Oxime Therapy for Brain AChE Reactivation and Neuroprotection after Organophosphate Poisoning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Modified Liposomes
2.3. Dynamic and Electrophoretic Light Scattering
2.4. Transmission Electron Microscopy
2.5. Drug Release In Vitro and Quantitative Parameters of Encapsulation
2.6. Hemolytic Activity and Hemagglutination Assay
2.7. Animals
2.8. Histology Analysis of Brain Sections
2.9. Pharmacokinetic Study
2.10. Measurement of Brain AChE Inhibition and Reactivation Level
2.11. Estimation the Level of POX-Induced Neurotoxicity
3. Results
3.1. Preparation and Characteristics of Empty Modified Liposomes
3.2. Preparation, Characteristics of Rhodamine B-Loaded Liposomes: In Vitro Release Study
3.3. BBB Penetration Capability of Imidazolium Surfactant Modified Liposomes
3.4. Preparation, Characteristics of 2-PAM-Loaded Liposomes: In Vitro Release of 2-PAM
3.5. Analysis of Hemolytic Activity and Hemagglutination Caused by Modified Liposomes Loaded with 2-PAM
3.6. Reactivation of Brain AChE In Vivo
3.7. 2-PAM Pharmacokinetics in Rat Plasma and Brain Tissue
3.8. Effect of Liposomes Loaded with 2-PAM on POX-Induced Neurotoxicity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pundir, C.S.; Malik, A. Preety Bio-Sensing of Organophosphorus Pesticides: A Review. Biosens. Bioelectron. 2019, 140, 111348. [Google Scholar] [CrossRef] [PubMed]
- Etō, M. Organophosphorus Pesticides: Organic and Biological Chemistry; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2018. [Google Scholar]
- Demkowicz, S.; Rachon, J.; Daśko, M.; Kozak, W. Selected Organophosphorus Compounds with Biological Activity. Applications in Medicine. RSC Adv. 2016, 6, 7101–7112. [Google Scholar] [CrossRef]
- Marklund, A.; Andersson, B.; Haglund, P. Screening of Organophosphorus Compounds and Their Distribution in Various Indoor Environments. Chemosphere 2003, 53, 1137–1146. [Google Scholar] [CrossRef]
- Shameem, M.A.; Orthaber, A. Organophosphorus Compounds in Organic Electronics. Chem. Eur. J. 2016, 22, 10718–10735. [Google Scholar] [CrossRef]
- Silva, V.B.; Santos, Y.H.; Hellinger, R.; Mansour, S.; Delaune, A.; Legros, J.; Zinoviev, S.; Nogueira, E.S.; Orth, E.S. Organophosphorus Chemical Security from a Peaceful Perspective: Sustainable Practices in Its Synthesis, Decontamination and Detection. Green Chem. 2022, 24, 585–613. [Google Scholar] [CrossRef]
- Mukherjee, S.; Gupta, R.D. Organophosphorus Nerve Agents: Types, Toxicity, and Treatments. J. Toxicol. 2020, 2020, 3007984. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, Z.; Gao, R.; Wang, H.; Xiao, J. Recent Progress in the Chemical Attribution of Chemical Warfare Agents and Highly Toxic Organophosphorus Pesticides. Forensic. Toxicol. 2021, 39, 334–349. [Google Scholar] [CrossRef]
- Fu, H.; Tan, P.; Wang, R.; Li, S.; Liu, H.; Yang, Y.; Wu, Z. Advances in Organophosphorus Pesticides Pollution: Current Status and Challenges in Ecotoxicological, Sustainable Agriculture, and Degradation Strategies. J. Hazard. Mater. 2022, 424, 127494. [Google Scholar] [CrossRef]
- Kaushal, J.; Khatri, M.; Arya, S.K. A Treatise on Organophosphate Pesticide Pollution: Current Strategies and Advancements in Their Environmental Degradation and Elimination. Ecotoxicol. Environ. Saf. 2021, 207, 111483. [Google Scholar] [CrossRef]
- Lorke, D.E.; Nurulain, S.M.; Hasan, M.Y.; Kuča, K.; Petroianu, G.A. Oximes as Pretreatment before Acute Exposure to Paraoxon. J. Appl. Toxicol. 2019, 39, 1506–1515. [Google Scholar] [CrossRef]
- Parvaz, S.; Taheri-Ledari, R.; Esmaeili, M.S.; Rabbani, M.; Maleki, A. A Brief Survey on the Advanced Brain Drug Administration by Nanoscale Carriers: With a Particular Focus on AChE Reactivators. Life Sci. 2020, 240, 117099. [Google Scholar] [CrossRef] [PubMed]
- Chowdhary, S.; Bhattacharyya, R.; Banerjee, D. Acute Organophosphorus Poisoning. Clin. Chim. Acta 2014, 431, 66–76. [Google Scholar] [CrossRef]
- Thiermann, H.; Zilker, T.; Eyer, F.; Felgenhauer, N.; Eyer, P.; Worek, F. Monitoring of Neuromuscular Transmission in Organophosphate Pesticide-Poisoned Patients. Toxicol. Lett. 2009, 191, 297–304. [Google Scholar] [CrossRef]
- Antonijevic, B.; Stojiljkovic, M.P. Unequal Efficacy of Pyridinium Oximes in Acute Organophosphate Poisoning. Clin. Med. Res. 2007, 5, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Bohnert, S.; van den Berg, R.M.; Mikler, J.; Klaassen, S.D.; Joosen, M.J.A. Pharmacokinetics of Three Oximes in a Guinea Pig Model and Efficacy of Combined Oxime Therapy. Toxicol. Lett. 2020, 324, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Pavlov, R.V.; Gaynanova, G.A.; Kuznetsova, D.A.; Vasileva, L.A.; Zueva, I.V.; Sapunova, A.S.; Buzyurova, D.N.; Babaev, V.M.; Voloshina, A.D.; Lukashenko, S.S.; et al. Biomedical Potentialities of Cationic Geminis as Modulating Agents of Liposome in Drug Delivery across Biological Barriers and Cellular Uptake. Int. J. Pharm. 2020, 587, 119640. [Google Scholar] [CrossRef]
- Pashirova, T.N.; Bogdanov, A.; Masson, P. Therapeutic Nanoreactors for Detoxification of Xenobiotics: Concepts, Challenges and Biotechnological Trends with Special Emphasis to Organophosphate Bioscavenging. Chem. Biol. Interact. 2021, 346, 109577. [Google Scholar] [CrossRef]
- Pashirova, T.N.; Braïki, A.; Zueva, I.V.; Petrov, K.A.; Babaev, V.M.; Burilova, E.A.; Samarkina, D.A.; Rizvanov, I.K.; Souto, E.B.; Jean, L.; et al. Combination Delivery of Two Oxime-Loaded Lipid Nanoparticles: Time-Dependent Additive Action for Prolonged Rat Brain Protection. J. Control. Release 2018, 290, 102–111. [Google Scholar] [CrossRef]
- Pashirova, T.N.; Zueva, I.V.; Petrov, K.A.; Babaev, V.M.; Lukashenko, S.S.; Rizvanov, I.K.; Souto, E.B.; Nikolsky, E.E.; Zakharova, L.Y.; Masson, P.; et al. Nanoparticle-Delivered 2-PAM for Rat Brain Protection against Paraoxon Central Toxicity. ACS Appl. Mater. Interfaces 2017, 9, 16922–16932. [Google Scholar] [CrossRef]
- Chigumira, W.; Maposa, P.; Gadaga, L.L.; Dube, A.; Tagwireyi, D.; Maponga, C.C. Preparation and Evaluation of Pralidoxime-Loaded PLGA Nanoparticles as Potential Carriers of the Drug across the Blood Brain Barrier. J. Nanomater. 2015, 2015, 8. [Google Scholar] [CrossRef] [Green Version]
- Gaynanova, G.; Vasileva, L.; Kashapov, R.; Kuznetsova, D.; Kushnazarova, R.; Tyryshkina, A.; Vasilieva, E.; Petrov, K.; Zakharova, L.; Sinyashin, O. Self-Assembling Drug Formulations with Tunable Permeability and Biodegradability. Molecules 2021, 26, 6786. [Google Scholar] [CrossRef]
- Lin, H.-J.; Liang, T.-L.; Chang, Y.-Y.; Liu, D.-Z.; Fan, J.-Y.; Roffler, S.R.; Lin, S.-Y. Development of Irinotecan Liposome Armed with Dual-Target Anti-Epidermal Growth Factor Receptor and Anti-Fibroblast Activation Protein-Specific Antibody for Pancreatic Cancer Treatment. Pharmaceutics 2022, 14, 1202. [Google Scholar] [CrossRef] [PubMed]
- Ramos, G.S.; Vallejos, V.M.R.; Borges, G.S.M.; Almeida, R.M.; Alves, I.M.; Aguiar, M.M.G.; Fernandes, C.; Guimarães, P.P.G.; Fujiwara, R.T.; Loiseau, P.M.; et al. Formulation of Amphotericin B in PEGylated Liposomes for Improved Treatment of Cutaneous Leishmaniasis by Parenteral and Oral Routes. Pharmaceutics 2022, 14, 989. [Google Scholar] [CrossRef] [PubMed]
- Alrbyawi, H.; Poudel, I.; Annaji, M.; Boddu, S.H.S.; Arnold, R.D.; Tiwari, A.K.; Babu, R.J. PH-Sensitive Liposomes for Enhanced Cellular Uptake and Cytotoxicity of Daunorubicin in Melanoma (B16-BL6) Cell Lines. Pharmaceutics 2022, 14, 1128. [Google Scholar] [CrossRef]
- Kuznetsova, D.A.; Vasilieva, E.A.; Kuznetsov, D.M.; Lenina, O.A.; Filippov, S.K.; Petrov, K.A.; Zakharova, L.Y.; Sinyashin, O.G. Enhancement of the Transdermal Delivery of Nonsteroidal Anti-Inflammatory Drugs Using Liposomes Containing Cationic Surfactants. ACS Omega 2022, 7, 25741–25750. [Google Scholar] [CrossRef] [PubMed]
- Kobanenko, M.K.; Tretiakova, D.S.; Shchegravina, E.S.; Antipova, N.V.; Boldyrev, I.A.; Fedorov, A.Y.; Vodovozova, E.L.; Onishchenko, N.R. Liposomal Formulation of a PLA2-Sensitive Phospholipid–Allocolchicinoid Conjugate: Stability and Activity Studies In Vitro. Int. J. Mol. Sci. 2022, 23, 1034. [Google Scholar] [CrossRef]
- Semyachkina-Glushkovskaya, O.; Fedosov, I.; Shirokov, A.; Vodovozova, E.; Alekseeva, A.; Khorovodov, A.; Blokhina, I.; Terskov, A.; Mamedova, A.; Klimova, M.; et al. Photomodulation of Lymphatic Delivery of Liposomes to the Brain Bypassing the Blood-Brain Barrier: New Perspectives for Glioma Therapy. Nanophotonics 2021, 10, 3215–3227. [Google Scholar] [CrossRef]
- Poudel, P.; Park, S. Recent Advances in the Treatment of Alzheimer’s Disease Using Nanoparticle-Based Drug Delivery Systems. Pharmaceutics 2022, 14, 835. [Google Scholar] [CrossRef]
- Xia, H.; Cheng, Z.; Cheng, Y.; Xu, Y. Investigating the Passage of Tetramethylpyrazine-Loaded Liposomes across Blood-Brain Barrier Models In Vitro and Ex Vivo. Mater. Sci. Eng. C 2016, 69, 1010–1017. [Google Scholar] [CrossRef]
- Song, Z.; Huang, X.; Wang, J.; Cai, F.; Zhao, P.; Yan, F. Targeted Delivery of Liposomal Temozolomide Enhanced Anti-Glioblastoma Efficacy through Ultrasound-Mediated Blood–Brain Barrier Opening. Pharmaceutics 2021, 13, 1270. [Google Scholar] [CrossRef]
- Kraft, J.C.; Freeling, J.P.; Wang, Z.; Ho, R.J.Y. Emerging Research and Clinical Development Trends of Liposome and Lipid Nanoparticle Drug Delivery Systems. J. Pharm. Sci. 2014, 103, 29–52. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Peng, Z.; Seven, E.S.; Leblanc, R.M. Crossing the Blood-Brain Barrier with Nanoparticles. J. Control. Release 2018, 270, 290–303. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G.; Sharma, A.R.; Lee, S.-S.; Bhattacharya, M.; Nam, J.-S.; Chakraborty, C. Advances in Nanocarriers Enabled Brain Targeted Drug Delivery across Blood Brain Barrier. Int. J. Pharm. 2019, 559, 360–372. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, M.C.; Carbone, C.; Souto, E.B. Beyond Liposomes: Recent Advances on Lipid Based Nanostructures for Poorly Soluble/Poorly Permeable Drug Delivery. Prog. Lipid Res. 2017, 68, 1–11. [Google Scholar] [CrossRef]
- Kashapov, R.; Gaynanova, G.; Gabdrakhmanov, D.; Kuznetsov, D.; Pavlov, R.; Petrov, K.; Zakharova, L.; Sinyashin, O. Self-Assembly of Amphiphilic Compounds as a Versatile Tool for Construction of Nanoscale Drug Carriers. Int. J. Mol. Sci. 2020, 21, 6961. [Google Scholar] [CrossRef]
- Garcia-Garcia, E.; Andrieux, K.; Gil, S.; Couvreur, P. Colloidal Carriers and Blood–Brain Barrier (BBB) Translocation: A Way to Deliver Drugs to the Brain? Int. J. Pharm. 2005, 298, 274–292. [Google Scholar] [CrossRef]
- Zhao, M.; Chang, J.; Fu, X.; Liang, C.; Liang, S.; Yan, R.; Li, A. Nano-Sized Cationic Polymeric Magnetic Liposomes Significantly Improves Drug Delivery to the Brain in Rats. J. Drug. Target 2012, 20, 416–421. [Google Scholar] [CrossRef]
- Tam, V.H.; Sosa, C.; Liu, R.; Yao, N.; Priestley, R.D. Nanomedicine as a Non-Invasive Strategy for Drug Delivery across the Blood Brain Barrier. Int. J. Pharm. 2016, 515, 331–342. [Google Scholar] [CrossRef]
- 40. Agrawal, M.; Ajazuddin; Tripathi, D.K.; Saraf, S.; Saraf, S.; Antimisiaris, S.G.; Mourtas, S.; Hammarlund-Udenaes, M.; Alexander, A. Recent Advancements in Liposomes Targeting Strategies to Cross Blood-Brain Barrier (BBB) for the Treatment of Alzheimer’s Disease. J. Control. Release 2017, 260, 61–77. [Google Scholar] [CrossRef]
- Gao, H. Progress and Perspectives on Targeting Nanoparticles for Brain Drug Delivery. Acta Pharm. Sin. B 2016, 6, 268–286. [Google Scholar] [CrossRef]
- Guo, L.; Ren, J.; Jiang, X. Perspectives on Brain-Targeting Drug Delivery Systems. Curr. Pharm. Biotechnol. 2012, 13, 2310–2318. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.I.; Beg, S.; Samad, A.; Baboota, S.; Kohli, K.; Ali, J.; Ahuja, A.; Akbar, M. Strategy for Effective Brain Drug Delivery. Eur. J. Pharm. Sci. 2010, 40, 385–403. [Google Scholar] [CrossRef]
- Kuznetsova, D.A.; Vasileva, L.A.; Gaynanova, G.A.; Pavlov, R.V.; Sapunova, A.S.; Voloshina, A.D.; Sibgatullina, G.V.; Samigullin, D.V.; Petrov, K.A.; Zakharova, L.Y.; et al. Comparative Study of Cationic Liposomes Modified with Triphenylphosphonium and Imidazolium Surfactants for Mitochondrial Delivery. J. Mol. Liq. 2021, 330, 115703. [Google Scholar] [CrossRef]
- Kuznetsova, D.A.; Gabdrakhmanov, D.R.; Lukashenko, S.S.; Voloshina, A.D.; Sapunova, A.S.; Kulik, N.V.; Nizameev, I.R.; Kadirov, M.K.; Kashapov, R.R.; Zakharova, L.Y. Supramolecular Systems Based on Cationic Imidazole-Containing Amphiphiles Bearing Hydroxyethyl Fragment: Aggregation Properties and Functional Activity. J. Mol. Liq. 2019, 289, 111058. [Google Scholar] [CrossRef]
- Bhadani, A.; Misono, T.; Singh, S.; Sakai, K.; Sakai, H.; Abe, M. Structural Diversity, Physicochemical Properties and Application of Imidazolium Surfactants: Recent Advances. Adv. Colloid Interface Sci. 2016, 231, 36–58. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsova, D.A.; Gabdrakhmanov, D.R.; Kuznetsov, D.M.; Lukashenko, S.S.; Zakharov, V.M.; Sapunova, A.S.; Amerhanova, S.K.; Lyubina, A.P.; Voloshina, A.D.; Salakhieva, D.V.; et al. Polymer–Colloid Complexes Based on Cationic Imidazolium Amphiphile, Polyacrylic Acid and DNA Decamer. Molecules 2021, 26, 2363. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsova, D.A.; Gabdrakhmanov, D.R.; Lukashenko, S.S.; Voloshina, A.D.; Sapunova, A.S.; Kashapov, R.R.; Zakharova, L.Y. Self-Assembled Systems Based on Novel Hydroxyethylated Imidazolium-Containing Amphiphiles: Interaction with DNA Decamer, Protein and Lipid. Chem. Phys. Lipids 2019, 223, 104791. [Google Scholar] [CrossRef] [PubMed]
- Samarkina, D.A.; Gabdrakhmanov, D.R.; Lukashenko, S.S.; Khamatgalimov, A.R.; Kovalenko, V.I.; Zakharova, L.Y. Cationic Amphiphiles Bearing Imidazole Fragment: From Aggregation Properties to Potential in Biotechnologies. Colloids Surf. Physicochem. Eng. Asp. 2017, 529, 990–997. [Google Scholar] [CrossRef]
- Samarkina, D.A.; Gabdrakhmanov, D.R.; Lukashenko, S.S.; Khamatgalimov, A.R.; Zakharova, L.Y. Aggregation Capacity and Complexation Properties of a System Based on an Imidazole-Containing Amphiphile and Bovine Serum Albumin. Russ. J. Gen. Chem. 2017, 87, 2826–2831. [Google Scholar] [CrossRef]
- Kuznetsova, D.A.; Gabdrakhmanov, D.R.; Lukashenko, S.S.; Ahtamyanova, L.R.; Nizameev, I.R.; Kadirov, M.K.; Zakharova, L.Y. Novel Hybrid Liposomal Formulations Based on Imidazolium-Containing Amphiphiles for Drug Encapsulation. Colloids Surf. B Biointerfaces 2019, 178, 352–357. [Google Scholar] [CrossRef]
- Kuznetsova, D.A.; Vasileva, L.A.; Gaynanova, G.A.; Vasilieva, E.A.; Lenina, O.A.; Nizameev, I.R.; Kadirov, M.K.; Petrov, K.A.; Zakharova, L.Y.; Sinyashin, O.G. Cationic Liposomes Mediated Transdermal Delivery of Meloxicam and Ketoprofen: Optimization of the Composition, In Vitro and In Vivo Assessment of Efficiency. Int. J. Pharm. 2021, 605, 120803. [Google Scholar] [CrossRef] [PubMed]
- Mirgorodskaya, A.B.; Kuznetsova, D.A.; Kushnazarova, R.A.; Gabdrakhmanov, D.R.; Zhukova, N.A.; Lukashenko, S.S.; Sapunova, A.S.; Voloshina, A.D.; Sinyashin, O.G.; Mamedov, V.A.; et al. Soft Nanocarriers for New Poorly Soluble Conjugate of Pteridine and Benzimidazole: Synthesis and Cytotoxic Activity against Tumor Cells. J. Mol. Liq. 2020, 317, 114007. [Google Scholar] [CrossRef]
- Kuznetsova, D.A.; Kuznetsov, D.M.; Amerhanova, S.K.; Buzmakova, E.V.; Lyubina, A.P.; Syakaev, V.V.; Nizameev, I.R.; Kadirov, M.K.; Voloshina, A.D.; Zakharova, L.Y. Cationic Imidazolium Amphiphiles Bearing a Methoxyphenyl Fragment: Synthesis, Self-Assembly Behavior, and Antimicrobial Activity. Langmuir 2022, 38, 4921–4934. [Google Scholar] [CrossRef]
- Kuznetsova, D.A.; Kuznetsov, D.M.; Zakharov, V.M.; Zakharova, L.Y. Interaction of Bovine Serum Albumin with Cationic Imidazolium Surfactants Containing a Methoxyphenyl Fragment. Russ. J. Gen. Chem. 2022, 92, 1262–1270. [Google Scholar] [CrossRef]
- Kuznetsov, D.M.; Kuznetsova, D.A.; Gabdrakhmanov, D.R.; Lukashenko, S.S.; Nikitin, Y.N.; Zakharova, L.Y. Triallyl Ammonium Amphiphiles: Self-Assembly and Complexation with Bovine Serum Albumin. Surf. Innov. 2022, 10, 298–311. [Google Scholar] [CrossRef]
- Zakharova, L.Y.; Voloshina, A.D.; Ibatullina, M.R.; Zhiltsova, E.P.; Lukashenko, S.S.; Kuznetsova, D.A.; Kutyreva, M.P.; Sapunova, A.S.; Kufelkina, A.A.; Kulik, N.V.; et al. Self-Assembling Metallocomplexes of the Amphiphilic 1,4-Diazabicyclo[2.2.2]Octane Derivative as a Platform for the Development of Nonplatinum Anticancer Drugs. ACS Omega 2022, 7, 3073–3082. [Google Scholar] [CrossRef]
- Kuznetsova, D.A.; Gabdrakhmanov, D.R.; Gaynanova, G.A.; Vasileva, L.A.; Kuznetsov, D.M.; Lukashenko, S.S.; Voloshina, A.D.; Sapunova, A.S.; Nizameev, I.R.; Sibgatullina, G.V.; et al. Novel Biocompatible Liposomal Formulations for Encapsulation of Hydrophilic Drugs–Chloramphenicol and Cisplatin. Colloids Surf. Physicochem. Eng. Asp. 2021, 610, 125673. [Google Scholar] [CrossRef]
- Kuznetsova, D.A.; Gaynanova, G.A.; Vasileva, L.A.; Sibgatullina, G.V.; Samigullin, D.V.; Sapunova, A.S.; Voloshina, A.D.; Galkina, I.V.; Petrov, K.A.; Zakharova, L.Y. Mitochondria-Targeted Cationic Liposomes Modified with Alkyltriphenylphosphonium Bromides Loaded with Hydrophilic Drugs: Preparation, Cytotoxicity and Colocalization Assay. J. Mater. Chem. B 2019, 7, 7351–7362. [Google Scholar] [CrossRef]
- Kuznetsova, D.A.; Kuznetsov, D.M.; Vasileva, L.A.; Toropchina, A.V.; Belova, D.K.; Amerhanova, S.K.; Lyubina, A.P.; Voloshina, A.D.; Zakharova, L.Y. Pyrrolidinium Surfactants with a Biodegradable Carbamate Fragment: Self-Assembling and Biomedical Application. J. Mol. Liq. 2021, 340, 117229. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, V.; Featherstone, R.M. A New and Rapid Colorimetric Determination of Acetylcholinesterase Activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Dingova, D.; Leroy, J.; Check, A.; Garaj, V.; Krejci, E.; Hrabovska, A. Optimal Detection of Cholinesterase Activity in Biological Samples: Modifications to the Standard Ellman’s Assay. Anal. Biochem. 2014, 462, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Aldridge, W.N. The Differentiation of True and Pseudo Cholinesterase by Organo-Phosphorus Compounds. Biochem. J. 1953, 53, 62–67. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Greget, R.; Dadak, S.; Barbier, L.; Lauga, F.; Linossier-Pierre, S.; Pernot, F.; Legendre, A.; Ambert, N.; Bouteiller, J.-M.; Dorandeu, F.; et al. Modeling and Simulation of Organophosphate-Induced Neurotoxicity: Prediction and Validation by Experimental Studies. NeuroToxicology 2016, 54, 140–152. [Google Scholar] [CrossRef] [PubMed]
- Zueva, I.; Lenina, O.; Kayumova, R.; Petrov, K.; Masson, P. Protective Effects of M-(Tert-Butyl) Trifluoroacetophenone, a Transition State Analogue of Acetylcholine, against Paraoxon Toxicity and Memory Impairments. Chem. Biol. Interact. 2021, 345, 109558. [Google Scholar] [CrossRef] [PubMed]
- Schmued, L.C.; Hopkins, K.J. Fluoro-Jade B: A High Affinity Fluorescent Marker for the Localization of Neuronal Degeneration. Brain Res. 2000, 874, 123–130. [Google Scholar] [CrossRef]
- Niu, X.; Chen, J.; Gao, J. Nanocarriers as a Powerful Vehicle to Overcome Blood-Brain Barrier in Treating Neurodegenerative Diseases: Focus on Recent Advances. Asian, J. Pharm. Sci. 2019, 14, 480–496. [Google Scholar] [CrossRef]
- Pardridge, W.M. A Historical Review of Brain Drug Delivery. Pharmaceutics 2022, 14, 1283. [Google Scholar] [CrossRef]
- Teleanu, R.I.; Preda, M.D.; Niculescu, A.-G.; Vladâcenco, O.; Radu, C.I.; Grumezescu, A.M.; Teleanu, D.M. Current Strategies to Enhance Delivery of Drugs across the Blood–Brain Barrier. Pharmaceutics 2022, 14, 987. [Google Scholar] [CrossRef]
- dos Santos Rodrigues, B.; Lakkadwala, S.; Kanekiyo, T.; Singh, J. Development and Screening of Brain-Targeted Lipid-Based Nanoparticles with Enhanced Cell Penetration and Gene Delivery Properties. Int. J. Nanomed 2019, 14, 6497–6517. [Google Scholar] [CrossRef] [Green Version]
- Kobrlova, T.; Korabecny, J.; Soukup, O. Current Approaches to Enhancing Oxime Reactivator Delivery into the Brain. Toxicology 2019, 423, 75–83. [Google Scholar] [CrossRef]
- Pashirova, T.N.; Zueva, I.V.; Petrov, K.A.; Lukashenko, S.S.; Nizameev, I.R.; Kulik, N.V.; Voloshina, A.D.; Almasy, L.; Kadirov, M.K.; Masson, P.; et al. Mixed Cationic Liposomes for Brain Delivery of Drugs by the Intranasal Route: The Acetylcholinesterase Reactivator 2-PAM as Encapsulated Drug Model. Colloids Surf. B Biointerfaces 2018, 171, 358–367. [Google Scholar] [CrossRef]
- Buzyurova, D.N.; Pashirova, T.N.; Zueva, I.V.; Burilova, E.A.; Shaihutdinova, Z.M.; Rizvanov, I.K.; Babaev, V.M.; Petrov, K.A.; Souto, E.B. Surface Modification of Pralidoxime Chloride-Loaded Solid Lipid Nanoparticles for Enhanced Brain Reactivation of Organophosphorus-Inhibited AChE: Pharmacokinetics in Rat. Toxicology 2020, 444, 152578. [Google Scholar] [CrossRef] [PubMed]
- Wagner, S.; Kufleitner, J.; Zensi, A.; Dadparvar, M.; Wien, S.; Bungert, J.; Vogel, T.; Worek, F.; Kreuter, J.; von Briesen, H. Nanoparticulate Transport of Oximes over an In Vitro Blood-Brain Barrier Model. PLoS ONE 2010, 5, e14213. [Google Scholar] [CrossRef]
- Yang, J.; Fan, L.; Wang, F.; Luo, Y.; Sui, X.; Li, W.; Zhang, X.; Wang, Y. Rapid-Releasing of HI-6 via Brain-Targeted Mesoporous Silica Nanoparticles for Nerve Agent Detoxification. Nanoscale 2016, 8, 9537–9547. [Google Scholar] [CrossRef] [PubMed]
- Kaur, I.P.; Bhandari, R.; Bhandari, S.; Kakkar, V. Potential of Solid Lipid Nanoparticles in Brain Targeting. J. Control. Release 2008, 127, 97–109. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.; Singh-Moon, R.; Wang, M.; Chaudhuri, D.B.; Ellis, J.A.; Bruce, J.N.; Bigio, I.J.; Straubinger, R.M. Cationic Surface Charge Enhances Early Regional Deposition of Liposomes after Intracarotid Injection. J. Neurooncol. 2014, 120, 489–497. [Google Scholar] [CrossRef] [PubMed]
- Cavaletti, G.; Cassetti, A.; Canta, A.; Galbiati, S.; Gilardini, A.; Oggioni, N.; Rodriguez-Menendez, V.; Fasano, A.; Liuzzi, G.M.; Fattler, U.; et al. Cationic Liposomes Target Sites of Acute Neuroinflammation in Experimental Autoimmune Encephalomyelitis. Mol. Pharm. 2009, 6, 1363–1370. [Google Scholar] [CrossRef]
- Zhou, Z.; Sun, T.; Jiang, C. Recent Advances on Drug Delivery Nanocarriers for Cerebral Disorders. Biomed. Mater. 2021, 16, 024104. [Google Scholar] [CrossRef]
- Dail, M.B.; Leach, C.A.; Meek, E.C.; Olivier, A.K.; Pringle, R.B.; Green, C.E.; Chambers, J.E. Novel Brain-Penetrating Oxime Acetylcholinesterase Reactivators Attenuate Organophosphate-Induced Neuropathology in the Rat Hippocampus. Toxicol. Sci. 2019, 169, 465–474. [Google Scholar] [CrossRef]
- Kuca, K.; Hrabinova, M.; Soukup, O.; Tobin, G.; Karasova, J.; Pohanka, M. Pralidoxime—the Gold Standard of Acetylcholinesterase Reactivators—Reactivation In Vitro Efficacy. Bratisl. Lek. Listy 2010, 111, 502–504. [Google Scholar] [PubMed]
- Kuca, K.; Jun, D.; Musilek, K.; Pohanka, M.; Karasova, J.; Soukup, O. Prophylaxis and Post-Exposure Treatment of Intoxications Caused by Nerve Agents and Organophosphorus Pesticides. Mini-Rev. Med. Chem. 2013, 13, 2102–2115. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Dong, X.; Chen, X. Polymer-Modified Liposomes for Drug Delivery: From Fundamentals to Applications. Pharmaceutics 2022, 14, 778. [Google Scholar] [CrossRef] [PubMed]
- Altamimi, M.A.; Hussain, A.; Alshehri, S.; Imam, S.S. Experimental Design Based Optimization and Ex Vivo Permeation of Desmopressin Acetate Loaded Elastic Liposomes Using Rat Skin. Pharmaceutics 2021, 13, 1047. [Google Scholar] [CrossRef] [PubMed]
- Eliyahu, H.; Servel, N.; Domb, A.; Barenholz, Y. Lipoplex-Induced Hemagglutination: Potential Involvement in Intravenous Gene Delivery. Gene Ther. 2002, 9, 850–858. [Google Scholar] [CrossRef]
- Krishnan, J.K.S.; Arun, P.; Appu, A.P.; Vijayakumar, N.; Figueiredo, T.H.; Braga, M.F.M.; Baskota, S.; Olsen, C.H.; Farkas, N.; Dagata, J.; et al. Intranasal Delivery of Obidoxime to the Brain Prevents Mortality and CNS Damage from Organophosphate Poisoning. NeuroToxicology 2016, 53, 64–73. [Google Scholar] [CrossRef]
- Liang, L.-P.; Pearson-Smith, J.N.; Huang, J.; McElroy, P.; Day, B.J.; Patel, M. Neuroprotective Effects of AEOL10150 in a Rat Organophosphate Model. Toxicol. Sci. 2018, 162, 611–621. [Google Scholar] [CrossRef]
System | Surfactant/PC Molar Ratio | 1 Day | 3 Months | ||||
---|---|---|---|---|---|---|---|
DH, nm | PdI | ζ, mV | DH, nm | PdI | ζ, mV | ||
PC | - | 105 ± 2 | 0.205 ± 0.013 | −5 ± 1 | not stable | ||
IA-10/PC | 0.02/1 | 107 ± 1 | 0.077 ± 0.008 | 22 ± 1 | 118 ± 5 | 0.231 ± 0.024 | 17 ± 1 |
IA-10/PC | 0.029/1 | 110 ± 1 | 0.068 ± 0.010 | 27 ± 2 | 121 ± 4 | 0.141 ± 0.010 | 25 ± 2 |
IA-10/PC | 0.04/1 | 107 ± 1 | 0.116 ± 0.010 | 31 ± 1 | 110 ± 2 | 0.099 ± 0.012 | 22 ± 1 |
IA-12/PC | 0.02/1 | 111 ± 1 | 0.123 ± 0.012 | 27 ± 1 | 118 ± 1 | 0.168 ± 0.015 | 24 ± 1 |
IA-12/PC | 0.029/1 | 109 ± 2 | 0.106 ± 0.010 | 30 ± 1 | 115 ± 3 | 0.105 ± 0.011 | 42 ± 1 |
IA-12/PC | 0.04/1 | 107 ± 2 | 0.178 ± 0.015 | 43 ± 2 | 108 ± 1 | 0.184 ± 0.009 | 44 ± 1 |
IA-14/PC | 0.02/1 | 116 ± 1 | 0.158 ± 0.012 | 45 ± 1 | 109 ± 1 | 0.083 ± 0.006 | 38 ± 2 |
IA-14/PC | 0.029/1 | 109 ± 1 | 0.129 ± 0.011 | 52 ± 2 | 121 ± 1 | 0.054 ± 0.005 | 49 ± 2 |
IA-14/PC | 0.04/1 | 109 ± 1 | 0.164 ± 0.010 | 56 ± 1 | 103 ± 1 | 0.081 ± 0.013 | 41 ± 3 |
IA-16/PC | 0.02/1 | 106 ± 1 | 0.136 ± 0.012 | 41 ± 2 | 107 ± 1 | 0.095 ± 0.016 | 35 ± 2 |
IA-16/PC | 0.029/1 | 110 ± 2 | 0.134 ± 0.015 | 51 ± 2 | 107 ± 1 | 0.108 ± 0.020 | 56 ± 2 |
IA-16/PC | 0.04/1 | 112 ± 2 | 0.164 ± 0.010 | 59 ± 1 | 106 ± 1 | 0.123 ± 0.013 | 64 ± 3 |
IA-18/PC | 0.02/1 | 110 ± 1 | 0.074 ± 0.010 | 43 ± 1 | 108 ± 1 | 0.057 ± 0.024 | 39 ± 1 |
IA-18/PC | 0.029/1 | 103 ± 1 | 0.068 ± 0.008 | 54 ± 2 | 102 ± 1 | 0.094 ± 0.010 | 56 ± 2 |
IA-18/PC | 0.04/1 | 107 ± 2 | 0.124 ± 0.010 | 57 ± 1 | 106 ± 1 | 0.077 ± 0.012 | 45 ± 1 |
Rhodamine B | ||||||||
---|---|---|---|---|---|---|---|---|
System | Surfactant/ PC Molar Ratio | EE,% | 1 Day | 2 Months | ||||
DH, nm | PdI | ζ, mV | DH, nm | PdI | ζ, mV | |||
PC | - | 34 ± 1 | 105 ± 2 | 0.055 ± 0.002 | −3 ± 1 | not stable | ||
IA-10/PC | 0.02/1 | 72 ± 1 | 107 ± 3 | 0.101 ± 0.026 | 45 ± 1 | 111 ± 2 | 0.075 ± 0.012 | 31 ± 4 |
IA-10/PC | 0.029/1 | 72 ± 2 | 102 ± 2 | 0.049 ± 0.006 | 50 ± 1 | 129 ± 3 | 0.176 ± 0.014 | 29 ± 2 |
IA-10/PC | 0.04/1 | 70 ± 1 | 101 ± 1 | 0.073 ± 0.044 | 60 ± 1 | 93 ± 3 | 0.218 ± 0.006 | 24 ± 1 |
IA-12/PC | 0.02/1 | 70 ± 1 | 102 ± 2 | 0.080 ± 0.017 | 32 ± 1 | 116 ± 2 | 0.183 ± 0.021 | 23 ± 1 |
IA-12/PC | 0.029/1 | 69 ± 2 | 108 ± 2 | 0.137 ± 0.006 | 37 ± 1 | 113 ± 3 | 0.190 ± 0.033 | 24 ± 1 |
IA-12/PC | 0.04/1 | 69 ± 1 | 101 ± 2 | 0.088 ± 0.025 | 48 ± 1 | 119 ± 1 | 0.194 ± 0.013 | 27 ± 1 |
IA-14/PC | 0.02/1 | 67 ± 3 | 103 ± 1 | 0.108 ± 0.008 | 48 ± 1 | 112 ± 3 | 0.089 ± 0.001 | 23 ± 1 |
IA-14/PC | 0.029/1 | 69 ± 1 | 101 ± 2 | 0.068 ± 0.016 | 54 ± 1 | 105 ± 2 | 0.197 ± 0.034 | 26 ± 1 |
IA-14/PC | 0.04/1 | 69 ± 2 | 102 ± 1 | 0.082 ± 0.011 | 57 ± 1 | 105 ± 1 | 0.161 ± 0.030 | 31 ± 3 |
IA-16/PC | 0.02/1 | 80 ± 1 | 112 ± 2 | 0.107 ± 0.039 | 43 ± 1 | 121 ± 3 | 0.211 ± 0.011 | 21 ± 1 |
IA-16/PC | 0.029/1 | 81 ± 1 | 109 ± 1 | 0.093 ± 0.013 | 53 ± 1 | 141 ± 2 | 0.194 ± 0.100 | 25 ± 1 |
IA-16/PC | 0.04/1 | 78 ± 2 | 104 ± 2 | 0.179 ± 0.038 | 65 ± 1 | 136 ± 1 | 0.191 ± 0.030 | 28 ± 3 |
IA-18/PC | 0.02/1 | 76 ± 1 | 112 ± 2 | 0.151 ± 0.007 | 39 ± 3 | 138 ± 3 | 0.193 ± 0.011 | 22 ± 1 |
IA-18/PC | 0.029/1 | 77 ± 3 | 106 ± 2 | 0.090 ± 0.012 | 52 ± 1 | 128 ± 3 | 0.211 ± 0.011 | 26 ± 1 |
IA-18/PC | 0.04/1 | 76 ± 1 | 105 ± 2 | 0.086 ± 0.009 | 59 ± 1 | 120 ± 3 | 0.172 ± 0.033 | 48 ± 1 |
2-PAM | |||||||
---|---|---|---|---|---|---|---|
System | Surfactant/PC Molar Ratio | Initial Concentration of Substrate, mg/mL | EE, % | LC, % | DH, nm | PdI | ζ, mV |
PC | - | 34 ± 1 | 105 ± 2 | 0.055 ± 0.002 | −3 ± 1 | ||
IA-16/PC | 0.02/1 | 10 | 74 ± 1 | 48 ± 1 | 122 ± 1 | 0.110 ± 0.018 | 33 ± 1 |
IA-16/PC | 0.029/1 | 10 | 72 ± 1 | 46 ± 1 | 109 ± 2 | 0.088 ± 0.030 | 42 ± 1 |
IA-16/PC | 0.04/1 | 10 | 72 ± 1 | 46 ± 1 | 112 ± 2 | 0.082 ± 0.008 | 49 ± 1 |
IA-16/PC | 0.02/1 | 20 | 73 ± 1 | 96 ± 1 | 131 ± 2 | 0.088 ± 0.024 | 17 ± 1 |
IA-16/PC | 0.029/1 | 20 | 73 ± 1 | 96 ± 1 | 127 ± 1 | 0.075 ± 0.016 | 23 ± 1 |
IA-16/PC | 0.04/1 | 20 | 74 ± 1 | 97 ± 1 | 131 ± 1 | 0.080 ± 0.025 | 28 ± 1 |
System | Concentration, mM | Hemolysis, % | HC50, mM |
---|---|---|---|
IA-16/PC + 2-PAM | 10 | 20.9 | >10 |
5 | 12.0 | ||
2.5 | 5.1 | ||
1.25 | 2.1 | ||
0.625 | 0.9 | ||
0.313 | 0 | ||
0.156 | 0 |
Group | n/N * |
---|---|
POX (2 mg/kg, s.c.) | 0/12 |
Free 2-PAM (25 mg/kg, i.v.) + POX (2 mg/kg, s.c.) | 12/12 |
Liposomal 2-PAM (25 mg/kg, i.v.) + POX (2 mg/kg, s.c.) | 12/12 |
Group | Fluoro-Jade B Positive Cells/mm2 | |||
---|---|---|---|---|
Dentate Gyrus | CA1 | CA3 | Entorhinal Cortex | |
Control | 2.71 ± 0.27 | 2.28 ± 0.29 | 1.89 ± 0.23 | 1.78 ± 0.18 |
Free 2-PAM (25 mg/kg, i.v.) + POX (2 mg/kg, s.c.) | 12.46 ± 1.6 *** | 17.27 ± 1.76 *** | 9.77 ± 1.17 *** | 10.48 ± 0.69 *** |
Liposomal 2-PAM (25 mg/kg, i.v.) + POX (2 mg/kg, s.c.) | 4.75 ± 0.46 **# | 7.68 ± 0.91 ***# | 9.2 ± 0.91 *** | 9.09 ± 0.57 *** |
β (min−1) | t1/2β (min) | |
---|---|---|
Plasma | 0.0296 ± 0.002 | 23.4 ± 0.02 |
Brain | 0.0134 ± 0.001 | 51.7 ± 0.01 |
t1/2β = ln2/β, t1/2β—elimination half-life |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuznetsova, D.A.; Gaynanova, G.A.; Vasilieva, E.A.; Pavlov, R.V.; Zueva, I.V.; Babaev, V.M.; Kuznetsov, D.M.; Voloshina, A.D.; Petrov, K.A.; Zakharova, L.Y.; et al. Oxime Therapy for Brain AChE Reactivation and Neuroprotection after Organophosphate Poisoning. Pharmaceutics 2022, 14, 1950. https://doi.org/10.3390/pharmaceutics14091950
Kuznetsova DA, Gaynanova GA, Vasilieva EA, Pavlov RV, Zueva IV, Babaev VM, Kuznetsov DM, Voloshina AD, Petrov KA, Zakharova LY, et al. Oxime Therapy for Brain AChE Reactivation and Neuroprotection after Organophosphate Poisoning. Pharmaceutics. 2022; 14(9):1950. https://doi.org/10.3390/pharmaceutics14091950
Chicago/Turabian StyleKuznetsova, Darya A., Gulnara A. Gaynanova, Elmira A. Vasilieva, Rais V. Pavlov, Irina V. Zueva, Vasily M. Babaev, Denis M. Kuznetsov, Alexandra D. Voloshina, Konstantin A. Petrov, Lucia Y. Zakharova, and et al. 2022. "Oxime Therapy for Brain AChE Reactivation and Neuroprotection after Organophosphate Poisoning" Pharmaceutics 14, no. 9: 1950. https://doi.org/10.3390/pharmaceutics14091950
APA StyleKuznetsova, D. A., Gaynanova, G. A., Vasilieva, E. A., Pavlov, R. V., Zueva, I. V., Babaev, V. M., Kuznetsov, D. M., Voloshina, A. D., Petrov, K. A., Zakharova, L. Y., & Sinyashin, O. G. (2022). Oxime Therapy for Brain AChE Reactivation and Neuroprotection after Organophosphate Poisoning. Pharmaceutics, 14(9), 1950. https://doi.org/10.3390/pharmaceutics14091950