Development of an Add-On Device Using 3D Printing for the Enhancement of Drug Administration Efficiency of Dry Powder Inhalers (Accuhaler)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Method
2.2.1. DPI Device Design
2.2.2. 3D Printing of DPI Add-On Device
2.2.3. Evaluation of DPI Add-On Device
Fan Speed and Airflow Rate
Emitted Dose Uniformity
Method Validation of HPLC Assay
Specificity
Range and Linearity
Accuracy
Precision
2.2.4. Computation Fluid Dynamics
2.2.5. Statistical Analysis
3. Results and Discussion
3.1. DPI Add-On Device Prepared by 3D Printing
3.2. HPLC Assay Method Validation
3.2.1. Specificity
3.2.2. Linearity and Range
3.2.3. Accuracy
3.2.4. Precision
3.3. Fan Speed and Airflow Rate
3.4. Emitted Dose Uniformity
3.5. Air Flow Simulation by Computational Fluid Dynamics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Bjermer, L. The importance of continuity in inhaler device choice for asthma and chronic obstructive pulmonary disease. Respiration 2014, 88, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Lavorini, F.; Magnan, A.; Dubus, J.C.; Voshaar, T.; Corbetta, L.; Broeders, M.; Dekhuijzen, R.; Sanchis, J.; Viejo, J.L.; Barnes, P. Effect of incorrect use of dry powder inhalers on management of patients with asthma and COPD. Respir. Med. 2008, 102, 593–604. [Google Scholar] [CrossRef] [PubMed]
- Capanoglu, M.; Dibek Misirlioglu, E.; Toyran, M.; Civelek, E.; Kocabas, C.N. Evaluation of inhaler technique, adherence to therapy and their effect on disease control among children with asthma using metered dose or dry powder inhalers. J. Asthma 2015, 52, 838–845. [Google Scholar] [CrossRef] [PubMed]
- Crompton, G.K. Dry powder inhalers: Advantages and limitations. J. Aerosol Med. 1991, 4, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Laube, B.L.; Janssens, H.M.; de Jongh, F.H.; Devadason, S.G.; Dhand, R.; Diot, P.; Everard, M.L.; Horvath, I.; Navalesi, P.; Voshaar, T. What the pulmonary specialist should know about the new inhalation therapies. Eur. Res. J. 2011, 37, 1308–1331. [Google Scholar] [CrossRef]
- Haidl, P.; Heindl, S.; Siemon, K.; Bernacka, M.; Cloes, R.M. Inhalation device requirements for patients’ inhalation maneuvers. Respir. Med. 2016, 118, 65–75. [Google Scholar] [CrossRef]
- Al-Showair, R.A.; Tarsin, W.Y.; Assi, K.H.; Pearson, S.B.; Chrystyn, H. Can all patients with COPD use the correct inhalation flow with all inhalers and does training help? Respir. Med. 2007, 101, 2395–2401. [Google Scholar] [CrossRef]
- Coates, M.S.; Fletcher, D.F.; Chan, H.-K.; Raper, J.A. Effect of design on the performance of a dry powder inhaler using computational fluid dynamics. Part 1: Grid structure and mouthpiece length. J. Pharm. Sci. 2004, 93, 2863–2876. [Google Scholar] [CrossRef]
- Byron, P.R.; Hindle, M.; Lange, C.F.; Longest, P.W.; McRobbie, D.; Oldham, M.J.; Olsson, B.; Thiel, C.G.; Wachtel, H.; Finlay, W.H. In vivo–in vitro correlations: Predicting pulmonary drug deposition from pharmaceutical aerosols. J. Aerosol Med. Pulm. Drug Deliv. 2010, 23, S-59–S-69. [Google Scholar] [CrossRef] [PubMed]
- Sriamornsak, P.; Huanbutta, K.; Sangnim, T. Recent advances in 3D printing for floating drug delivery platforms. Sci. Eng. Health Stud. 2022, 16, 22010001. [Google Scholar]
- Huanbutta, K.; Sangnim, T. Design and development of zero-order drug release gastroretentive floating tablets fabricated by 3D printing technology. J. Drug Deliv. Sci. Technol. 2019, 52, 831–837. [Google Scholar] [CrossRef]
- Huanbutta, K.; Sriamornsak, P.; Kittanaphon, T.; Suwanpitak, K.; Klinkesorn, N.; Sangnim, T. Development of a zero-order kinetics drug release floating tablet with anti–flip-up design fabricated by 3D-printing technique. J. Pharm. Investig. 2021, 51, 213–222. [Google Scholar] [CrossRef]
- Morrison, R.J.; Kashlan, K.N.; Flanangan, C.L.; Wright, J.K.; Green, G.E.; Hollister, S.J.; Weatherwax, K.J. Regulatory considerations in the design and manufacturing of implanTable 3D-printed medical devices. Clin. Transl. Sci. 2015, 8, 594–600. [Google Scholar] [CrossRef] [PubMed]
- Pearce, J.; Blair, C.; Laciak, K.; Andrews, R.; Nosrat, A.; Zelenika-Zovko, I. 3-D printing of open source appropriate technologies for self-directed sustainable development. Eur. J. Sustain. Dev. 2010, 3, hal-02120493f. [Google Scholar] [CrossRef]
- Yan, Q.; Dong, H.; Su, J.; Han, J.; Song, B.; Wei, Q.; Shi, Y. A review of 3D printing technology for medical applications. Engineering 2018, 4, 729–742. [Google Scholar]
- Thanawuth, K.; Sutthapitaksakul, L.; Konthong, S.; Suttiruengwong, S.; Huanbutta, K.; Dass, C.R.; Sriamornsak, P. Impact of Drug Loading Method on Drug Release from 3D-Printed Tablets Made from Filaments Fabricated by Hot-Melt Extrusion and Impregnation Processes. Pharmaceutics 2021, 13, 1607. [Google Scholar] [CrossRef]
- Sangnim, T.; Tangpanithanon, A.; Khamtheantong, M.; Charoenwai, J.; Huanbutta, K. Development of Personalized Colonic Drug Delivery Systems Prepared by 3D-Printing Technology. In Key Engineering Materials; Trans Tech Publications Ltd.: Wollerau, Switzerland, 2021; pp. 144–150. [Google Scholar]
- Lin, S.-C.; Tsai, M.-L. An integrated performance analysis for a backward-inclined centrifugal fan. Comput. Fluids 2012, 56, 24–38. [Google Scholar] [CrossRef]
- Pharmacopeia, U. United States Pharmacopeia-The National Formulary (USP 38–NF 33); United Book Press, Inc.: Baltimore, MD, USA, 2014; pp. 195–197. [Google Scholar]
- Szpylka, J.; Thiex, N.; Acevedo, B.; Albizu, A.; Angrish, P.; Austin, S.; Bach Knudsen, K.E.; Barber, C.A.; Berg, D.; Bhandari, S.D. Standard method performance requirements (SMPRs®) 2018.001: Sugars in animal feed, pet food, and human food. J. AOAC Int. 2018, 101, 1280–1282. [Google Scholar] [CrossRef]
- Guideline, I.H.T. Validation of analytical procedures: Text and methodology. Q2 (R1) 2005, 1, 5. [Google Scholar]
- International, A. Official Methods of Analysis, 21st ed.; AOAC International: Rockville, MD, USA, 2019. [Google Scholar]
- Murnane, D.; Martin, G.; Marriott, C. Validation of a reverse-phase high performance liquid chromatographic method for concurrent assay of a weak base (salmeterol xinafoate) and a pharmacologically active steroid (fluticasone propionate). J. Pharm. Biomed. Anal. 2006, 40, 1149–1154. [Google Scholar] [CrossRef]
- Delele, M.A.; De Moor, A.; Sonck, B.; Ramon, H.; Nicolaï, B.; Verboven, P. Modelling and validation of the air flow generated by a cross flow air sprayer as affected by travel speed and fan speed. Biosyst. Eng. 2005, 92, 165–174. [Google Scholar] [CrossRef]
- Tai, W.; Bhome, A.B.; Tang, P.; Chan, H.-K.; Kwok, P.C.L. Indian generic fluticasone/salmeterol dry powder inhalers–An aerodynamic comparison. In Journal of Aerosol Medicine and Pulmonary Drug Delivery; Mary Ann Liebert, Inc.: New Rochelle, NY, USA, 2021; pp. A9–A10. [Google Scholar]
- Labiris, N.R.; Dolovich, M.B. Pulmonary drug delivery. Part II: The role of inhalant delivery devices and drug formulations in therapeutic effectiveness of aerosolized medications. Br. J. Clin. Pharmacol. 2003, 56, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Jithish, K.; Ajay Kumar, P. Analysis of turbulent flow through an orifice meter using experimental and computational fluid dynamics simulation approach—A case study. Int. J. Mech. Eng. Educ. 2015, 43, 233–246. [Google Scholar] [CrossRef]
- Shur, J.; Saluja, B.; Lee, S.; Tibbatts, J.; Price, R. Effect of device design and formulation on the in vitro comparability for multi-unit dose dry powder inhalers. AAPS J. 2015, 17, 1105–1116. [Google Scholar] [CrossRef] [PubMed]
- Kaushal, D.; Sato, K.; Toyota, T.; Funatsu, K.; Tomita, Y. Effect of particle size distribution on pressure drop and concentration profile in pipeline flow of highly concentrated slurry. Int. J. Multiph. Flow 2005, 31, 809–823. [Google Scholar] [CrossRef]
Parameter | Condition |
---|---|
Model material | ABS (acrylonitrile–butadiene–styrene) |
Nozzle temperature | 230–240 °C |
Heated Bed temperature | 90–100 °C |
Printing tpeed | 30–50 mm/s |
Cooling Fan | Off |
Parameters | Condition |
---|---|
Column | Particle size 5 µm, pore size 100 Ǻ 150 × 4.6 mm, C18 (ACE, Reading, UK) |
Mobile phase | Acetonitrile and buffer solution (70:30) |
Buffer solution | 1.0 g potassium dihydrogen phosphate in 1000 mL deionized water adjusted to pH 3 with ortho-phosphoric acid. |
Flow rate | 1 mL/min |
Detector | PDA detector |
Injection volume | 40 µL |
Column temperature | 40 °C |
Run time | 10 min |
Reference Standard | Theoretical Concentration Spiked (µg/mL) | Average Actual Determined Concentration (µg/mL), n = 3 | %Recovery |
---|---|---|---|
Salmeterol xinafoate | 0.1931 | 0.1940 | 100.4648 |
0.3787 | 0.3796 | 100.2216 | |
0.5644 | 0.5646 | 100.0399 | |
0.7500 | 0.7474 | 99.6514 | |
1.1213 | 1.1990 | 106.9298 | |
Fluticasone propionate | 0.6436 | 0.6461 | 100.3947 |
1.2624 | 1.2644 | 100.1613 | |
1.8812 | 1.8750 | 99.6706 | |
2.5000 | 2.4893 | 99.5715 | |
3.7376 | 3.7810 | 101.1605 |
Drugs | AUC (Mean ± SD, n = 6) | %RSD |
---|---|---|
Salmeterol xinafoate | 96875 ± 361.75 | 0.3734 |
Fluticasone propionate | 260963.67 ± 387.81 | 0.1486 |
Inhalation Flow Rate (L/min) | Fan Rotation (rpm) | Pressure Average at Accuhaler Inlet (Pa) | Pressure Average at Blister (Pa) | Pressure Drops (Pa) | Airflow Velocity Average at Blister (m/s) | Number of Iterations |
---|---|---|---|---|---|---|
10 | 0 | 101,324.86 | 101,321.34 | 3.52 | 1.146 | 82 |
15,031 | 101,343.54 | 101,331.29 | 12.25 | 3.638 | 305 | |
20,549.33 | 101,361.86 | 101,341.37 | 20.49 | 4.984 | 279 | |
30 | 0 | 101,323.68 | 101,294.74 | 28.94 | 4.162 | 84 |
15,031 | 101,331.00 | 101,296.95 | 34.05 | 6.387 | 309 | |
20,549.33 | 101,356.66 | 101,310.62 | 46.04 | 7.261 | 288 | |
60 | 0 | 101,319.85 | 101,209.52 | 110.33 | 8.765 | 83 |
15,031 | 101,290.49 | 101,182.56 | 107.93 | 11.504 | 476 | |
20,549.33 | 101,313.14 | 101,195.66 | 117.48 | 12.145 | 391 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suwanpitak, K.; Lim, L.-Y.; Singh, I.; Sriamornsak, P.; Thepsonthi, T.; Huanbutta, K.; Sangnim, T. Development of an Add-On Device Using 3D Printing for the Enhancement of Drug Administration Efficiency of Dry Powder Inhalers (Accuhaler). Pharmaceutics 2022, 14, 1922. https://doi.org/10.3390/pharmaceutics14091922
Suwanpitak K, Lim L-Y, Singh I, Sriamornsak P, Thepsonthi T, Huanbutta K, Sangnim T. Development of an Add-On Device Using 3D Printing for the Enhancement of Drug Administration Efficiency of Dry Powder Inhalers (Accuhaler). Pharmaceutics. 2022; 14(9):1922. https://doi.org/10.3390/pharmaceutics14091922
Chicago/Turabian StyleSuwanpitak, Kittipat, Lee-Yong Lim, Inderbir Singh, Pornsak Sriamornsak, Thanongsak Thepsonthi, Kampanart Huanbutta, and Tanikan Sangnim. 2022. "Development of an Add-On Device Using 3D Printing for the Enhancement of Drug Administration Efficiency of Dry Powder Inhalers (Accuhaler)" Pharmaceutics 14, no. 9: 1922. https://doi.org/10.3390/pharmaceutics14091922
APA StyleSuwanpitak, K., Lim, L. -Y., Singh, I., Sriamornsak, P., Thepsonthi, T., Huanbutta, K., & Sangnim, T. (2022). Development of an Add-On Device Using 3D Printing for the Enhancement of Drug Administration Efficiency of Dry Powder Inhalers (Accuhaler). Pharmaceutics, 14(9), 1922. https://doi.org/10.3390/pharmaceutics14091922