Identification of Aryl Polyamines Derivatives as Anti-Trypanosoma cruzi Agents Targeting Iron Superoxide Dismutase †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemistry
2.2. In Vitro Assays
2.2.1. T. cruzi Strains
2.2.2. Screening against Extracellular Epimastigotes
2.2.3. Cytotoxicity Test
2.2.4. In Vitro Screening against Intracellular Amastigotes and Infected Cells
2.2.5. In Vitro Screening against BTs
2.3. In Vivo Assays on BALB/c Mice
2.3.1. Ethics Statement
2.3.2. Infection and Treatment
2.3.3. Monitoring of Acute Parasitaemia by Counting
2.3.4. Infection Reactivation by Immunosuppression
2.3.5. Blood Collection and Organs/Tissues Extraction
2.3.6. Nested Amastigotes Detection by PCR
2.3.7. Immunoglobulin G Quantification by ELISA
2.3.8. Clinical Analysis
2.4. MoA Tests
2.4.1. Excreted Metabolites by 1H Nuclear Magnetic Resonance (NMR)
2.4.2. Mitochondrial Membrane Potential by Flow Cytometry
2.4.3. SOD Inhibition Tests
2.4.4. Docking Methods
2.5. Statistical Analyses
3. Results
3.1. Chemistry
3.2. In Vitro Evaluation
3.3. In Vivo Evaluation
3.4. MoA Evaluation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pérez-Molina, J.A.; Molina, I. Chagas disease. Lancet 2018, 391, 82–94. [Google Scholar] [CrossRef] [PubMed]
- WHO. World Health Organization WHO: Chagas Disease (American Trypanosomiasis). Available online: https://www.who.int/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis) (accessed on 2 October 2022).
- Martín-Escolano, J.; Medina-Carmona, E.; Martín-Escolano, R. Chagas disease: Current view of an ancient and global chemotherapy challenge. ACS Infect. Dis. 2020, 6, 2830–2843. [Google Scholar] [CrossRef] [PubMed]
- Requena-Méndez, A.; Aldasoro, E.; de Lazzari, E.; Sicuri, E.; Brown, M.; Moore, D.A.; Gascon, J.; Muñoz, J. Prevalence of Chagas Disease in Latin-American Migrants Living in Europe: A Systematic Review and Meta-analysis. PLoS Negl. Trop. Dis. 2015, 9, e0003540. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Chagas Disease (American Trypanosomiasis). Available online: http://www.who.int/mediacentre/factsheets/fs340/en/ (accessed on 30 May 2018).
- Lidani, K.C.F.; Andrade, F.A.; Bavia, L.; Damasceno, F.S.; Beltrame, M.H.; Messias-Reason, I.J.; Sandri, T.L. Chagas disease: From discovery to a worldwide health problem. Front. Public Health 2019, 7, 166. [Google Scholar] [CrossRef] [PubMed]
- DNDi—Drugs for Neglected Diseases Initiative. Diseases & Projects—Chagas Disease. Available online: https://www.dndi.org/diseases-projects/chagas/ (accessed on 2 October 2022).
- Chatelain, E. Chagas Disease Drug Discovery: Toward a New Era. J. Biomol. Screen. 2014, 20, 22–35. [Google Scholar] [CrossRef] [Green Version]
- Bern, C. Chagas’ Disease. N. Engl. J. Med. 2015, 373, 456–466. [Google Scholar] [CrossRef]
- Aldasoro, E.; Posada, E.; Requena-Méndez, A.; Calvo-Cano, A.; Serret, N.; Casellas, A.; Sanz, S.; Soy, D.; Pinazo, J.; Gascon, J. What to expect and when: Benznidazole toxicity in chronic Chagas’ disease treatment. J. Antimicrob. Chemother. 2018, 73, 1060–1067. [Google Scholar] [CrossRef] [Green Version]
- Mejia, A.M.; Hall, B.S.; Taylor, M.C.; Gómez-Palacio, A.; Wilkinson, S.R.; Triana-Chávez, O.; Kelly, J.M. Benznidazole-resistance in Trypanosoma cruzi is a readily acquired trait that can arise independently in a single population. J. Infect. Dis. 2012, 206, 220–228. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, S.R.; Taylor, M.C.; Horn, D.; Kelly, J.M.; Cheeseman, I. A mechanism for cross-resistance to nifurtimox and benznidazole in trypanosomes. Proc. Natl. Acad. Sci. USA 2008, 105, 5022–5027. [Google Scholar] [CrossRef] [Green Version]
- Olmo, F.; Clares, M.; Marin, C.; González, J.; Inclán, M.; Soriano, C.; Urbanová, K.; Tejero, R.; Rosales, M.; Krauth-Siegel, R.; et al. Synthetic single and double aza-scorpiand macrocycles act as inhibitors of the antioxidant enzymes iron superoxide dismutase and trypanothione reductase in Trypanosoma cruzi with promising results in a murine model. RSC Adv. 2014, 4, 65108–65120. [Google Scholar] [CrossRef]
- Galiana-Roselló, C.; Aceves-Luquero, C.; González, J.; Martínez-Camarena, Á.; Villalonga, R.; Fernández de Mattos, S.; Soriano, C.; Llinares, J.; García-España, E.; Villalonga, P.; et al. Toward a Rational Design of Polyamine-Based Zinc-Chelating Agents for Cancer Therapies. J. Med. Chem. 2020, 63, 1199–1215. [Google Scholar] [CrossRef]
- Romanha, A.J.; de Castro, S.L.; Correia Soeiro, M.N.; Lannes-Vieira, J.; Ribeiro, I.; Talvani, A.; Bourdin, B.; Blum, B.; Olivieri, B.; Zani, C.; et al. In vitro and in vivo experimental models for drug screening and development for Chagas disease. Mem. Do Inst. Oswaldo Cruz 2010, 105, 233–238. [Google Scholar] [CrossRef]
- Nwaka, S.; Besson, D.; Ramirez, B.; Maes, L.; Matheeussen, A.; Bickle, Q.; Mansour, N.R.; Yousif, F.; Townson, S.; Gokool, S.; et al. Integrated Dataset of Screening Hits against Multiple Neglected Disease Pathogens. PLoS Negl. Trop. Dis. 2011, 5, e1412. [Google Scholar] [CrossRef] [Green Version]
- Don, R.; Ioset, J.R. Screening strategies to identify new chemical diversity for drug development to treat kinetoplastid infections. Parasitology 2014, 141, 140–146. [Google Scholar] [CrossRef] [Green Version]
- Katsuno, K.; Burrows, J.N.; Duncan, K.; Van Huijsduijnen, R.H.; Kaneko, T.; Kita, K.; Mowbray, C.E.; Schmatz, D.; Warner, P.; Slingsby, B.T. Hit and lead criteria in drug discovery for infectious diseases of the developing world. Nat. Rev. Drug Discov. 2015, 14, 751–758. [Google Scholar] [CrossRef]
- Chatelain, E.; Ioset, J.R. Phenotypic screening approaches for Chagas disease drug discovery. Expert Opin. Drug Discov. 2018, 13, 141–153. [Google Scholar] [CrossRef]
- Onopchenko, A.; Harrison, J.J.; Chan, C.Y. The Reaction of Phthalic Anhydride with Diethylenetriamine and Triethylenetetramine. A Literature Correction. Bull. Chem. Soc. Jpn. 1998, 71, 717–721. [Google Scholar] [CrossRef]
- Aucejo, R.; Alarcón, J.; García-españa, E.; Llinares, J.M.; Marchin, K.L.; Soriano, C.; Lodeiro, C.; Bernardo, M.A.; Pina, F.; Pina, J.; et al. A New Zn II Tweezer Pyridine-Naphthalene System—An Off-On-Off System Working in a Biological pH Window. Eur. J. Inorg. Chem. 2005, 2005, 4301–4308. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, L.; Lima, C.J.C.; Parola, A.J.; Pina, F.; Meitz, R.; Aucejo, R.; Garcia-España, E.; Llinares, M.J.; Soriano, C.; Alarcón, J. Anion Detection by Fluorescent Zn (II) Complexes of Functionalized Polyamine Ligands. Inorg. Chem. 2008, 47, 6173–6183. [Google Scholar] [CrossRef]
- Parola, A.J.; Lima, J.C.; Pina, F.; Pina, J.; de Melo, J.S.; Soriano, C.; García-España, E.; Aucejo, R.; Alarcón, J. Synthesis and photophysical properties of dansyl-based polyamine ligands and their Zn (II) complexes. Inorg. Chim. Acta 2007, 360, 1200–1208. [Google Scholar] [CrossRef]
- Verdejo, B.; Acosta-rueda, L.; Clares, M.P.; Aguinaco, A.; Basallote, M.G.; Soriano, C.; Tejero, R.; García-España, E. Equilibrium, Kinetic, and Computational Studies on the Formation of Cu2+ and Zn2+ Complexes with an Indazole-Containing Azamacrocyclic Scorpiand: Evidence for Metal-Induced Tautomerism. Inorg. Chem. 2015, 54, 1983–1991. [Google Scholar] [CrossRef] [PubMed]
- González, J.; Llinares, J.M.; Belda, R.; Pitarch, J.; Soriano, C.; Tejero, R.; Verdejo, B.; García-España, E. Tritopic phenanthroline and pyridine tail-tied aza-scorpiands†. Org. Biomol. Chem. 2010, 8, 2367–2376. [Google Scholar] [CrossRef] [PubMed]
- Martín-Escolano, R.; Moreno-Viguri, E.; Santivanez-Veliz, M.; Martin-Montes, A.; Medina-Carmona, E.; Paucar, R.; Marín, C.; Azqueta, A.; Cirauqui, N.; Pey, A.L.; et al. Second Generation of Mannich Base-Type Derivatives with in Vivo Activity against Trypanosoma cruzi. J. Med. Chem. 2018, 61, 5643–5663. [Google Scholar] [CrossRef] [PubMed]
- Téllez-Meneses, J.; Mejía-Jaramillo, A.M.; Triana-Chávez, O. Biological characterization of Trypanosoma cruzi stocks 658 from domestic and sylvatic vectors in Sierra Nevada of Santa Marta, Colombia. Acta Trop. 2008, 108, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Kendall, G.; Wilderspin, A.F.; Ashall, F.; Miles, M.A.; Kelly, J.M. Trypanosoma cruzi glycosomal glyceralde-661 hyde-3-phosphate dehydrogenase does not conform to the ‘hotspot’ topogenic signal model. EMBO J. 1990, 9, 2751–2758. [Google Scholar] [CrossRef]
- Martín-Escolano, R.; Molina-Carreño, D.; Delgado-Pinar, E.; Martin-Montes, Á.; Clares, M.P.; Medina-Carmona, E.; Pitarch-Jarque, J.; Martín-Escolano, J.; Rosales, M.J.; García-España, E.; et al. New polyamine drugs as more effective antichagas agents than benznidazole in both the acute and chronic phases. Eur. J. Med. Chem. 2019, 164, 27–46. [Google Scholar] [CrossRef]
- Martín-Escolano, R.; Marín, C.; Vega, M.; Martin-Montes, Á.; Medina-Carmona, E.; López, C.; Rotger, C.; Costa, A.; Sánchez-Moreno, M. Synthesis and biological evaluation of new long-chain squaramides as anti-chagasic agents in the BALB/c mouse model. Bioorg. Med. Chem. 2019, 27, 865–879. [Google Scholar] [CrossRef]
- Francisco, A.F.; Lewis, M.D.; Jayawardhana, S.; Taylor, M.C.; Chatelain, E.; Kelly, J.M. Limited Ability of Posaconazole To Cure both Acute and Chronic Trypanosoma cruzi Infections Revealed by Highly Sensitive In Vivo Imaging. Antimicrob. Agents Chemother. 2015, 59, 4653–4661. [Google Scholar] [CrossRef] [Green Version]
- Ye, X.; Ding, J.; Zhou, X.; Chen, G.; Liu, S.F. Divergent roles of endothelial NF-κB in multiple organ injury and bacterial clearance in mouse models of sepsis. J. Exp. Med. 2008, 205, 1303–1315. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Becerra, C.; Sanchez-Moreno, M.; Osuna, A.; Opperdoes, F.R. Comparative Aspects of Energy Metabolism in Plant Trypanosomatids. J. Eukaryot. Microbiol. 1997, 44, 523–529. [Google Scholar] [CrossRef]
- Martín-Escolano, R.; Aguilera-Venegas, B.; Marín, C.; Martín-Montes, Á.; Martín-Escolano, J.; Medina-Carmona, E.; Arán, V.J.; Sánchez-Moreno, M. Synthesis and Biological in vitro and in vivo Evaluation of 2-(5-Nitroindazol-1-yl)ethylamines and Related Compounds as Potential Therapeutic Alternatives for Chagas Disease. ChemMedChem 2018, 13, 2104–2118. [Google Scholar] [CrossRef]
- Sandes, J.M.; Fontes, A.; Regis-da-Silva, C.G.; Brelaz De Castro, M.C.A.; Lima-Junior, C.G.; Silva, F.P.L.; Vasconcellos, M.L.A.A.; Figueiredo, R.C.B.Q. Trypanosoma cruzi Cell Death Induced by the Morita-Baylis-Hillman Adduct 3-Hydroxy-2-Methylene-3-(4-Nitrophenylpropanenitrile). PLoS ONE 2014, 9, e93936. [Google Scholar] [CrossRef] [Green Version]
- Abengózar, M.Á.; Cebrián, R.; Saugar, J.M.; Gárate, T.; Valdivia, E.; Martínez-Bueno, M.; Maqueda, M.; Rivas, L. Enterocin AS-48 as evidence for the use of bacteriocins as new leishmanicidal agents. Antimicrob. Agents Chemother. 2017, 61, e02288-16. [Google Scholar] [CrossRef] [Green Version]
- López-Céspedes, Á.; Villagrán, E.; Briceño Álvarez, K.; de Diego, J.A.; Hernández-Montiel, H.L.; Saldaña, C.; Sánchez-Moreno, M.; Marín, C. Trypanosoma cruzi: Seroprevalence Detection in Suburban Population of Santiago de Querétaro (Mexico). Sci. World J. 2011, 2012, 914129. [Google Scholar] [CrossRef] [Green Version]
- Beyer, W.F.; Fridovich, I. Assaying for Superoxide Dismutase Activity: Some Large Consequences of Minor Changes in Conditions. Anal. Biochem. 1987, 161, 559–566. [Google Scholar] [CrossRef]
- Martín-Escolano, J.; Marín, C.; Rosales, M.J.; Tsaousis, A.D.; Medina-carmona, E.; Martín-Escolano, R. An Updated View of the Trypanosoma cruzi Life Cycle: Intervention Points for an E ff ective Treatment. ACS Infect. Dis. 2022, 8, 1107–1115. [Google Scholar] [CrossRef]
- Rao, S.P.S.; Barrett, M.P.; Dranoff, G.; Faraday, C.J.; Gimpelewicz, C.R.; Hailu, A.; Jones, C.L.; Kelly, J.M.; Lazdins-Helds, J.K.; Mäser, P.; et al. Drug Discovery for Kinetoplastid Diseases: Future Directions. ACS Infect. Dis. 2019, 5, 152–157. [Google Scholar] [CrossRef] [Green Version]
- Molina, I.; Gómez i Prat, J.; Salvador, F.; Treviño, B.; Sulleiro, E.; Serre, N.; Pou, D.; Roure, S.; Cabezos, J.; Valerio, L.; et al. Randomized Trial of Posaconazole and Benznidazole for Chronic Chagas’ Disease. N. Engl. J. Med. 2014, 370, 1899–1908. [Google Scholar] [CrossRef]
- Porrás, A.I.; Yadon, Z.E.; Altcheh, J.; Britto, C.; Chaves, G.C.; Flevaud, L.; Martins-Filho, O.A.; Ribeiro, I.; Schijman, A.G.; Shikanai-Yasuda, M.A.; et al. Target Product Profile (TPP) for Chagas Disease Point-of-Care Diagnosis and Assessment of Response to Treatment. PLoS Negl. Trop. Dis. 2015, 9, e0003697. [Google Scholar] [CrossRef] [Green Version]
- DNDi Chagas Disease Target Product Profile. Available online: https://www.dndi.org/diseases-projects/chagas/chagas-target-product-profile/) (accessed on 28 October 2022).
- Chatelain, E.; Konar, N. Translational challenges of animal models in Chagas disease drug development: A review. Drug Des. Dev. Ther. 2015, 9, 4807–4823. [Google Scholar] [CrossRef]
- Canavaci, A.M.C.; Bustamante, J.M.; Padilla, A.M.; Brandan, C.M.P.; Laura, J.; Xu, D.; Boehlke, C.L.; Tarleton, R.L. In Vitro and In Vivo High-Throughput Assays for the Testing of Anti-Trypanosoma cruzi Compounds. PLoS Negl. Trop. Dis. 2010, 4, e740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francisco, A.F.; Jayawardhana, S.; Lewis, M.D.; White, K.L.; Shackleford, D.M.; Chen, G.; Saunders, J.; Osuna-Cabello, M.; Read, K.D.; Charman, S.A.; et al. Nitroheterocyclic drugs cure experimental Trypanosoma cruzi infections more effectively in the chronic stage than in the acute stage. Sci. Rep. 2016, 6, 35351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, D.M.; Martins, T.A.F.; Caldas, I.S.; Diniz, L.F.; Machado-Coelho, G.L.L.; Carneiro, C.M.; Oliveira, R.d.P.; Talvani, A.; Lana, M.; Bahia, M.T. Benznidazole alters the pattern of Cyclophosphamide-induced reactivation in experimental Trypanosoma cruzi-dependent lineage infection. Acta Trop. 2010, 113, 134–138. [Google Scholar] [CrossRef] [PubMed]
- Martín-Escolano, R.; Cebrián, R.; Maqueda, M.; Romero, D.; Rosales, M.J.; Sánchez-Moreno, M.; Marín, C. Assessing the effectiveness of AS-48 in experimental mice models of Chagas’ disease. J. Antimicrob. Chemother. 2020, 75, 1537–1545. [Google Scholar] [CrossRef] [PubMed]
- Bustamante, J.M.; Craft, J.M.; Crowe, B.D.; Ketchie, S.A.; Tarleton, R.L. New, Combined, and Reduced Dosing Treatment Protocols Cure Trypanosoma cruzi Infection in Mice. J. Infect. Dis. 2014, 209, 150–162. [Google Scholar] [CrossRef]
- Kirkinezos, I.G.; Moraes, C.T. Reactive oxygen species and mitochondrial diseases. Semin. Cell Dev. Biol. 2001, 12, 449–457. [Google Scholar] [CrossRef]
- Michels, P.A.M.; Bringaud, F.; Herman, M.; Hannaert, V. Metabolic functions of glycosomes in trypanosomatids. Biochim. Biophys. Acta—Mol. Cell Res. 2006, 1763, 1463–1477. [Google Scholar] [CrossRef]
- Beltran-Hortelano, I.; Perez-Silanes, S.; Galiano, S. Trypanothione Reductase and Superoxide Dismutase as Current Drug Targets for Trypanosoma cruzi: An Overview of Compounds with Activity against Chagas Disease. Curr. Med. Chem. 2017, 24, 1066–1138. [Google Scholar] [CrossRef]
- Hall, B.S.; Wilkinson, S.R. Activation of Benznidazole by Trypanosomal Type I Nitroreductases Results in Glyoxal Formation. Antimicrob. Agents Chemother. 2012, 56, 115–123. [Google Scholar] [CrossRef] [Green Version]
- Martín-Escolano, R.; Cebrián, R.; Martín-escolano, J.; Rosales, M.J.; Maqueda, M.; Sánchez-moreno, M.; Marín, C. Insights into Chagas treatment based on the potential of bacteriocin AS-48. IJP Drugs Drug Resist. 2019, 10, 1–8. [Google Scholar] [CrossRef]
- Morillo, C.A.; Waskin, H.; Sosa-Estani, S.; del Carmen Bangher, M.; Cuneo, C.; Milesi, R.; Mallagray, M.; Apt, W.; Beloscar, J.; Gascon, J.; et al. Benznidazole and Posaconazole in Eliminating Parasites in Asymptomatic T. Cruzi Carriers: The STOP-CHAGAS Trial. J. Am. Coll. Cardiol. 2017, 69, 939–947. [Google Scholar] [CrossRef]
- Urbina, J.A. Chemotherapy of Chagas disease. Curr. Pharm. Des. 2002, 8, 287–295. [Google Scholar] [CrossRef]
- Perin, L.; Moreira da Silva, R.; Fonseca, K.d.S.; Cardoso, J.M.d.O.; Mathias, F.A.S.; Reis, L.E.S.; Molina, I.; Correa-Oliveira, R.; Vieira, P.M.d.A.; Carneiro, C.M. Pharmacokinetics and Tissue Distribution of Benznidazole after Oral Administration in Mice. Antimicrob. Agents Chemother. 2017, 61, e02410-16. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, V.; Dias, N.; Paiva, T.; Hagström-Bex, L.; Nitz, N.; Pratesi, R.; Hecht, M. Current trends in the pharmacological management of Chagas disease. Int. J. Parasitol. Drugs Drug Resist. 2020, 12, 7–17. [Google Scholar] [CrossRef]
- Ferreira, L.; Andricopulo, A. Drug repositioning approaches to parasitic diseases: A medicinal chemistry perspective. Drug Discov. Today 2016, 21, 1699–1710. [Google Scholar] [CrossRef]
- Sánchez-Valdéz, F.J.; Padilla, A.; Wang, W.; Orr, D.; Tarleton, R.L. Spontaneous dormancy protects Trypanosoma cruzi during extended drug exposure. eLife 2018, 7, e34039. [Google Scholar] [CrossRef]
- Cal, M.; Ioset, J.; Fügi, M.; Mäser, P.; Kaiser, M. Assessing anti-T. cruzi candidates in vitro for sterile cidality. Int. J. Parasitol. Drugs Drug Resist. 2016, 6, 165–170. [Google Scholar] [CrossRef] [Green Version]
- Lepesheva, G. Design or screening of drugs for the treatment of Chagas disease: What shows the most promise? Expert Opin. Drug Discov. 2013, 8, 1479–1489. [Google Scholar] [CrossRef] [Green Version]
- Molina, I.; Salvador, F.; Sánchez-Montalvá, A. The use of posaconazole against Chagas disease. Curr. Opin. Infect. Dis. 2015, 28, 397–407. [Google Scholar] [CrossRef]
Compound | Activity IC50 (µM) a | Activity IC50 (µM) a | Activity IC50 (µM) a | Toxicity IC50 (µM) b Vero Cell | ||||||
---|---|---|---|---|---|---|---|---|---|---|
T. cruzi Arequipa Strain | T. cruzi SN3 Strain | T. cruzi Tulahuen Strain | ||||||||
E | A | T | E | A | T | E | A | T | ||
BZN | 16.9 ± 1.8 | 8.3 ± 0.7 | 12.4 ± 1.1 | 36.2 ± 2.4 | 16.6 ± 1.4 | 36.1 ± 3.1 | 19.7 ± 1.7 | 10.0 ± 0.8 | 15.1 ± 1.3 | 80.4 ± 7.1 |
1 | 28.3 ± 2.4 | nd | nd | 27.1 ± 2.1 | nd | nd | 26.0 ± 2.7 | nd | nd | 58.1 ± 6.0 |
2 | 2.9 ± 0.3 | 6.2 ± 0.6 | 4.8 ± 0.5 | 5.7 ± 0.5 | nd | nd | 15.8 ± 1.4 | nd | nd | 38.5 ± 4.1 |
3 | 18.7 ± 1.6 | nd | nd | 21.8 ± 1.9 | nd | nd | 19.2 ± 1.7 | nd | nd | 25.8 ± 2.7 |
4 | 25.2 ± 2.7 | nd | nd | 11.0 ± 1.0 | nd | nd | 22.6 ± 3.3 | nd | nd | 5.3 ± 0.4 |
5 | 31.3 ± 3.1 | nd | nd | 33.8 ± 3.1 | nd | nd | 25.3 ± 2.1 | nd | nd | 12.4 ± 1.4 |
6 | 12.0 ± 1.1 | nd | nd | 10.0 ± 1.2 | nd | nd | 16.1 ± 1.7 | nd | nd | 63.2 ± 5.7 |
7 | 11.5 ± 1.1 | nd | nd | 10.4 ± 1.1 | nd | nd | 12.1 ± 1.1 | nd | nd | 41.3 ± 3.7 |
8 | 48.1 ± 3.9 | nd | nd | 36.4 ± 3.4 | nd | nd | 10.0 ± 1.1 | 17.0 ± 1.5 | 12.2 ± 1.2 | 136.3 ± 14.8 |
9 | 12.4 ± 1.2 | nd | nd | 59.6 ± 6.2 | nd | nd | 39.3 ± 4.2 | nd | nd | 49.3 ± 5.0 |
10 | 15.2 ± 1.8 | nd | nd | 14.3 ± 1.8 | nd | nd | 12.9 ± 1.8 | nd | nd | 14.9 ± 1.3 |
11 | 12.8 ± 1.7 | nd | nd | 21.4 ± 2.0 | nd | nd | 30.0 ± 2.7 | nd | nd | 23.3 ± 2.1 |
12 | 104.0 ± 12.8 | nd | nd | 87.5 ± 9.0 | nd | nd | 95.2 ± 8.4 | nd | nd | 187.7 ± 20.4 |
13 | 12.7 ± 1.4 | nd | nd | 5.5 ± 4.9 | nd | nd | 21.0 ± 1.8 | nd | nd | 28.3 ± 2.4 |
14 | 18.3 ± 1.4 | nd | nd | 25.8 ± 2.7 | nd | nd | 22.4 ± 2.1 | nd | nd | 60.3 ± 7.0 |
15 | 6.4 ± 0.6 | 2.5 ± 0.3 | 1.6 ± 0.1 | 16.9 ± 1.4 | 11.3 ± 0.9 | 10.6 ± 0.9 | 11.4 ± 1.1 | 6.8 ± 0.7 | 7.8 ± 0.7 | 654.9 ± 51.9 |
16 | 102.4 ± 9.8 | nd | nd | 155.0 ± 14.9 | nd | nd | 129.3 ± 14.7 | nd | nd | 135.8 ± 14.7 |
Comp. | Selectivity Index a T. cruzi Arequipa Strain | Selectivity Index a T. cruzi SN3 Strain | Selectivity Index a T. cruzi Tulahuen Strain | ||||||
---|---|---|---|---|---|---|---|---|---|
E | A | T | E | A | T | E | A | T | |
BZN | 4.8 | 9.7 | 6.5 | 2.2 | 4.8 | 2.2 | 4.1 | 8.1 | 5.3 |
2 | 13.5 (3) | 6.2 (1) | 8.0 (1) | 6.7 (3) | nd | nd | 2.4 (1) | nd | nd |
8 | 2.8 (1) | nd | nd | 3.7 (2) | nd | nd | 13.7 (3) | 8.0 (1) | 11.2 (2) |
15 | 101.7 (21) | 262.0 (27) | 409.3 (63) | 38.7 (18) | 58.0 (12) | 62.0 (28) | 57.4 (14) | 96.3 (12) | 83.6 (16) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín-Escolano, R.; Molina-Carreño, D.; Martín-Escolano, J.; Clares, M.P.; Galiana-Roselló, C.; González-García, J.; Cirauqui, N.; Llinares, J.M.; Rosales, M.J.; García-España, E.; et al. Identification of Aryl Polyamines Derivatives as Anti-Trypanosoma cruzi Agents Targeting Iron Superoxide Dismutase. Pharmaceutics 2023, 15, 140. https://doi.org/10.3390/pharmaceutics15010140
Martín-Escolano R, Molina-Carreño D, Martín-Escolano J, Clares MP, Galiana-Roselló C, González-García J, Cirauqui N, Llinares JM, Rosales MJ, García-España E, et al. Identification of Aryl Polyamines Derivatives as Anti-Trypanosoma cruzi Agents Targeting Iron Superoxide Dismutase. Pharmaceutics. 2023; 15(1):140. https://doi.org/10.3390/pharmaceutics15010140
Chicago/Turabian StyleMartín-Escolano, Rubén, Daniel Molina-Carreño, Javier Martín-Escolano, Mª Paz Clares, Cristina Galiana-Roselló, Jorge González-García, Nuria Cirauqui, José M. Llinares, María José Rosales, Enrique García-España, and et al. 2023. "Identification of Aryl Polyamines Derivatives as Anti-Trypanosoma cruzi Agents Targeting Iron Superoxide Dismutase" Pharmaceutics 15, no. 1: 140. https://doi.org/10.3390/pharmaceutics15010140
APA StyleMartín-Escolano, R., Molina-Carreño, D., Martín-Escolano, J., Clares, M. P., Galiana-Roselló, C., González-García, J., Cirauqui, N., Llinares, J. M., Rosales, M. J., García-España, E., & Marín, C. (2023). Identification of Aryl Polyamines Derivatives as Anti-Trypanosoma cruzi Agents Targeting Iron Superoxide Dismutase. Pharmaceutics, 15(1), 140. https://doi.org/10.3390/pharmaceutics15010140