Combining Essential Oils with Each Other and with Clotrimazole Prevents the Formation of Candida Biofilms and Eradicates Mature Biofilms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Essential Oils and Candida Species
2.2. Determination of the Minimum Inhibitory Concentration (MIC) and Minimum Fungicidal Concentration (MFC)
2.3. Evaluation of the Activity of EO and Clotrimazole against Candida spp. Biofilms
2.3.1. Determination of the Minimum Biofilm-Inhibiting Concentration (MBIC)
2.3.2. Determination of the Minimum Biofilm-Eradication Concentration (MBEC)
2.4. Evaluation of the Synergistic Potential of EO–EO and EO–Clotrimazole Associations against Planktonic Growth and on Biofilms
2.5. Toxicity Assay for Caenorhabditis elegans
3. Results
3.1. Determination of the MIC and MFC of Essential and Antifungal Oils against Planktonic Growth
3.2. Assessment of the Development of Candida spp. Biofilms
3.3. Evaluation of Synergism of EO and Clotrimazole
3.4. In Vivo Assay in Caenorhabditis elegans
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pfaller, M.A.; Diekema, D.J.; Turnidge, J.D.; Castanheira, M.; Jones, R.N. Twenty Years of the SENTRY Antifungal Surveillance Program: Results for Candida Species from 1997–2016. In Open Forum Infectious Diseases; Oxford University Press: Oxford, UK, 2019. [Google Scholar]
- Silva-Rocha, W.P.; Azevedo, M.F.; Chaves, G.M. Epidemiology and fungal species distribution of superficial mycoses in Northeast Brazil. J. Mycol. Méd. 2017, 27, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, B.; Ferreira, C.; Alves, C.T.; Henriques, M.; Azeredo, J.; Silva, S. Vulvovaginal candidiasis: Epidemiology, microbiology and risk factors. Crit. Rev. Microbiol. 2016, 42, 905–927. [Google Scholar] [CrossRef]
- Willems, H.M.E.; Ahmed, S.S.; Liu, J.; Xu, Z.; Peters, B.M. Vulvovaginal Candidiasis: A Current Understanding and Burning Questions. J. Fungi 2020, 6, 27. [Google Scholar] [CrossRef] [PubMed]
- Denning, D.W.; Kneale, M.; Sobel, J.D.; Rautemaa-Richardson, R. Global burden of recurrent vulvovaginal candidiasis: A systematic review. Lancet Infect. Dis. 2018, 18, e339–e347. [Google Scholar] [CrossRef]
- Soriano-Ruiz, J.L.; Calpena-Capmany, A.C.; Canadas-Enrich, C.; Febrer, N.B.; Suner-Carbo, J.; Souto, E.B.; Clares-Naveros, B. Biopharmaceutical profile of a clotrimazole nanoemulsion: Evaluation on skin and mucosae as anticandidal agent. Int. J. Pharm. 2019, 554, 105–115. [Google Scholar] [CrossRef]
- Taudorf, E.H.; Jemec, G.B.E.; Hay, R.J.; Saunte, D.M.L. Cutaneous candidiasis–an evidence-based review of topical and systemic treatments to inform clinical practice. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 1863–1873. [Google Scholar] [CrossRef]
- Silva, S.; Rodrigues, C.F.; Araújo, D.; Rodrigues, M.; Henriques, M. Candida Species Biofilms’ Antifungal Resistance. J. Fungi 2017, 3, 8. [Google Scholar] [CrossRef]
- Santos, G.C.D.O.; Vasconcelos, C.C.; Lopes, A.J.O.; dos Cartágenes, M.; Filho, A.K.D.B.; do Nascimento, F.R.F.; Ramos, R.M.; Pires, E.R.R.B.; de Andrade, M.S.; Rocha, F.M.G.; et al. Candida Infections and Therapeutic Strategies: Mechanisms of Action for Traditional and Alternative Agents. Front. Microbiol. 2018, 9W, 1351. [Google Scholar] [CrossRef]
- Sardi, J.C.O.; Scorzoni, L.; Bernardi, T.; Fusco-Almeida, A.M.; Giannini, M.M. Candida species: Current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J. Med. Microbiol. 2013, 62, 10–24. [Google Scholar] [CrossRef]
- Scorzoni, L.; de Paula e Silva, A.C.A.; Marcos, C.M.; Assato, P.A.; de Melo, W.C.M.A.; de Oliveira, H.C.; Costa-Orlandi, C.B.; Mendes-Giannini, M.J.S.; Fusco-Almeida, A.M. Antifungal Therapy: New Advances in the Understanding and Treatment of Mycosis. Front. Microbiol. 2017, 8, 36. [Google Scholar] [CrossRef] [Green Version]
- Mutlu-Ingok, A.; Devecioglu, D.; Dikmetas, D.N.; Karbancioglu-Guler, F.; Capanoglu, E. Antibacterial, antifungal, antimycotoxigenic, and antioxidant activities of essential oils: An updated review. Molecules 2020, 25, 4711. [Google Scholar] [CrossRef] [PubMed]
- Cannas, S.; Usai, D.; Tardugno, R.; Benvenuti, S.; Pellati, F.; Zanetti, S.; Molicotti, P. Chemical composition, cytotoxicity, antimicrobial and antifungal activity of several essential oils. Nat. Prod. Res. 2016, 30, 332–339. [Google Scholar] [CrossRef]
- Tariq, S.; Wani, S.; Rasool, W.; Shafi, K.; Bhat, M.A.; Prabhakar, A.; Shalla, A.H.; Rather, M.A. A Comprehensive Review of the Antibacterial, Antifungal and Antiviral Potential of Essential Oils and Their Chemical Constituents Against Drug-Resistant Microbial Pathogens. Microb. Pathog. 2019, 134, 103580. [Google Scholar] [CrossRef] [PubMed]
- Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines 2018, 5, 93. [Google Scholar] [CrossRef] [PubMed]
- El-Baz, A.; Mosbah, R.; Goda, R.; Mansour, B.; Sultana, T.; Dahms, T.; El-Ganiny, A. Back to Nature: Combating Candida albicans Biofilm, Phospholipase and Hemolysin Using Plant Essential Oils. Antibiotics 2021, 10, 81. [Google Scholar] [CrossRef]
- Jafri, H.; Ahmad, I. Thymus vulgaris essential oil and thymol inhibit biofilms and interact sinergistically with antifungal drugs against drug resistant strains of Candida albicans and Candida Tropicalis. J. Mycol. Med. 2020, 30, 100911. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.A.; Antonieti, F.M.P.M.; Röder, D.V.D.B.; Pedroso, R.S. Essential oils of Melaleuca, Citrus, Cupressus, and Litsea for the management of infections caused by Candida Species: A Systematic Review. Pharmaceutics 2021, 13, 1700. [Google Scholar] [CrossRef]
- Elkabti, A.B.; Issi, L.; Rao, R.P. Caenorhabditis elegans as a Model Host to Monitor the Candida Infection Processes. J. Fungi 2018, 4, 123. [Google Scholar] [CrossRef]
- Scorzoni, L.; de Lucas, M.P.; Mesa-Arango, A.C.; Fusco-Almeida, A.M.; Lozano, E.; Cuenca-Estrella, M.; Mendes-Giannini, M.J.; Zaragoza, O. Antifungal efficacy during Candida krusei infection in non-conventional models correlates with the yeast in vitro susceptibility profile. PLoS ONE 2013, 8, e60047. [Google Scholar] [CrossRef]
- Segal, E.; Frenkel, M. Experimental in vivo models of candidiasis. J. Fungi 2018, 4, 21. [Google Scholar] [CrossRef] [Green Version]
- Hernando-Ortiz, A.; Mateo, E.; Perez-Rodriguez, A.; de Groot, P.W.J.; Quindós, G.; Eraso, E. Virulence of Candida auris from different clinical origins in Caenorhabditis elegans and Galleria mellonella Host Models. Virulence 2021, 12, 1063–1075. [Google Scholar] [CrossRef]
- Felix, T.C.; Araújo, L.B.; Brito Röder, D.V.D.; Pedroso, R.S. Evaluation of vulvovaginitis and hygiene habits of women attended in primary health care units of the Family. Int. J. Women’s Health 2020, 12, 49–57. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). M27-S4: Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Third Informational Supplement, 3rd ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012. [Google Scholar]
- Pedroso, R.S.; Balbino, B.L.; Andrade, G.; Dias, M.C.P.S.; Alvarenga, T.A.; Pedroso, R.C.N.; Pires, R.H. In Vitro and In Vivo Anti-Candida spp. Activity of plant-derived products. Plants 2019, 11, 494. [Google Scholar] [CrossRef]
- Nikolić, M.M.; Jovanović, K.K.; Marković, T.L.; Marković, D.L.; Gligorijević, N.N.; Radulović, S.S.; Kostić, M.; Glamočlija, J.M.; Soković, M.D. Antimicrobial synergism and cytotoxic properties of Citrus limon L.; Piper nigrum L. and Melaleuca alternifolia (Maiden and Betche) Cheel essential oils. J. Pharm. Pharmacol. 2017, 69, 1606–1614. [Google Scholar] [CrossRef]
- Siddiqui, Z.N.; Farooq, F.; Musthafa, T.N.M.; Ahmad, A.; Khan, A.U. Synthesis, characterization and antimicrobial evaluation of novel halopyrazole derivatives. J. Saudi Chem. Soc. 2013, 17, 237–243. [Google Scholar] [CrossRef]
- Pierce, C.G.; Uppuluri, P.; Tristan, A.R.; Wormley, F.L., Jr.; Mowat, E.; Ramage, G.; Lopez-Ribot, J.L. A simple and reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nat. Prot. 2008, 3, 1494–1500. [Google Scholar] [CrossRef]
- Cota, B.B.; Oliveira, D.B.C.; Borges, T.C.; Catto, A.C.; Serafim, C.V.; Rodrigues, A.R.A.; Kohlhoff, M.; Zani, C.L.; Andrade, A.A. Antifungal activity of extracts and purified saponins from the rhizomes of Chamaecostus cuspidatus against Candida and Trichophyton species. J. Appl. Microbiol. 2020, 130, 61–75. [Google Scholar] [CrossRef]
- American Society for Microbiology. Synergism testing: Broth microdilution checkerboard and broth macrodilution methods. In Clinical Microbiology Procedures Handbook; Isenberg, H.D., Ed.; ASM Press: Washington, DC, USA, 1992; pp. 1–28. [Google Scholar]
- Odds, F.C. Synergy, antagonism, and what the chequerboard puts between them. J. Antimicrob. Chemother. 2003, 52, 1. [Google Scholar] [CrossRef]
- Tampakakis, E.; Okoli, I.; Mylonakis, E.A. C. elegans-based, whole animal, in vivo screen for the identification of antifungal compounds. Nat. Protoc. 2008, 3, 1925–1931. [Google Scholar] [CrossRef]
- Lu, L.; Shu, C.; Chen, L.; Yang, Y.; Ma, S.; Zhu, K.; Shi, B. Insecticidal activity and mechanism of cinnamaldehyde in C. elegans. Fitoterapia 2020, 146, 104687. [Google Scholar] [CrossRef]
- Medina-Alarcón, K.P.; Singulani, J.L.; Voltan, A.R.; Sardi, J.C.; Petrônio, M.S.; Santos, M.B.; Polaquini, C.R.; Regasini, L.O.; Bolzani, V.S.; da Silva, D.H.; et al. Alkyl Protocatechuate loaded nanostructured lipid systems as a treatment strategy for Paracoccidioides brasiliensis and Paracoccidioides litizii in vitro. Front. Microbiol. 2017, 8, 1048. [Google Scholar] [CrossRef]
- Luo, M.; Jiang, L.K.; Zou, G.L. Acute and genetic toxicity of essential oil extracted from Litsea cubeba (Lour.) Pers. J. Food Prot. 2005, 68, 581–588. [Google Scholar] [CrossRef]
- Hammer, K.A.; Carson, C.F.; Riley, T.V. Antifungal effects of Melaleuca alternifolia (tea tree) oil and its components on Candida albicans, Candida glabrata and Saccharomyces cerevisiae. J. Antimicrob. Chemother. 2004, 12, 1081–1085. [Google Scholar] [CrossRef]
- Park, I.K.; Kim, J.; Lee, S.G.; Shin, S.C. Nematicidal activity of plant essential oils and components from ajowan (Trachyspermum ammi), allspice (Pimenta dioica) and litsea (Litsea cubeba) essential oils against pine wood nematode (Bursaphelenchus xylophius). J. Nematol. 2007, 39, 275–279. [Google Scholar]
- Fayed, S.A. Chemical Composition, Antioxidant, Anticancer Properties and Toxicity Evaluation of Leaf Essential Oil of Cupressus sempervirens. Not. Bot. Horti Agrobot. Cluj-Napoca 2015, 43, 320–326. [Google Scholar] [CrossRef]
- Almadiy, A.A.; Nenaah, G.E. Bioactivity and safety evaluations of Cupressus sempervirens essential oil, its nanoemulsion and main terpenes against Culex quinquefasciatus Say. Environ. Sci. Pollut. Res. 2022, 29, 13417–13430. [Google Scholar] [CrossRef]
- Swamy, M.K.; Akhtar, M.S.; Sinniah, U.R. Antimicrobial properties of plant essential oils against human pathogens and their mode of action: An updated review. Evid.-Based Complement. Altern. Med. 2016, 2016, 3012462. [Google Scholar] [CrossRef]
- Mahizan, N.A.; Yang, S.-K.; Moo, C.-L.; Song, A.A.-L.; Chong, C.-M.; Chong, C.-W.; Abushelaibi, A.; Lim, S.-H.E.; Lai, K.-S. Terpene Derivatives as a Potential Agent against Antimicrobial Resistance (AMR) Pathogens. Molecules 2019, 24, 2631. [Google Scholar] [CrossRef]
- Algiannis, N.; Kalpotzakis, K.; Mitaku, S.; Chinou, L.B. Composition and antimicrobial of essential oils two Origanum species. J. Agric. Food Chem. 2001, 49, 4168–4170. [Google Scholar] [CrossRef]
- Holetz, F.B.; Pessini, G.L.; Sanches, N.R.; Cortez, D.A.; Nakamura, C.V.; Filho, B.P. Screening of some plants used in the Brazilian folk medicine for the treatment of infectious diseases. Mem. Inst. Oswaldo Cruz 2002, 97, 1027–1031. [Google Scholar] [CrossRef]
- Jamiu, A.T.; Albertyn, J.; Sebolai, O.M.; Pohl, C.H. Update on Candida krusei, a potential multidrug-resistant pathogen. Med. Mycol. 2020, 59, 14–30. [Google Scholar] [CrossRef]
- Bacelo, K.L.; Costa, K.R.C.; Ferreira, J.C.; Candido, R.C. Biotype stability of Candida albicans isolates after culture storage determined by randomly amplified polymorphic DNA and phenotypical methods. Mycoses 2010, 53, 468–474. [Google Scholar] [CrossRef]
- Mukherjee, P.K.; Chandra, J.; Kuhn, D.M.; Ghannoum, M.A. Mechanism of fluconazole resistance in Candida albicans biofilms: Phase-specific role of efflux pumps and membrane sterols. Infect. Immun. 2003, 71, 4333–4340. [Google Scholar] [CrossRef]
- Carbone, C.; Teixeira, M.D.C.; Sousa, M.D.C.; Martins-Gomes, C.; Silva, A.M.; Souto, E.M.B.; Musumeci, T. Clotrimazole-Loaded Mediterranean Essential Oils NLC: A Synergic Treatment of Candida Skin Infections. Pharmaceutics 2019, 11, 231. [Google Scholar] [CrossRef] [PubMed]
- Palmeira-de-Oliveira, A.; Gaspar, C.; Palmeira-de-Oliveira, R.; Silva-Dias, A.; Salgueiro, L.; Cavaleiro, C.; Pina-Vaz, C.; Martinez-de-Oliveira, J.; Queiroz, J.A.; Rodrigues, A.G. The anti-Candida activity of Thymbra capitata essential oil: Effect upon pre-formed biofilm. J. Ethnopharmacol. 2012, 140, 379–383. [Google Scholar] [CrossRef]
- Ahmad, A.; Khan, A.; Manzoor, N. Reversal of efflux mediated antifungal resistance underlies synergistic activity of two monoterpenes with fluconazole. Eur. J. Pharm. Sci. 2013, 48, 80–86. [Google Scholar] [CrossRef]
- Abdullahi, T.J.; Jacobus, A.; Olihile, S.; Onele, G.; Carolina, H.P. Inhibitory effect of polyunsaturated fatty acids alone or in combination with fluconazole on Candida krusei biofilms in vitro and in Caenorhabditis elegans. Med. Myc. 2021, 59, 1225–1237. [Google Scholar]
- Stringaro, A.; Vavala, E.; Colone, M.; Pepi, F.; Mignogna, G.; Garzoli, S.; Cecchetti, S.; Ragno, R.; Angiolella, L. Effects of Mentha suaveolens essential oil alone or in combination with other drugs in Candida albicans. Evid. Based Complement. Altern. Med. 2014, 2014, 12590. [Google Scholar] [CrossRef]
- Pires, R.H.; Montanari, L.B.; Martins, C.H.; Zaia, J.E.; Almeida, A.M.; Matsumoto, M.T.; Mendes-Giannini, M.J. Anticandidal efficacy of cinnamon oil against planktonic and biofilm cultures of Candida parapsilosis and Candida orthopsilosis. Mycopathologia 2011, 172, 453–464. [Google Scholar] [CrossRef]
- Powers, C.N.; Osier, J.L.; McFeeters, R.L.; Brazell, C.B.; Olsen, E.L.; Moriarity, D.M.; Satyal, P.; Setzer, W.N. Antifungal and cytotoxic activities of sixty commercially-available essential oils. Molecules 2018, 23, 1549. [Google Scholar] [CrossRef] [Green Version]
Essential Oil | Part of the Plant | Extraction Method | Main Components |
---|---|---|---|
C. limon | Fruit | Cold pressing | Limonene (65.6%), β-pinene (15.06%), γ-terpinene (7.93%), α-pinene (2.34%), sabinene (1.76%) and myrcene (1.55%) |
C. sempervirens | Leaf | NI | α-Pinene (52.4%), δ-3-carene (22%), limonene (3.5%), terpinolene (3.4%), myrcene (2.4%), terpenyl acetate (1.7%), cedrol (1.4%), β-pinene (1.2%) and terpinen-4-ol (1%) |
L. cubeba | Fruit | Steam distillation | Geranyl acetate (42%), neral (30%) and limonene (13%) |
M. alternifolia | Leaf | Steam distillation | Terpinen-4-ol (41%), γ-terpinene (20.5%), α-terpinene (9.63%), α-terpinolene (3.37%), α-terpineol (2.78%), α-pinene (2.59%), ρ-cymene (2.39%), aromadendrene (2%), vidiflorene (1.81%), δ-cadinene (1.54%) and 1,8-cineol (1.50%) |
Candida spp. Isolates | C. limon | C. sempervirens | L. cubeba | M. alternifolia | Clotrimazole | |||||
---|---|---|---|---|---|---|---|---|---|---|
MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC | |
C. albicans ATCC 90028 | 2000 | 1000 | 2000 | 4000 | 1000 | 1000 | 2000 | 4000 | 0.25 | 0.25 |
C. albicans SV 01 | 4000 | >4000 | 4000 | >4000 | 2000 | 4000 | 4000 | >4000 | 0.125 | 0.25 |
C. glabrata ATCC 2001 | 4000 | 4000 | 2000 | 4000 | 2000 | 4000 | 4000 | 4000 | 0.015 | 0.030 |
C. glabrata SV 02 | 4000 | >4000 | 1000 | 4000 | 2000 | 4000 | 4000 | >4000 | 0.25 | 0.5 |
C. krusei ATCC 6258 | 4000 | >4000 | 2000 | 4000 | 1000 | 2000 | 4000 | 4000 | 0.5 | 1 |
C. krusei SV 03 | 1000 | 4000 | 500 | 1000 | 500 | 1000 | 2000 | 4000 | 0.5 | 1 |
C. parapsilosis ATCC 22019 | 1000 | 4000 | 4000 | 4000 | 1000 | 4000 | 4000 | 4000 | 0.25 | 0.5 |
C. parapsilosis SV 04 | 4000 | >4000 | >4000 | >4000 | 2000 | 4000 | 4000 | >4000 | 0.125 | 0.25 |
Species | C. limon | C. sempervirens | L. cubeba | M. alternifolia | Clotrimazole | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MIC | MBIC | MBEC | MIC | MBIC | MBEC | MIC | MBIC | MBEC | MIC | MBIC | MBEC | MIC | MBIC | MBEC | |
C. albicans ATCC 90028 | 2000 | 4000 | 4000 | 2000 | 4000 | >4000 | 1000 | 1000 | 1000 | 2000 | 2000 | 4000 | 0.25 | 1 | 1 |
C. albicans SV 01 | 4000 | >4000 | >4000 | 4000 | 4000 | 4000 | 2000 | 2000 | 4000 | 4000 | 4000 | 4000 | 0.125 | 0.5 | 1 |
C. glabrata ATCC 2001 | 4000 | >4000 | >4000 | 2000 | >4000 | 4000 | 2000 | 2000 | >4000 | 4000 | 4000 | >4000 | 0.015 | 0.125 | 0.25 |
C. glabrata SV 02 | 4000 | >4000 | >4000 | 1000 | >4000 | >4000 | 2000 | >4000 | >4000 | 4000 | 4000 | >4000 | 0.25 | 0.5 | 1 |
C. krusei ATCC 6258 | 4000 | >4000 | >4000 | 2000 | 2000 | 2000 | 1000 | >4000 | >4000 | 2000 | 4000 | >4000 | 0.5 | 1 | 2 |
C. krusei SV 03 | 1000 | 2000 | 4000 | 500 | 1000 | >4000 | 500 | 4000 | >4000 | 1000 | 1000 | >4000 | 0.5 | 1 | 1 |
C. parapsilosis ATCC 22019 | 1000 | >4000 | >4000 | 4000 | 4000 | >4000 | 1000 | 4000 | >4000 | 4000 | 4000 | >4000 | 0.25 | 2 | 4 |
C. parapsilosis SV 04 | 4000 | >4000 | >4000 | >4000 | 4000 | >4000 | 2000 | >4000 | >4000 | 4000 | >4000 | >4000 | 0.125 | 0.25 | 0.5 |
Species | Combination | MIC (µg/mL) | Biofilm (µg/mL) | ||||
---|---|---|---|---|---|---|---|
Isolated MIC * | Combined MIC ** | Isolated MBIC * | Combined MBIC ** | Isolated MBEC * | Combined MBEC ** | ||
C. albicans ATCC 90028 | M. alternifolia | 2000 | 250 | 2000 | 62.5 | 4000 | 62.5 |
Clotrimazole | 0.25 | 0.063 | 1 | 0.25 | 1 | 0.25 | |
C. albicans SV 01 | L. cubeba | 2000 | 250 | 2000 | 125 | 4000 | 250 |
M. alternifolia | 4000 | 1000 | 4000 | 2000 | 4000 | 1000 | |
C. glabrata ATCC 2001 | L. cubeba | 2000 | 500 | 2000 | 2000 | >4000 | 2000 |
C. limon | 4000 | 1000 | >4000 | 250 | >4000 | 250 | |
C. glabrata SV 02 | L. cubeba | 2000 | 250 | >4000 | 1000 | >4000 | >1000 |
M. alternifolia | 4000 | 1000 | 4000 | 250 | >4000 | >250 | |
C. limon | 4000 | 1000 | >4000 | 4000 | >4000 | 4000 | |
M. alternifolia | 4000 | 1000 | 4000 | 250 | >4000 | 250 | |
C. krusei ATCC 6258 | C. sempervirens | 2000 | 1000 | 2000 | 4000 | 2000 | >4000 |
C. limon | 4000 | 250 | >4000 | 62.5 | >4000 | >250 | |
C. limon | 1000 | 1000 | >4000 | 4000 | >4000 | 2000 | |
M. alternifolia | 2000 | 1000 | 4000 | 250 | >4000 | 500 | |
C. parapsilosis SV 04 | C. sempervirens | >4000 | 250 | 4000 | 500 | >4000 | 125 |
Clotrimazole | 0.125 | 0.032 | 0.25 | 0.015 | 0.5 | 0.063 |
Concentration (µg/mL) | C. limon | C. sempervirens | L. cubeba | M. alternifolia |
---|---|---|---|---|
250 | 95.83 | 97.83 | 97.83 | 97.82 |
500 | 85.96 | 95.35 | 87.76 | 94.00 |
1000 | 64.58 | 93.48 | 67.50 | 85.11 |
2000 | 58.82 | 92.86 | 51.11 * | 46.15 * |
4000 | 37.25 * | 88.64 | 40.43 | 0 |
Compound “A” | Concentration (µg/mL) | Compound “B” | Concentration (µg/mL) | Survival (% Average) |
---|---|---|---|---|
M. alternifolia | 250 | Clotrimazole | 0.063 | 88.89 |
L. cubeba | 250 | M. alternifolia | 1000 | 93.3 |
C. sempervirens | 250 | Clotrimazole | 0.032 | 100.00 |
C. sempervirens | 1000 | C. limon | 250 | 90.00 |
C. limon | 1000 | M. alternifolia | 1000 | 18.52 |
L. cubeba | 500 | C. limon | 1000 | 13.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, R.A.d.; Silva, N.B.S.; Martins, C.H.G.; Pires, R.H.; Röder, D.V.D.d.B.; Pedroso, R.d.S. Combining Essential Oils with Each Other and with Clotrimazole Prevents the Formation of Candida Biofilms and Eradicates Mature Biofilms. Pharmaceutics 2022, 14, 1872. https://doi.org/10.3390/pharmaceutics14091872
Silva RAd, Silva NBS, Martins CHG, Pires RH, Röder DVDdB, Pedroso RdS. Combining Essential Oils with Each Other and with Clotrimazole Prevents the Formation of Candida Biofilms and Eradicates Mature Biofilms. Pharmaceutics. 2022; 14(9):1872. https://doi.org/10.3390/pharmaceutics14091872
Chicago/Turabian StyleSilva, Rafael Alves da, Nagela Bernadelli Sousa Silva, Carlos Henrique Gomes Martins, Regina Helena Pires, Denise Von Dolinger de Brito Röder, and Reginaldo dos Santos Pedroso. 2022. "Combining Essential Oils with Each Other and with Clotrimazole Prevents the Formation of Candida Biofilms and Eradicates Mature Biofilms" Pharmaceutics 14, no. 9: 1872. https://doi.org/10.3390/pharmaceutics14091872
APA StyleSilva, R. A. d., Silva, N. B. S., Martins, C. H. G., Pires, R. H., Röder, D. V. D. d. B., & Pedroso, R. d. S. (2022). Combining Essential Oils with Each Other and with Clotrimazole Prevents the Formation of Candida Biofilms and Eradicates Mature Biofilms. Pharmaceutics, 14(9), 1872. https://doi.org/10.3390/pharmaceutics14091872