Gene Electrotransfer into Mammalian Cells Using Commercial Cell Culture Inserts with Porous Substrate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Numerical Modeling
2.1.1. Model of a Cell on Top of the Porous Substrate
2.1.2. Model of the Full Insert System
2.2. Experiments
2.2.1. Cell Culture
2.2.2. Plasmid
2.2.3. Aqueous Solutions
2.2.4. Electric Pulses
2.2.5. Propidium Uptake
2.2.6. Transfection
2.2.7. Flow Cytometry
2.2.8. Cell Viability
2.3. Statistical Analysis
3. Results
3.1. Numerical Model of Cell Electroporation on Porous Membrane
3.2. Electric Potential Distribution within the Full Insert System
3.3. DNA Translocation Time
3.4. Final Experimental Configuration and Model Validation
3.5. Transfection with eGFP Plasmid
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, A.K.; McGuirk, J.P. CAR T Cells: Continuation in a Revolution of Immunotherapy. Lancet Oncol. 2020, 21, e168–e178. [Google Scholar] [CrossRef]
- Wilson, J.M.; Flotte, T.R. Moving Forward after Two Deaths in a Gene Therapy Trial of Myotubular Myopathy. Hum. Gene Ther. 2020, 31, 695–696. [Google Scholar] [CrossRef]
- Rosazza, C.; Meglic, S.H.; Zumbusch, A.; Rols, M.-P.; Miklavcic, D. Gene Electrotransfer: A Mechanistic Perspective. Curr. Gene Ther. 2016, 16, 98–129. [Google Scholar] [CrossRef] [PubMed]
- Pagant, S.; Liberatore, R.A. In Vivo Electroporation of Plasmid DNA: A Promising Strategy for Rapid, Inexpensive, and Flexible Delivery of Anti-Viral Monoclonal Antibodies. Pharmaceutics 2021, 13, 1882. [Google Scholar] [CrossRef] [PubMed]
- Sachdev, S.; Potočnik, T.; Rems, L.; Miklavčič, D. Revisiting the Role of Pulsed Electric Fields in Overcoming the Barriers to in Vivo Gene Electrotransfer. Bioelectrochemistry 2022, 144, 107994. [Google Scholar] [CrossRef]
- Rems, L.; Miklavčič, D. Tutorial: Electroporation of Cells in Complex Materials and Tissue. J. Appl. Phys. 2016, 119, 201101. [Google Scholar] [CrossRef]
- Golzio, M.; Teissié, J.; Rols, M.-P. Cell Synchronization Effect on Mammalian Cell Permeabilization and Gene Delivery by Electric Field. Biochim. Biophys. Acta (BBA)-Biomembr. 2002, 1563, 23–28. [Google Scholar] [CrossRef]
- Atilla-Gokcumen, G.E.; Muro, E.; Relat-Goberna, J.; Sasse, S.; Bedigian, A.; Coughlin, M.L.; Garcia-Manyes, S.; Eggert, U.S. Dividing Cells Regulate Their Lipid Composition and Localization. Cell 2014, 156, 428–439. [Google Scholar] [CrossRef]
- Shi, J.; Ma, Y.; Zhu, J.; Chen, Y.; Sun, Y.; Yao, Y.; Yang, Z.; Xie, J. A Review on Electroporation-Based Intracellular Delivery. Molecules 2018, 23, 3044. [Google Scholar] [CrossRef]
- Mahnič-Kalamiza, S.; Miklavčič, D. Scratching the Electrode Surface: Insights into a High-Voltage Pulsed-Field Application from in Vitro & in Silico Studies in Indifferent Fluid. Electrochim. Acta 2020, 363, 137187. [Google Scholar] [CrossRef]
- Huang, Y.; Rubinsky, B. Microfabricated Electroporation Chip for Single Cell Membrane Permeabilization. Sens. Actuators A Phys. 2001, 89, 242–249. [Google Scholar] [CrossRef]
- Khine, M.; Lau, A.; Ionescu-Zanetti, C.; Seo, J.; Lee, L.P. A Single Cell Electroporation Chip. Lab Chip 2005, 5, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Lee, L.J. Micro-/Nanofluidics Based Cell Electroporation. Biomicrofluidics 2013, 7, 011301. [Google Scholar] [CrossRef]
- Boukany, P.E.; Morss, A.; Liao, W.; Henslee, B.; Jung, H.; Zhang, X.; Yu, B.; Wang, X.; Wu, Y.; Li, L.; et al. Nanochannel Electroporation Delivers Precise Amounts of Biomolecules into Living Cells. Nat. Nano 2011, 6, 747–754. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Xu, A.M.; Leal-Ortiz, S.; Cao, Y.; Garner, C.C.; Melosh, N.A. Nanostraw–Electroporation System for Highly Efficient Intracellular Delivery and Transfection. ACS Nano 2013, 7, 4351–4358. [Google Scholar] [CrossRef] [PubMed]
- Boukany, P.E.; Wu, Y.; Zhao, X.; Kwak, K.J.; Glazer, P.J.; Leong, K.; Lee, L.J. Nonendocytic Delivery of Lipoplex Nanoparticles into Living Cells Using Nanochannel Electroporation. Adv. Healthc. Mater. 2014, 3, 682–689. [Google Scholar] [CrossRef] [PubMed]
- Gao, K.; Li, L.; He, L.; Hinkle, K.; Wu, Y.; Ma, J.; Chang, L.; Zhao, X.; Perez, D.G.; Eckardt, S.; et al. Design of a Microchannel-Nanochannel-Microchannel Array Based Nanoelectroporation System for Precise Gene Transfection. Small 2014, 10, 1015–1023. [Google Scholar] [CrossRef]
- Chang, L.; Bertani, P.; Gallego-Perez, D.; Yang, Z.; Chen, F.; Chiang, C.; Malkoc, V.; Kuang, T.; Gao, K.; Lee, L.J.; et al. 3D Nanochannel Electroporation for High-Throughput Cell Transfection with High Uniformity and Dosage Control. Nanoscale 2015, 8, 243–252. [Google Scholar] [CrossRef]
- Zhao, X.; Huang, X.; Wang, X.; Wu, Y.; Eisfeld, A.-K.; Schwind, S.; Gallego-Perez, D.; Boukany, P.E.; Marcucci, G.I.; Lee, L.J. Nanochannel Electroporation as a Platform for Living Cell Interrogation in Acute Myeloid Leukemia. Adv. Sci. 2015, 2, 1500111. [Google Scholar] [CrossRef]
- Cao, Y.; Chen, H.; Qiu, R.; Hanna, M.; Ma, E.; Hjort, M.; Zhang, A.; Lewis, R.S.; Wu, J.C.; Melosh, N.A. Universal Intracellular Biomolecule Delivery with Precise Dosage Control. Sci. Adv. 2018, 4, eaat8131. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, P.; Nathamgari, S.S.P.; Kessler, J.A.; Espinosa, H.D. Combined Numerical and Experimental Investigation of Localized Electroporation-Based Cell Transfection and Sampling. ACS Nano 2018, 12, 12118–12128. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Ma, E.; Cestellos-Blanco, S.; Zhang, B.; Qiu, R.; Su, Y.; Doudna, J.A.; Yang, P. Nontoxic Nanopore Electroporation for Effective Intracellular Delivery of Biological Macromolecules. Proc. Natl. Acad. Sci. USA 2019, 116, 7899–7904. [Google Scholar] [CrossRef] [PubMed]
- Muralidharan, A.; Pesch, G.R.; Hubbe, H.; Rems, L.; Nouri-Goushki, M.; Boukany, P.E. Microtrap Array on a Chip for Localized Electroporation and Electro-Gene Transfection. Bioelectrochemistry 2022, 147, 108197. [Google Scholar] [CrossRef]
- Pierres, A.; Benoliel, A.-M.; Touchard, D.; Bongrand, P. How Cells Tiptoe on Adhesive Surfaces before Sticking. Biophys. J. 2008, 94, 4114–4122. [Google Scholar] [CrossRef] [PubMed]
- Santoro, F.; Zhao, W.; Joubert, L.-M.; Duan, L.; Schnitker, J.; van de Burgt, Y.; Lou, H.-Y.; Liu, B.; Salleo, A.; Cui, L.; et al. Revealing the Cell–Material Interface with Nanometer Resolution by Focused Ion Beam/Scanning Electron Microscopy. ACS Nano 2017, 11, 8320–8328. [Google Scholar] [CrossRef] [PubMed]
- DeBruin, K.A.; Krassowska, W. Modeling Electroporation in a Single Cell. I. Effects of Field Strength and Rest Potential. Biophys. J. 1999, 77, 1213–1224. [Google Scholar] [CrossRef]
- Li, J.; Lin, H. The Current-Voltage Relation for Electropores with Conductivity Gradients. Biomicrofluidics 2010, 4, 013206. [Google Scholar] [CrossRef]
- Rems, L.; Ušaj, M.; Kandušer, M.; Reberšek, M.; Miklavčič, D.; Pucihar, G. Cell Electrofusion Using Nanosecond Electric Pulses. Sci. Rep. 2013, 3, 3382. [Google Scholar] [CrossRef]
- DeBruin, K.A.; Krassowska, W. Electroporation and Shock-Induced Transmembrane Potential in a Cardiac Fiber during Defibrillation Strength Shocks. Ann. Biomed. Eng. 1998, 26, 584–596. [Google Scholar] [CrossRef]
- Guidelines for Using Falcon Cell Culture Inserts. 500002055 PD104401 Rev. 01. Available online: https://www.corning.com/catalog/cls/documents/protocols/Guidelines_for_Use_Falcon_Cell_Culture_Inserts_PD104401.pdf (accessed on 19 June 2022).
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Walter, K.; Ziesche, F. Apparatus and Method, Particularly for Microscopes and Endoscopes, Using Baseline Estimation and Half-Quadratic Minimization for the Deblurring of Images. 2019. Available online: https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2019185174 (accessed on 19 June 2022).
- Single, A.; Beetham, H.; Telford, B.J.; Guilford, P.; Chen, A. A Comparison of Real-Time and Endpoint Cell Viability Assays for Improved Synthetic Lethal Drug Validation. SLAS Discov. 2015, 20, 1286–1293. [Google Scholar] [CrossRef]
- Potočnik, T.; Miklavčič, D.; Maček Lebar, A. Gene Transfer by Electroporation with High Frequency Bipolar Pulses in Vitro. Bioelectrochemistry 2021, 140, 107803. [Google Scholar] [CrossRef] [PubMed]
- Potočnik, T.; Sachdev, S.; Polajžer, T.; Maček Lebar, A.; Miklavčič, D. Efficient Gene Transfection by Electroporation—In Vitro and In Silico Study of Pulse Parameters. Appl. Sci. 2022, 12, 8237. [Google Scholar] [CrossRef]
- Esser, A.T.; Smith, K.C.; Gowrishankar, T.R.; Vasilkoski, Z.; Weaver, J.C. Mechanisms for the Intracellular Manipulation of Organelles by Conventional Electroporation. Biophys. J. 2010, 98, 2506–2514. [Google Scholar] [CrossRef]
- Robertson, R.M.; Smith, D.E. Self-Diffusion of Entangled Linear and Circular DNA Molecules: Dependence on Length and Concentration. Macromolecules 2007, 40, 3373–3377. [Google Scholar] [CrossRef]
- Stellwagen, N.C.; Gelfi, C.; Righetti, P.G. The Free Solution Mobility of DNA. Biopolymers 1997, 42, 687–703. [Google Scholar] [CrossRef]
- Wang, L.; Chang, C.-C.; Sylvers, J.; Yuan, F. A Statistical Framework for Determination of Minimal Plasmid Copy Number Required for Transgene Expression in Mammalian Cells. Bioelectrochemistry 2021, 138, 107731. [Google Scholar] [CrossRef] [PubMed]
- Batista Napotnik, T.; Miklavčič, D. In Vitro Electroporation Detection Methods—An Overview. Bioelectrochemistry 2018, 120, 166–182. [Google Scholar] [CrossRef] [PubMed]
- Marino, M.; Olaiz, N.; Signori, E.; Maglietti, F.; Suárez, C.; Michinski, S.; Marshall, G. PH Fronts and Tissue Natural Buffer Interaction in Gene Electrotransfer Protocols. Electrochim. Acta 2017, 255, 463–471. [Google Scholar] [CrossRef]
- Patino, C.A.; Pathak, N.; Mukherjee, P.; Park, S.H.; Bao, G.; Espinosa, H.D. Multiplexed High-Throughput Localized Electroporation Workflow with Deep Learning–Based Analysis for Cell Engineering. Sci. Adv. 2022, 8, eabn7637. [Google Scholar] [CrossRef] [PubMed]
- Breton, M.; Mir, L.M. Investigation of the Chemical Mechanisms Involved in the Electropulsation of Membranes at the Molecular Level. Bioelectrochemistry 2018, 119, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Rems, L.; Viano, M.; Kasimova, M.A.; Miklavčič, D.; Tarek, M. The Contribution of Lipid Peroxidation to Membrane Permeability in Electropermeabilization: A Molecular Dynamics Study. Bioelectrochemistry 2019, 125, 46–57. [Google Scholar] [CrossRef] [PubMed]
Parameter | Symbol | Value | Reference |
---|---|---|---|
Cell height and largest semiaxis | - | 15 µm, 40 µm 7 µm, 20 µm | Arbitrary |
Extracellular liquid conductivity | σe | 1.5 S/m | Measured 1 |
Intracellular liquid conductivity | σi | 0.5 S/m | [29] |
Cell membrane conductance | Gcm | 2 S/m2 | [29] |
Cell membrane capacitance | Ccm | 0.01 F/m2 | [29] |
Cell membrane thickness | dcm | 5 nm | [29] |
Electropore radius | rp | 1 nm | [29] |
Electropore conductivity | σp | (σe-σi)/ln(σe/σi) | [27] |
Electroporation constant | q | 2.46 | [29] |
Electroporation parameter | a | 109 m−2 s−1 | [29] |
Characteristic voltage of electroporation | Vep | 0.25 V | [29] |
Equilibrium pore density | N0 | 1.5 × 109 m−2 | [29] |
Substrate thickness | dsubs | 10 µm | [30] |
Porosity of substrate with 0.4 mm pores | ρsubs | 2.0 × 106 cm−2 | [30] |
Porosity of substrate with 1.0 mm pores | ρsubs | 1.6 × 106 cm−2 | [30] |
Porosity of substrate with 3 mm pores | ρsubs | 0.8 × 106 cm−2 | [30] |
Eff. conductance of substrate with 0.4 mm pores | Gsubs,eff | 366 S/m2 | Equation (6) |
Eff. conductance of substrate with 1.0 mm pores | Gsubs,eff | 1748 S/m2 | Equation (6) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vindiš, T.; Blažič, A.; Khayyat, D.; Potočnik, T.; Sachdev, S.; Rems, L. Gene Electrotransfer into Mammalian Cells Using Commercial Cell Culture Inserts with Porous Substrate. Pharmaceutics 2022, 14, 1959. https://doi.org/10.3390/pharmaceutics14091959
Vindiš T, Blažič A, Khayyat D, Potočnik T, Sachdev S, Rems L. Gene Electrotransfer into Mammalian Cells Using Commercial Cell Culture Inserts with Porous Substrate. Pharmaceutics. 2022; 14(9):1959. https://doi.org/10.3390/pharmaceutics14091959
Chicago/Turabian StyleVindiš, Tina, Anja Blažič, Diaa Khayyat, Tjaša Potočnik, Shaurya Sachdev, and Lea Rems. 2022. "Gene Electrotransfer into Mammalian Cells Using Commercial Cell Culture Inserts with Porous Substrate" Pharmaceutics 14, no. 9: 1959. https://doi.org/10.3390/pharmaceutics14091959
APA StyleVindiš, T., Blažič, A., Khayyat, D., Potočnik, T., Sachdev, S., & Rems, L. (2022). Gene Electrotransfer into Mammalian Cells Using Commercial Cell Culture Inserts with Porous Substrate. Pharmaceutics, 14(9), 1959. https://doi.org/10.3390/pharmaceutics14091959