and Antiproliferative Effect of Xanthohumol-Loaded PLGA Nanoparticles on Melanoma. Materials 2021, 14, 6421. [Google Scholar] [CrossRef]
- Wang, B.; Liu, X.; Teng, Y.; Yu, T.; Chen, J.; Hu, Y.; Liu, N.; Zhang, L.; Shen, Y. Improving anti-melanoma effect of curcumin by biodegradable nanoparticles. Oncotarget 2017, 8, 108624–108642. [Google Scholar] [CrossRef]
- Baishya, R.; Nayak, D.K.; Kumar, D.; Sinha, S.; Gupta, A.; Ganguly, S.; Debnath, M.C. Ursolic Acid Loaded PLGA Nanoparticles: In Vitro and In Vivo Evaluation to Explore Tumor Targeting Ability on B16F10 Melanoma Cell Lines. Pharm. Res. 2016, 33, 2691–2703. [Google Scholar] [CrossRef]
- Batista, F.A.; Fontele, S.B.C.; Santos, L.K.B.; Alves Filgueiras, L.; Quaresma Nascimento, S.; de Castro e Sousa, J.M.; Gonçalves, J.C.R.; Mendes, A.N. Synthesis, characterization of α-terpineol-loaded PMMA nanoparticles as proposed of therapy for melanoma. Mater. Today Commun. 2020, 22, 100762. [Google Scholar] [CrossRef]
- Do Reis, S.R.R.; Helal-Neto, E.; da Silva de Barros, A.O.; Pinto, S.R.; Portilho, F.L.; de Oliveira Siqueira, L.B.; Alencar, L.M.R.; Dahoumane, S.A.; Alexis, F.; Ricci-Junior, E.; et al. Dual Encapsulated Dacarbazine and Zinc Phthalocyanine Polymeric Nanoparticle for Photodynamic Therapy of Melanoma. Pharm. Res. 2021, 38, 335–346. [Google Scholar] [CrossRef]
- Ledezma, D.K.; Balakrishnan, P.B.; Cano-Mejia, J.; Sweeney, E.E.; Hadley, M.; Bollard, C.M.; Villagra, A.; Fernandes, R. Indocyanine Green-Nexturastat A-PLGA Nanoparticles Combine Photothermal and Epigenetic Therapy for Melanoma. Nanomaterials 2020, 10, 161. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, P.; Zhang, Z.; Han, J.; Yang, X.; Wang, A.; Zhang, X. Apatinib-loaded nanoparticles inhibit tumor growth and angiogenesis in a model of melanoma. Biochem. Biophys. Res. Commun. 2020, 521, 296–302. [Google Scholar] [CrossRef]
- Carletto, B.; Berton, J.; Ferreira, T.N.; Dalmolin, L.F.; Paludo, K.S.; Mainardes, R.M.; Farago, P.V.; Favero, G.M. Resveratrol-loaded nanocapsules inhibit murine melanoma tumor growth. Colloids Surf. B Biointerfaces 2016, 144, 65–72. [Google Scholar] [CrossRef]
- Yoncheva, K.; Merino, M.; Shenol, A.; Daskalov, N.T.; Petkov, P.S.; Vayssilov, G.N.; Garrido, M.J. Optimization and in-vitro/in-vivo evaluation of doxorubicin-loaded chitosan-alginate nanoparticles using a melanoma mouse model. Int. J. Pharm. 2019, 556, 1–8. [Google Scholar] [CrossRef]
- De Camargo, L.E.A.; Ludwig, D.B.; Tominaga, T.T.; Carletto, B.; Favero, G.M.; Mainardes, R.M.; Khalil, N.M. Bovine serum albumin nanoparticles improve the antitumour activity of curcumin in a murine melanoma model. J. Microencapsul. 2018, 35, 467–474. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Hu, J.; Huang, Z.; Huang, Y.; Peng, B.; Xie, N.; Liu, H. Paclitaxel-loaded star-shaped copolymer nanoparticles for enhanced malignant melanoma chemotherapy against multidrug resistance. Drug Des. Develop. Ther. 2017, 11, 659. [Google Scholar] [CrossRef] [PubMed]
- Reis, C.P.; Gomes, A.; Rijo, P.; Candeias, S.; Pinto, P.; Baptista, M.; Martinho, N.; Ascensão, L. Development and evaluation of a novel topical treatment for acne with azelaic acid-loaded nanoparticles. Microsc. Microanal. 2013, 19, 1141–1150. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, D.N.; Bhatia, A.; Kaur, R.; Sharma, R.; Kaur, G.; Dhawan, S. PLGA: A unique polymer for drug delivery. Ther. Deliv. 2015, 6, 41–58. [Google Scholar] [CrossRef]
- Xu, P.; Liang, F. Nanomaterial-Based Tumor Photothermal Immunotherapy. Int. J. Nanomed. 2020, 15, 9159–9180. [Google Scholar] [CrossRef]
- Da Silva, P.B.; Machado, R.T.A.; Pironi, A.M.; Alves, R.C.; de Araújo, P.R.; Dragalzew, A.C.; Dalberto, I.; Chorilli, M. Recent Advances in the Use of Metallic Nanoparticles with Antitumoral Action—Review. Curr. Med. Chem. 2019, 26, 2108–2146. [Google Scholar] [CrossRef]
- Sharma, A.; Goyal, A.K.; Rath, G. Recent advances in metal nanoparticles in cancer therapy. J. Drug Target. 2018, 26, 617–632. [Google Scholar] [CrossRef]
- Sharma, H.; Mishra, P.K.; Talegaonkar, S.; Vaidya, B. Metal nanoparticles: A theranostic nanotool against cancer. Drug Discov. Today 2015, 20, 1143–1151. [Google Scholar] [CrossRef]
- Attarilar, S.; Yang, J.; Ebrahimi, M.; Wang, Q.; Liu, J.; Tang, Y.; Yang, J. The Toxicity Phenomenon and the Related Occurrence in Metal and Metal Oxide Nanoparticles: A Brief Review From the Biomedical Perspective. Front. Bioeng. Biotechnol. 2020, 8, 822. [Google Scholar] [CrossRef]
- Piñón-Segundo, E.; Mendoza-Muñoz, N.; Quintanar-Guerrero, D. Nanoparticles as Dental Drug-Delivery Systems. In Nanobiomaterials in Clinical Dentistry; Elsevier: Amsterdam, The Netherlands, 2013; pp. 475–495. [Google Scholar]
- Indrakumar, J.; Korrapati, P.S. Steering Efficacy of Nano Molybdenum Towards Cancer: Mechanism of Action. Biol. Trace Elem. Res. 2020, 194, 121–134. [Google Scholar] [CrossRef]
- Ruiz, A.L.; Garcia, C.B.; Gallón, S.N.; Webster, T.J. Novel Silver-Platinum Nanoparticles for Anticancer and Antimicrobial Applications. Int. J. Nanomed. 2020, 15, 169–179. [Google Scholar] [CrossRef]
- Yong, J.M.; Fu, L.; Tang, F.; Yu, P.; Kuchel, R.P.; Whitelock, J.M.; Lord, M.S. ROS-Mediated Anti-Angiogenic Activity of Cerium Oxide Nanoparticles in Melanoma Cells. ACS Biomater. Sci. Eng. 2022, 8, 512–525. [Google Scholar] [CrossRef]
- Mukhopadhyay, R.; Kazi, J.; Debnath, M.C. Synthesis and characterization of copper nanoparticles stabilized with Quisqualis indica extract: Evaluation of its cytotoxicity and apoptosis in B16F10 melanoma cells. Biomed. Pharmacother. 2018, 97, 1373–1385. [Google Scholar] [CrossRef]
- Alarifi, S.; Ali, D.; Alkahtani, S.; Almeer, R.S. ROS-Mediated Apoptosis and Genotoxicity Induced by Palladium Nanoparticles in Human Skin Malignant Melanoma Cells. Oxidative Med. Cell. Longev. 2017, 2017, 8439098. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, R.; Basu, T. Metallic copper nanoparticles induce apoptosis in a human skin melanoma A-375 cell line. Nanotechnology 2017, 28, 105101. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, F.; Zhang, H.X.; Zi, X.Y.; Pan, X.H.; Chen, F.; Luo, W.D.; Li, J.X.; Zhu, H.Y.; Hu, Y.P. Cuprous oxide nanoparticles inhibit the growth and metastasis of melanoma by targeting mitochondria. Cell Death Dis. 2013, 4, e783. [Google Scholar] [CrossRef]
- Zhang, X.; Teodoro, J.G.; Nadeau, J.L. Intratumoral gold-doxorubicin is effective in treating melanoma in mice. Nanomedicine 2015, 11, 1365–1375. [Google Scholar] [CrossRef]
- Nie, C.; Du, P.; Zhao, H.; Xie, H.; Li, Y.; Yao, L.; Shi, Y.; Hu, L.; Si, S.; Zhang, M.; et al. Ag@TiO2 Nanoprisms with Highly Efficient Near-Infrared Photothermal Conversion for Melanoma Therapy. Chem. Asian J. 2020, 15, 148–155. [Google Scholar] [CrossRef]
- Pandesh, S.; Haghjooy Javanmard, S.; Shakeri-Zadeh, A.; Shokrani, P. Targeted Photothermal Therapy of Melanoma in C57BL/6 Mice using Fe3O4@Au Core-shell Nanoparticles and Near-infrared Laser. J. Biomed. Phys. Eng. 2021, 11, 29. [Google Scholar] [CrossRef]
- Arooj, S.; Nazir, S.; Nadhman, A.; Ahmad, N.; Muhammad, B.; Ahmad, I.; Mazhar, K.; Abbasi, R. Novel ZnO:Ag nanocomposites induce significant oxidative stress in human fibroblast malignant melanoma (Ht144) cells. Beilstein J. Nanotechnol. 2015, 6, 570. [Google Scholar] [CrossRef]
- Aplak, E.; Von Montfort, C.; Haasler, L.; Stucki, D.; Steckel, B.; Reichert, A.S.; Stahl, W.; Brenneisen, P. CNP mediated selective toxicity on melanoma cells is accompanied by mitochondrial dysfunction. PLoS ONE 2020, 15, e0227926. [Google Scholar] [CrossRef]
- Wang, Y.; Zi, X.Y.; Su, J.; Zhang, H.X.; Zhang, X.R.; Zhu, H.Y.; Li, J.X.; Yin, M.; Yang, F.; Hu, Y.P. Cuprous oxide nanoparticles selectively induce apoptosis of tumor cells. Int. J. Nanomed. 2012, 7, 2641. [Google Scholar]
- Bagheri, S.; Yasemi, M.; Safaie-Qamsari, E.; Rashidiani, J.; Abkar, M.; Hassani, M.; Mirhosseini, S.A.; Kooshki, H. Using gold nanoparticles in diagnosis and treatment of melanoma cancer. Artif. Cells Nanomed. Biotechnol. 2018, 46, 462–471. [Google Scholar] [CrossRef]
- Silva, C.O.; Rijo, P.; Molpeceres, J.; Ascensão, L.; Roberto, A.; Fernandes, A.S.; Gomes, R.; Coelho, J.M.P.; Gabriel, A.; Vieira, P.; et al. Bioproduction of gold nanoparticles for photothermal therapy. Ther. Deliv. 2016, 7, 287–304. [Google Scholar] [CrossRef]
- Silva, C.O.; Petersen, S.B.; Reis, C.P.; Rijo, P.; Molpeceres, J.; Fernandes, A.S.; Gonçalves, O.; Gomes, A.C.; Correia, I.; Vorum, H.; et al. EGF functionalized polymer-coated gold nanoparticles promote EGF photostability and EGFR internalization for photothermal therapy. PLoS ONE 2016, 11, e0165419. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Dhahad, H.A.; El-Shorbagy, M.A.; Alijani, H.Q.; Zakeri, M.; Heydari, A.; Bahonar, E.; Slouf, M.; Khatami, M.; Naderifar, M.; et al. Green synthesis of bimetallic ZnO-CuO nanoparticles and their cytotoxicity properties. Sci. Rep. 2021, 11, 23479. [Google Scholar] [CrossRef]
- Zhang, X.; Chibli, H.; Mielke, R.; Nadeau, J. Ultrasmall gold-doxorubicin conjugates rapidly kill apoptosis-resistant cancer cells. Bioconjug. Chem. 2011, 22, 235–243. [Google Scholar] [CrossRef]
- Zhang, X.; Shastry, S.; Bradforth, S.E.; Nadeau, J.L. Nuclear uptake of ultrasmall gold-doxorubicin conjugates imaged by fluorescence lifetime imaging microscopy (FLIM) and electron microscopy. Nanoscale 2014, 7, 240–251. [Google Scholar] [CrossRef]
- Choi, Y.H.; Han, H.K. Nanomedicines: Current status and future perspectives in aspect of drug delivery and pharmacokinetics. J. Pharm. Investig. 2018, 48, 43–60. [Google Scholar] [CrossRef]
- Lopes, R.M.; Gaspar, M.M.; Pereira, J.; Eleutério, C.V.; Carvalheiro, M.; Almeida, A.J.; Cruz, M.E.M. Liposomes versus Lipid Nanoparticles: Comparative Study of Lipid-Based Systems as Oryzalin Carriers for the Treatment of Leishmaniasis. J. Biomed. Nanotechnol. 2014, 10, 3647–3657. [Google Scholar] [CrossRef]
- Mukherjee, P.; Khademhosseini, A.; Seaberg, J.; Montazerian, H.; Hossen, M.N.; Bhattacharya, R. Hybrid Nanosystems for Biomedical Applications. ACS Nano 2021, 15, 2099–2142. [Google Scholar]
- Ferreira Soares, D.C.; Domingues, S.C.; Viana, D.B.; Tebaldi, M.L. Polymer-hybrid nanoparticles: Current advances in biomedical applications. Biomed. Pharmacother. 2020, 131, 110695. [Google Scholar] [CrossRef] [PubMed]
- Park, W.; Shin, H.; Choi, B.; Rhim, W.K.; Na, K.; Keun Han, D. Advanced hybrid nanomaterials for biomedical applications. Prog. Mater. Sci. 2020, 114, 100686. [Google Scholar] [CrossRef]
- Vargas-Bernal, R. Introductory Chapter: Hybrid Nanomaterials. In Hybrid Nanomaterials—Flexible Electronics Materials; Vargas-Bernal, R., He, P., Zhang, S., Eds.; IntechOpen: London, UK, 2020; ISBN 978-1-78985-651-4. [Google Scholar]
- Ananikov, V.P. Organic-Inorganic Hybrid Nanomaterials. Nanomaterials 2019, 9, 1197. [Google Scholar] [CrossRef]
- Cruz, N.; Pinho, J.O.; Soveral, G.; Ascensão, L.; Matela, N.; Reis, C.; Gaspar, M.M. A Novel Hybrid Nanosystem Integrating Cytotoxic and Magnetic Properties as a Tool to Potentiate Melanoma Therapy. Nanomaterials 2020, 10, 693. [Google Scholar] [CrossRef]
- Singh, S.P.; Alvi, S.B.; Pemmaraju, D.B.; Singh, A.D.; Manda, S.V.; Srivastava, R.; Rengan, A.K. NIR triggered liposome gold nanoparticles entrapping curcumin as in situ adjuvant for photothermal treatment of skin cancer. Int. J. Biol. Macromol. 2018, 110, 375–382. [Google Scholar] [CrossRef]
- Labala, S.; Mandapalli, P.K.; Kurumaddali, A.; Venuganti, V.V.K. Layer-by-layer polymer coated gold nanoparticles for topical delivery of imatinib mesylate to treat melanoma. Mol. Pharm. 2015, 12, 878–888. [Google Scholar] [CrossRef]
- Kim, D.; Amatya, R.; Hwang, S.; Lee, S.; Min, K.A.; Shin, M.C. BSA-Silver Nanoparticles: A Potential Multimodal Therapeutics for Conventional and Photothermal Treatment of Skin Cancer. Pharmaceutics 2021, 13, 575. [Google Scholar] [CrossRef]
- Lee, E.H.; Lim, S.J.; Lee, M.K. Chitosan-coated liposomes to stabilize and enhance transdermal delivery of indocyanine green for photodynamic therapy of melanoma. Carbohydr. Polym. 2019, 224, 115143. [Google Scholar] [CrossRef]
- Lopes, J.; Coelho, J.M.P.; Vieira, P.M.C.; Viana, A.S.; Gaspar, M.M.; Reis, C. Preliminary assays towards melanoma cells using phototherapy with gold-based nanomaterials. Nanomaterials 2020, 10, 1536. [Google Scholar] [CrossRef]
- Lopes, J.; Ferreira-Gonçalves, T.; Figueiredo, I.V.; Rodrigues, C.M.P.; Ferreira, H.; Ferreira, D.; Viana, A.S.; Faísca, P.; Gaspar, M.M.; Coelho, J.M.P.; et al. Proof-of-Concept Study of Multifunctional Hybrid Nanoparticle System Combined with NIR Laser Irradiation for the Treatment of Melanoma. Biomolecules 2021, 11, 511. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, L.; Li, Z.; Xie, X.; Gao, X.; Xu, X. Inducing Controlled Release and Increased Tumor-Targeted Delivery of Chlorambucil via Albumin/Liposome Hybrid Nanoparticles. AAPS PharmSciTech 2017, 18, 2977–2986. [Google Scholar] [CrossRef]
- Mukherjee, S.; Kotcherlakota, R.; Haque, S.; Bhattacharya, D.; Kumar, J.M.; Chakravarty, S.; Patra, C.R. Improved delivery of doxorubicin using rationally designed PEGylated platinum nanoparticles for the treatment of melanoma. Mater. Sci. Eng. 2020, 108, 110375. [Google Scholar] [CrossRef]
- Shen, H.; Shi, S.; Zhang, Z.; Gong, T.; Sun, X. Coating Solid Lipid Nanoparticles with Hyaluronic Acid Enhances Antitumor Activity against Melanoma Stem-like Cells. Theranostics 2015, 5, 755. [Google Scholar] [CrossRef]
- Shi, S.; Zhou, M.; Li, X.; Hu, M.; Li, C.; Li, M.; Sheng, F.; Li, Z.; Wu, G.; Luo, M.; et al. Synergistic active targeting of dually integrin αvβ3/CD44-targeted nanoparticles to B16F10 tumors located at different sites of mouse bodies. J. Control. Release 2016, 235, 1–13. [Google Scholar] [CrossRef]
- Matias, M.; Pinho, J.O.; Penetra, M.J.; Campos, G.; Reis, C.P.; Gaspar, M.M. The Challenging Melanoma Landscape: From Early Drug Discovery to Clinical Approval. Cells 2021, 10, 3088. [Google Scholar] [CrossRef]
- Cockburn, I.; Long, G. The importance of patents to innovation: Updated cross-industry comparisons with biopharmaceuticals. Expert Opin. Ther. Patents 2015, 25, 739–742. [Google Scholar] [CrossRef]
- Đorđević, S.; Gonzalez, M.M.; Conejos-Sánchez, I.; Carreira, B.; Pozzi, S.; Acúrcio, R.C.; Satchi-Fainaro, R.; Florindo, H.F.; Vicent, M.J. Current hurdles to the translation of nanomedicines from bench to the clinic. Drug Deliv. Transl. Res. 2021, 12, 500–525. [Google Scholar] [CrossRef]
- Zhang, C.; Yan, L.; Wang, X.; Zhu, S.; Chen, C.; Gu, Z.; Zhao, Y. Progress, challenges, and future of nanomedicine. Nano Today 2020, 35, 101008. [Google Scholar] [CrossRef]
- D’Mello, S.R.; Cruz, C.N.; Chen, M.L.; Kapoor, M.; Lee, S.L.; Tyner, K.M. The evolving landscape of drug products containing nanomaterials in the United States. Nat. Nanotechnol. 2017, 12, 523–529. [Google Scholar] [CrossRef]
- Halamoda-Kenzaoui, B.; Baconnier, S.; Bastogne, T.; Bazile, D.; Boisseau, P.; Borchard, G.; Borgos, S.E.; Calzolai, L.; Cederbrant, K.; Di Felice, G.; et al. Bridging communities in the field of nanomedicine. Regul. Toxicol. Pharmacol. 2019, 106, 187–196. [Google Scholar] [CrossRef]
- Sarwal, A.; Singh, G.; Singh, K.; Garg, S. Recent Interventions for Nanotechnology Based Drug Products: Insights into the Regulatory Aspects. Curr. Pharm. Des. 2018, 24, 5219–5228. [Google Scholar] [CrossRef]
- Foulkes, R.; Man, E.; Thind, J.; Yeung, S.; Joy, A.; Hoskins, C. The regulation of nanomaterials and nanomedicines for clinical application: Current and future perspectives. Biomater. Sci. 2020, 8, 4653–4664. [Google Scholar] [CrossRef]
- European Comission. Commission Reccomendation of 18 October 2011 on the definition of nanomaterial. Off. J. Eur. Union 2011, L275, 38–40. [Google Scholar]
- European Comission. Regulation (EC) No 1907/2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH). Off. J. Eur. Union 2006, L396, 1–849. [Google Scholar]
- Food and Drud Administration (FDA). Drug Products, Including Biological Products, That Contain Nanomaterials—Guidance for Industry; FDA: Silver Spring, MD, USA, 2017.
Nanosystem | Inventor(s) Name(s) | Grant Application Date | Patent Number |
---|---|---|---|
Drug loaded Fe(III)-DOPA NPs | Hyung Joon Cha, Bum Jin Kim and Ho gyun Cheong | June 2017 | US9675629B2 |
Drug loaded PEG-PCL NPs | Adam W. G. Alani | July 2018 | US10016422B2 |
Silicon dioxide NPs functionalized with an antigen | Markus Weigandt, Andrea Hanefeld, Armin Kuebelbeck and Gregor Larbig | October 2018 | US10111952B2 |
Iron garnet NPs containing activatable nuclides | Anthony J. Di Pasqua, Kenneth J. Balkus, Imalka S. Munaweera and Yi Shi | February 2019 | US10195297B2 |
PVP coated silver prussian blue NPs | Sudip Mukherjee and Chitta Ranjan Patra | March 2019 | US10231996B2 |
Oil or water-in-oil emulsion combining antigens loaded liposomes | Pirouz M. Daftarian, Marc Mansour, Bill Pohajdak, Robert G. Brown and Wijbe M. Kast | April 2019 | US10272042B2 |
T cell ligands and/or antigens linked to carbon nanotubes | Tarek M. Fahmy, Lisa D. Pfefferle, Gary L. Haller and Tarek R. Fadel | November 2019 | US10485856B2 |
Complexes of albumin NPs and antibodies | Svetomir N. Markovic and Wendy K. Nevala | September 2020 | US10765741B2 |
Drug loaded lipid-based NPs decorated with CD47 | Raghu Kalluri and Sónia Melo | March 2021 | US10959952B2 |
Sensitizer loaded PGA-based polymer/co-polymer/derivate NPs (PTT and SDT) | Nikolitsa Nomikou | June 2021 | US11040101B2 |
Irinotecan-mesoporous silica NPs coated with a lipid bilayer | Andre E. Nel, Huan Meng and Xiangsheng Liu | August 2021 | US11096900B2 |
Photosensitizer or drug loaded lipid layer coated NPs (PDT, but not only) | Wenbin Lin, Xiaopin Duan, Christina Chan and Wenbo Han | February 2022 | US11246877B2 |
NIR absorbing dye based composite NPs (PTT) | Sehoon Kim, Youngsun Kim, Keunsoo Jeong and Gayoung Kim | April 2022 | US11291726B2 |
Clinical Trial Phase | Clinical Trial Description | Melanoma Stage | Sponsor | Starting Date | Study Completion/Estimated Date | Trial ID |
---|---|---|---|---|---|---|
Completed clinical trials | ||||||
1 | Pharmacokinetic study of a liposomal vincristine sulfate formulation. | III/IV | Acrotech Biopharma LLC | February 2005 | November 2007 | NCT00145041 |
Safety and efficacy of a liposomal vaccine targeting dendritic cells (Lipovaxin-MM). | IV | Lipotek Pty Ltd. | September 2009 | March 2012 | NCT01052142 | |
Safety, pharmacokinetic and pharmacodynamic study of BIND-014 (PSMA-targeted PLA/PEG docetaxel NPs). | Advanced or metastatic | BIND Therapeutics | January 2011 | February 2016 | NCT01300533 | |
2 | Safety and efficacy of ABI-007 (nab-paclitaxel). | Unresectable locally recurrent or metastatic | Jonsson Comprehensive Cancer Center | February 2004 | January 2010 | NCT00081042 |
Safety and efficacy of co-administration of ABI-007 (nab-paclitaxel) and carboplatin. | IV | Alliance for Clinical Trials in Oncology | October 2006 | March 2010 | NCT00404235 | |
Safety and efficacy analysis of the combination of nab-paclitaxel and bevacizumab versus ipilimumab alone. | IV | Academic and Community Cancer Research United | October 2013 | October 2019 | NCT02158520 | |
3 | Safety and efficacy of ABI-007 (nab-paclitaxel) versus dacarbazine. | IV | Celgene | April 2009 | February 2014 | NCT00864253 |
Ongoing clinical trials | ||||||
1 | Safety and efficacy of nab-paclitaxel and bevacizumab. | IV | Mayo Clinic | March 2014 | June 2025 | NCT02020707 |
Safety and tolerability of a cancer vaccine composed by naked RNA-drug products in a liposomal formulation (Lipo-MERIT). | IIIB/C/IV | BioNTech SE | March 2015 | May 2023 | NCT02410733 | |
Safety and tolerability of escalating doses of OX40L, IL-23 and IL-36γ encoding human mRNAs encapsulated in a lipid nanoparticle alone or combining with durvalumab. | Advanced or metastatic | ModernaTX, Inc. | November 2018 | January 2023 | NCT03739931 | |
2 | Safety and efficacy of the combination of nab-paclitaxel, carboplatin and endostatin after failure of PD-1 therapy. | Advanced | Peking University Cancer Hospital & Institute | March 2019 | September 2022 | NCT03917069 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopes, J.; Rodrigues, C.M.P.; Gaspar, M.M.; Reis, C.P. How to Treat Melanoma? The Current Status of Innovative Nanotechnological Strategies and the Role of Minimally Invasive Approaches like PTT and PDT. Pharmaceutics 2022, 14, 1817. https://doi.org/10.3390/pharmaceutics14091817
Lopes J, Rodrigues CMP, Gaspar MM, Reis CP. How to Treat Melanoma? The Current Status of Innovative Nanotechnological Strategies and the Role of Minimally Invasive Approaches like PTT and PDT. Pharmaceutics. 2022; 14(9):1817. https://doi.org/10.3390/pharmaceutics14091817
Chicago/Turabian StyleLopes, Joana, Cecília M. P. Rodrigues, Maria Manuela Gaspar, and Catarina Pinto Reis. 2022. "How to Treat Melanoma? The Current Status of Innovative Nanotechnological Strategies and the Role of Minimally Invasive Approaches like PTT and PDT" Pharmaceutics 14, no. 9: 1817. https://doi.org/10.3390/pharmaceutics14091817
APA StyleLopes, J., Rodrigues, C. M. P., Gaspar, M. M., & Reis, C. P. (2022). How to Treat Melanoma? The Current Status of Innovative Nanotechnological Strategies and the Role of Minimally Invasive Approaches like PTT and PDT. Pharmaceutics, 14(9), 1817. https://doi.org/10.3390/pharmaceutics14091817