Formulation and In Vitro Evaluation of Mucoadhesive Sustained Release Gels of Phytoestrogen Diarylheptanoids from Curcuma comosa for Vaginal Delivery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of C. comosa Extract
2.3. Preparation of C. comosa Gels
2.4. Incompatibility between C. comosa Extract and Gel Components
2.5. Physicochemical Characteristics of C. comosa Gels
2.5.1. Appearance and pH
2.5.2. DA Contents
2.5.3. Rheological Properties
2.5.4. Mechanical Properties
2.5.5. Extrudability
2.5.6. Mucoadhesive Properties
2.5.7. In Vitro Release
2.6. Stability of C. comosa Gels
2.7. HPLC Determination of DAs
2.8. Statistical Analysis
3. Results and Discussion
3.1. C. comosa Gel Characteristics and pH
3.2. Incompatibility Study
3.3. Rheological Properties
3.4. Texture Profile Analysis and Extrudability
3.5. Mucoadhesiveness
3.6. In Vitro DA Release
3.7. Physical and Chemical Stability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rowe, I.J.; Baber, R.J. The Effects of Phytoestrogens on Postmenopausal Health. Climacteric 2021, 24, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Mazalzadeh, F.; Hekmat, K.; Namjouyan, F.; Saki, A. Effect of Trigonella Foenum (Fenugreek) Vaginal Cream on Vaginal Atrophy in Postmenopausal Women. J. Fam. Med. Prim. Care 2020, 9, 2714–2719. [Google Scholar] [CrossRef] [PubMed]
- Ghazanfarpour, M.; Sadeghi, R.; Roudsari, R.L. The Application of Soy Isoflavones for Subjective Symptoms and Objective Signs of Vaginal Atrophy in Menopause: A Systematic Review of Randomised Controlled Trials. J. Obstet. Gynaecol. J. Inst. Obstet. Gynaecol. 2016, 36, 160–171. [Google Scholar] [CrossRef]
- Suwanvesh, N.; Manonai, J.; Sophonsritsuk, A.; Cherdshewasart, W. Comparison of Pueraria Mirifica Gel and Conjugated Equine Estrogen Cream Effects on Vaginal Health in Postmenopausal Women. Menopause 2017, 24, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Lima, S.M.R.R.; Yamada, S.S.; Reis, B.F.; Postigo, S.; Galvão da Silva, M.A.L.; Aoki, T. Effective Treatment of Vaginal Atrophy with Isoflavone Vaginal Gel. Maturitas 2013, 74, 252–258. [Google Scholar] [CrossRef]
- Lima, S.M.R.R.; Honorato, J.V.; Silva, M.A.L.G. Glycine max (L.) Merr Isoflavone Gel Improves Vaginal Vascularization in Postmenopausal Women. Climacteric J. Int. Menopause Soc. 2020, 23, 505–510. [Google Scholar] [CrossRef]
- Sun, D.-J.; Zhu, L.-J.; Zhao, Y.-Q.; Zhen, Y.-Q.; Zhang, L.; Lin, C.-C.; Chen, L.-X. Diarylheptanoid: A Privileged Structure in Drug Discovery. Fitoterapia 2020, 142, 104490. [Google Scholar] [CrossRef]
- Winuthayanon, W.; Piyachaturawat, P.; Suksamrarn, A.; Ponglikitmongkol, M.; Arao, Y.; Hewitt, S.C.; Korach, K.S. Diarylheptanoid Phytoestrogens Isolated from the Medicinal Plant Curcuma Comosa: Biologic Actions in Vitro and in Vivo Indicate Estrogen Receptor-Dependent Mechanisms. Environ. Health Perspect. 2009, 117, 1155–1161. [Google Scholar] [CrossRef] [Green Version]
- Winuthayanon, W.; Suksen, K.; Boonchird, C.; Chuncharunee, A.; Ponglikitmongkol, M.; Suksamrarn, A.; Piyachaturawat, P. Estrogenic Activity of Diarylheptanoids from Curcuma Comosa Roxb. Requires Metabolic Activation. J. Agric. Food Chem. 2009, 57, 840–845. [Google Scholar] [CrossRef]
- Thongon, N.; Boonmuen, N.; Suksen, K.; Wichit, P.; Chairoungdua, A.; Tuchinda, P.; Suksamrarn, A.; Winuthayanon, W.; Piyachaturawat, P. Selective Estrogen Receptor Modulator (SERM)-like Activities of Diarylheptanoid, a Phytoestrogen from Curcuma Comosa, in Breast Cancer Cells, Pre-Osteoblast Cells, and Rat Uterine Tissues. J. Agric. Food Chem. 2017, 65, 3490–3496. [Google Scholar] [CrossRef]
- Winuthayanon, W.; Piyachaturawat, P.; Suksamrarn, A.; Burns, K.A.; Arao, Y.; Hewitt, S.C.; Pedersen, L.C.; Korach, K.S. The Natural Estrogenic Compound Diarylheptanoid (D3): In Vitro Mechanisms of Action and in Vivo Uterine Responses via Estrogen Receptor α. Environ. Health Perspect. 2013, 121, 433–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suksamrarn, A.; Ponglikitmongkol, M.; Wongkrajang, K.; Chindaduang, A.; Kittidanairak, S.; Jankam, A.; Yingyongnarongkul, B.; Kittipanumat, N.; Chokchaisiri, R.; Khetkam, P.; et al. Diarylheptanoids, New Phytoestrogens from the Rhizomes of Curcuma Comosa: Isolation, Chemical Modification and Estrogenic Activity Evaluation. Bioorg. Med. Chem. 2008, 16, 6891–6902. [Google Scholar] [CrossRef]
- Su, J.; Sripanidkulchai, K.; Hu, Y.; Chaiittianan, R.; Sripanidkulchai, B. Increased in Situ Intestinal Absorption of Phytoestrogenic Diarylheptanoids from Curcuma Comosa in Nanoemulsions. AAPS PharmSciTech 2013, 14, 1055–1062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaipakdee, N.; Limpongsa, E.; Sripanidkulchai, B.; Piyachaturawat, P. Preparation of Curcuma Comosa Tablets Using Liquisolid Techniques: In Vitro and in Vivo Evaluation. Int. J. Pharm. 2018, 553, 157–168. [Google Scholar] [CrossRef]
- Tuntiyasawasdikul, S.; Limpongsa, E.; Jaipakdee, N.; Sripanidkulchai, B. Development and Evaluation of Topical Films Containing Phytoestrogenic Diaryheptanoids from Curcuma Comosa Extract. Drug Dev. Ind. Pharm. 2018, 44, 1385–1394. [Google Scholar] [CrossRef] [PubMed]
- Tuntiyasawasdikul, S.; Sripanidkulchai, B. Curcuma Comosa Loaded Transfersomal Gel for Transdermal Application: Formulation, in Vitro and in Vivo Evaluation. Drug Dev. Ind. Pharm. 2021, 47, 1824–1834. [Google Scholar] [CrossRef] [PubMed]
- Chiu, C.-M.; Nootem, J.; Santiwat, T.; Srisuwannaket, C.; Pratumyot, K.; Lin, W.-C.; Mingvanish, W.; Niamnont, N. Enhanced Stability and Bioactivity of Curcuma Comosa Roxb. Extract in Electrospun Gelatin Nanofibers. Fibers 2019, 7, 76. [Google Scholar] [CrossRef] [Green Version]
- Tunpanich, P.; Limpongsa, E.; Pongjanyakul, T.; Sripanidkulchai, B.; Jaipakdee, N. Mucoadhesive Sustained-Release Tablets for Vaginal Delivery of Curcuma Comosa Extracts: Preparation and Characterization. J. Drug Deliv. Sci. Technol. 2019, 51, 559–568. [Google Scholar] [CrossRef]
- Osmałek, T.; Froelich, A.; Jadach, B.; Tatarek, A.; Gadziński, P.; Falana, A.; Gralińska, K.; Ekert, M.; Puri, V.; Wrotyńska-Barczyńska, J.; et al. Recent Advances in Polymer-Based Vaginal Drug Delivery Systems. Pharmaceutics 2021, 13, 884. [Google Scholar] [CrossRef]
- De Araújo Pereira, R.R.; Bruschi, M.L. Vaginal Mucoadhesive Drug Delivery Systems. Drug Dev. Ind. Pharm. 2012, 38, 643–652. [Google Scholar] [CrossRef]
- Valenta, C. The Use of Mucoadhesive Polymers in Vaginal Delivery. Adv. Drug Deliv. Rev. 2005, 57, 1692–1712. [Google Scholar] [CrossRef] [PubMed]
- Lalan, M.S.; Patel, V.N.; Misra, A. Chapter 10—Polymers in Vaginal Drug Delivery: Recent Advancements. In Applications of Polymers in Drug Delivery, 2nd ed.; Misra, A., Shahiwala, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 281–303. ISBN 978-0-12-819659-5. [Google Scholar]
- Caramella, C.M.; Rossi, S.; Ferrari, F.; Bonferoni, M.C.; Sandri, G. Mucoadhesive and Thermogelling Systems for Vaginal Drug Delivery. Adv. Drug Deliv. Rev. 2015, 92, 39–52. [Google Scholar] [CrossRef] [PubMed]
- Cook, M.T.; Brown, M.B. Polymeric Gels for Intravaginal Drug Delivery. J. Control. Release Off. J. Control. Release Soc. 2018, 270, 145–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senyiğit, Z.A.; Karavana, S.Y.; Eraç, B.; Gürsel, O.; Limoncu, M.H.; Baloğlu, E. Evaluation of Chitosan Based Vaginal Bioadhesive Gel Formulations for Antifungal Drugs. Acta Pharm. Zagreb Croat. 2014, 64, 139–156. [Google Scholar] [CrossRef] [Green Version]
- Andrews, G.P.; Laverty, T.P.; Jones, D.S. Mucoadhesive Polymeric Platforms for Controlled Drug Delivery. Eur. J. Pharm. Biopharm. Off. J. Arb. Pharm. Verfahr. EV 2009, 71, 505–518. [Google Scholar] [CrossRef]
- Mansuri, S.; Kesharwani, P.; Jain, K.; Tekade, R.K.; Jain, N.K. Mucoadhesion: A Promising Approach in Drug Delivery System. React. Funct. Polym. 2016, 100, 151–172. [Google Scholar] [CrossRef]
- Lam, H.T.; Zupančič, O.; Laffleur, F.; Bernkop-Schnürch, A. Mucoadhesive Properties of Polyacrylates: Structure—Function Relationship. Int. J. Adhes. Adhes. 2021, 107, 102857. [Google Scholar] [CrossRef]
- Pedersen, C.; Slepenkin, A.; Andersson, S.B.E.; Fagerberg, J.H.; Bergström, C.A.S.; Peterson, E.M. Formulation of the Microbicide INP0341 for In Vivo Protection against a Vaginal Challenge by Chlamydia Trachomatis. PLoS ONE 2014, 9, e110918. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Malcolm, K.; Woolfson, D.; Jones, D.S.; Andrews, G.P. Vaginal Gel Drug Delivery Systems: Understanding Rheological Characteristics and Performance. Expert Opin. Drug Deliv. 2011, 8, 1309–1322. [Google Scholar] [CrossRef]
- Das Neves, J.; da Silva, M.V.; Gonçalves, M.P.; Amaral, M.H.; Bahia, M.F. Rheological Properties of Vaginal Hydrophilic Polymer Gels. Curr. Drug Deliv. 2009, 6, 83–92. [Google Scholar] [CrossRef]
- Kiser, P.F.; Mahalingam, A.; Fabian, J.; Smith, E.; Damian, F.R.; Peters, J.J.; Katz, D.F.; Elgendy, H.; Clark, M.R.; Friend, D.R. Design of Tenofovir-UC781 Combination Microbicide Vaginal Gels. J. Pharm. Sci. 2012, 101, 1852–1864. [Google Scholar] [CrossRef] [PubMed]
- Bjorncrantz, W. Winterized Crude Cannabis Extracts and Methods of Preparation and Use. U.S. Patent US9333229B2, 10 May 2016. [Google Scholar]
- Said Dos Santos, R.; Bassi da Silva, J.; Rosseto, H.C.; Vecchi, C.F.; Campanholi, K.d.S.S.; Caetano, W.; Bruschi, M.L. Emulgels Containing Propolis and Curcumin: The Effect of Type of Vegetable Oil, Poly(Acrylic Acid) and Bioactive Agent on Physicochemical Stability, Mechanical and Rheological Properties. Gels Basel Switz. 2021, 7, 120. [Google Scholar] [CrossRef] [PubMed]
- Said dos Santos, R.; Rosseto, H.C.; Bassi da Silva, J.; Vecchi, C.F.; Caetano, W.; Bruschi, M.L. The Effect of Carbomer 934P and Different Vegetable Oils on Physical Stability, Mechanical and Rheological Properties of Emulsion-Based Systems Containing Propolis. J. Mol. Liq. 2020, 307, 112969. [Google Scholar] [CrossRef]
- Soe, M.T.; Pongjanyakul, T.; Limpongsa, E.; Jaipakdee, N. Films Fabricated with Native and Ball-Milled Modified Glutinous Rice Starch: Physicochemical and Mucoadhesive Properties. Starch-Stärke 2021, 73, 2000012. [Google Scholar] [CrossRef]
- Costa, P.; Sousa Lobo, J.M. Modeling and Comparison of Dissolution Profiles. Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci. 2001, 13, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Limpongsa, E.; Soe, M.T.; Jaipakdee, N. Modification of Release and Penetration Behavior of Water-Soluble Active Ingredient from Ball-Milled Glutinous Starch Matrix via Carboxymethylcellulose Blending. Int. J. Biol. Macromol. 2021, 193, 2271–2280. [Google Scholar] [CrossRef]
- Bruschi, M.L. (Ed.) 5—Mathematical Models of Drug Release. In Strategies to Modify the Drug Release from Pharmaceutical Systems; Woodhead Publishing Ltd.: Cambridge, UK, 2015; pp. 63–86. ISBN 978-0-08-100092-2. [Google Scholar]
- International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use ICH Harmonized Tripartite Guideline: Stability Testing of New Drug Substances and Products Q1A(R2). 2003. Available online: https://database.ich.org/sites/default/files/Q1A%28R2%29%20Guideline.pdf (accessed on 5 May 2022).
- Chokchaisiri, R.; Innok, P.; Suksamrarn, A. Flavonoid Glycosides from the Aerial Parts of Curcuma Comosa. Phytochem. Lett. 2012, 5, 361–366. [Google Scholar] [CrossRef]
- Lin, Y.-P.; Chen, W.-C.; Cheng, C.-M.; Shen, C.-J. Vaginal PH Value for Clinical Diagnosis and Treatment of Common Vaginitis. Diagnostics 2021, 11, 1996. [Google Scholar] [CrossRef]
- Fayed, M.H.; Mahrous, G.M.; Ibrahim, M.A.; Sakr, A. Influence of Carbopol 71G-NF on the Release of Dextromethorphan Hydrobromide from Extended-Release Matrix Tablets. Pharm. Dev. Technol. 2013, 18, 971–981. [Google Scholar] [CrossRef]
- Kraisit, P.; Limmatvapirat, S.; Nunthanid, J.; Sriamornsak, P.; Luangtana-Anan, M. Preparation and Characterization of Hydroxypropyl Methylcellulose/Polycarbophil Mucoadhesive Blend Films Using a Mixture Design Approach. Chem. Pharm. Bull. 2017, 65, 284–294. [Google Scholar] [CrossRef]
- Sinko, P.J. (Ed.) Martin’s Physical Pharmacy and Pharmaceutical Sciences, 6th ed.; Lippincott Williams & Wilkins: Baltimore, MD, USA, 2010; ISBN 978-0-7817-9766-5. [Google Scholar]
- Xu, F.; Nakamura, S.; Qu, Y.; Matsuda, H.; Pongpiriyadacha, Y.; Wu, L.; Yoshikawa, M. Structures of New Sesquiterpenes from Curcuma Comosa. Chem. Pharm. Bull. 2008, 56, 1710–1716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, M.T.; Rodríguez-Hornedo, N.; Ciotti, S.; Ackermann, C. Rheological Characterization of Topical Carbomer Gels Neutralized to Different PH. Pharm. Res. 2004, 21, 1192–1199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fresno, M.J.C.; Ramírez, A.D.; Jiménez, M.M. Systematic Study of the Flow Behaviour and Mechanical Properties of Carbopol Ultrez 10 Hydroalcoholic Gels. Eur. J. Pharm. Biopharm. Off. J. Arb. Pharm. Verfahr. EV 2002, 54, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Bruschi, M.L.; Jones, D.S.; Panzeri, H.; Gremião, M.P.D.; de Freitas, O.; Lara, E.H.G. Semisolid Systems Containing Propolis for the Treatment of Periodontal Disease: In Vitro Release Kinetics, Syringeability, Rheological, Textural, and Mucoadhesive Properties. J. Pharm. Sci. 2007, 96, 2074–2089. [Google Scholar] [CrossRef]
- Rojewska, M.; Bartkowiak, A.; Strzemiecka, B.; Jamrozik, A.; Voelkel, A.; Prochaska, K. Surface Properties and Surface Free Energy of Cellulosic Etc Mucoadhesive Polymers. Carbohydr. Polym. 2017, 171, 152–162. [Google Scholar] [CrossRef]
- Tuntiyasawasdikul, S.; Limpongsa, E.; Jaipakdee, N.; Sripanidkulchai, B. Effects of Vehicles and Enhancers on the Skin Permeation of Phytoestrogenic Diarylheptanoids from Curcuma Comosa. AAPS PharmSciTech 2017, 18, 895–903. [Google Scholar] [CrossRef] [PubMed]
- Gbureck, U.; Vorndran, E.; Barralet, J.E. Modeling Vancomycin Release Kinetics from Microporous Calcium Phosphate Ceramics Comparing Static and Dynamic Immersion Conditions. Acta Biomater. 2008, 4, 1480–1486. [Google Scholar] [CrossRef] [PubMed]
- Siepmann, J.; Peppas, N.A. Modeling of Drug Release from Delivery Systems Based on Hydroxypropyl Methylcellulose (HPMC). Adv. Drug Deliv. Rev. 2001, 48, 139–157. [Google Scholar] [CrossRef]
- Lee, P.I. Kinetics of Drug Release from Hydrogel Matrices. J. Control. Release 1985, 2, 277–288. [Google Scholar] [CrossRef]
- Teaima, M.H.; Helal, D.A.; Alsofany, J.M.; El-Nabarawi, M.A.; Yasser, M. Ion-Triggered In Situ Gelling Intranasal Spray of Dronedarone Hydrochloride Nanocarriers: In Vitro Optimization and In Vivo Pharmacokinetic Appraisal. Pharmaceutics 2022, 14, 2405. [Google Scholar] [CrossRef]
- Pund, A. Current Approaches on Gastroretentive Drug Delivery Systems. J. Drug Deliv. Ther. 2020, 10, 139–146. [Google Scholar] [CrossRef]
- Tabboon, P.; Tuntiyasawasdikul, S.; Sripanidkulchai, B. Quality and Stability Assessment of Commercial Products Containing Phytoestrogen Diaryheptanoids from Curcuma Comosa. Ind. Crops Prod. 2019, 134, 216–224. [Google Scholar] [CrossRef]
- Tamburic, S.; Craig, D.Q. The Effects of Ageing on the Rheological, Dielectric and Mucoadhesive Properties of Poly(Acrylic Acid) Gel Systems. Pharm. Res. 1996, 13, 279–283. [Google Scholar] [CrossRef] [PubMed]
Ingredients | Amount (% w/w) | Functions |
---|---|---|
C. comosa extract | 3.0 | Source of DAs |
Mucoadhesive polymers * | 2.0–3.0 | Gelling and mucoadhesive agents |
Polysorbate 80 | 0.1 | Wetting agent |
Methyl paraben | 0.2 | Preservative |
Glycerol | 15.0 | Humectant, solvent of methyl paraben |
4% w/v sodium hydroxide solution ** | qs. to pH 4.5 ± 0.1 | pH adjusting agent |
Deionized water to | 100.0 | Vehicle |
Mucoadhesive Polymers | Flow Behavior Parameters | Viscosity (Pa·s) | ||
---|---|---|---|---|
n (Pa·s) | k | Yield Stress (Pa) | ||
2% C980 | 0.304 ± 0.007 a | 187.345 ± 3.617 a | 81.56 ± 11.23 a | 74.87 ± 2.40 a |
2% PCP | 0.366 ± 0.004 b | 74.884 ± 1.495 b | 27.27 ± 3.94 b | 30.80 ± 0.73 b |
3% PCP | 0.373 ± 0.006 b | 96.486 ± 1.411 c | 38.30 ± 5.56 c | 48.78 ± 2.16 c |
2% HPMC K15M | 0.376 ± 0.010 b | 38.242 ± 2.567 d | 0.96 ± 0.14 b | 6.19 ± 0.36 d |
2% HPMC K100M | 0.203 ± 0.003 c | 188.616 ± 3.562 a | 4.46 ± 0.62 b | 27.88 ± 0.82 b |
2% PCP:HPMC K15M | 0.294 ± 0.004 a | 207.628 ± 2.574 e | 54.50 ± 6.43 c | 61.45 ± 1.28 c |
3% PCP:HPMC K15M | 0.251 ± 0.004 d | 334.249 ± 4.415 f | 106.49 ± 14.43 a | 127.29 ± 4.80 e |
3% PCP:HPMC K100M | 0.177 ± 0.003 e | 998.752 ± 12.974 g | 237.08 ± 29.87 d | 335.36 ± 18.96 f |
Mucoadhesive Polymers | Mechanical Properties | Extrudability (N·mm) | ||
---|---|---|---|---|
Compressibility (N·s) | Hardness (N) | Cohesiveness | ||
2% C980 | 1.121 ± 0.065 a | 0.255 ± 0.011 a | 0.918 ± 0.101 a | 605.3 ± 22.3 a |
2% PCP | 0.604 ± 0.028 b | 0.133 ± 0.004 b | 0.992 ± 0.049 a | 237.4 ± 12.0 b |
3% PCP | 0.745 ± 0.020 c | 0.162 ± 0.002 c | 0.980 ± 0.036 a | 231.0 ± 10.7 b |
2% HPMC K15M | 0.098 ± 0.002 d | 0.021 ± 0.000 d | 1.236 ± 0.052 b | 181.7 ± 17.9 b |
2% HPMC K100M | 0.199 ± 0.010 e | 0.042 ± 0.002 e | 1.031 ± 0.045 c | 330.9 ± 37.2 c |
2% PCP:HPMC K15M | 0.719 ± 0.023 c | 0.156 ± 0.005 c | 0.922 ± 0.018 a | 419.7 ± 27.7 d |
3% PCP:HPMC K15M | 1.073 ± 0.030 a | 0.233 ± 0.006 f | 0.914 ± 0.037 a | 626.4 ± 36.0 a |
3% PCP:HPMC K100M | 1.448 ± 0.051 f | 0.310 ± 0.018 g | 0.917 ± 0.037 a | 852.2 ± 68.1 e |
Mucoadhesive Polymers | Zero-Order | Higuchi’s | Korsmeyer–Peppas | Q72h (μg) | |
---|---|---|---|---|---|
K0 (µg/cm2/h) | KH (µg/cm2/h1/2) | KKP (%/hn) | n | ||
DA1 | |||||
2% C980 | 3.34 ± 0.15 a | 31.05 ± 1.48 a | 0.177 ± 0.021 | 1.05 ± 0.03 | 411.0 ± 21.3 a |
2% PCP | 3.15 ± 0.17 a | 29.21 ± 1.66 a | 0.148 ± 0.015 | 1.08 ± 0.03 | 410.0 ± 81.2 a |
3% PCP | 2.72 ± 0.22 a | 25.44 ± 2.00 a | 0.163 ± 0.019 | 1.02 ± 0.02 | 335.7 ± 21.6 a |
2% HPMC K15M | 7.43 ± 0.62 b | 69.14 ± 5.92 b | 0.368 ± 0.075 | 1.07 ± 0.05 | 906.7 ± 75.2 b |
2% HPMC K100M | 7.49 ± 0.77 b | 69.17 ± 7.33 b | 0.320 ± 0.057 | 1.08 ± 0.03 | 965.5 ± 122.0 b |
2% PCP:HPMC K15M | 4.08 ± 0.35 c | 38.04 ± 3.39 c | 0.213 ± 0.092 | 1.06 ± 0.07 | 480.4 ± 56.5 a |
3% PCP:HPMC K15M | 3.28 ± 0.38 a | 30.50 ± 3.57 a | 0.170 ± 0.017 | 1.05 ± 0.05 | 429.8 ± 38.0 a |
3% PCP:HPMC K100M | 2.82 ± 0.47 a | 26.34 ± 4.47 a | 0.200 ± 0.019 | 1.00 ± 0.02 | 380.0 ± 46.4 a |
DA2 | |||||
2% C980 | 6.11 ± 0.18 a | 56.69 ± 1.85 a | 0.295 ± 0.035 | 1.07 ± 0.03 | 775.0 ± 51.8 a |
2% PCP | 5.82 ± 0.35 a | 54.09 ± 3.28 a | 0.259 ± 0.024 | 1.09 ± 0.03 | 791.1 ± 132.5 a |
3% PCP | 4.76 ± 0.27 a | 44.38 ± 2.44 a | 0.259 ± 0.041 | 1.05 ± 0.03 | 620.8 ± 39.9 a |
2% HPMC K15M | 24.08 ± 2.13 b | 223.43 ± 20.02 b | 0.940 ± 0.181 | 1.11 ± 0.05 | 3028.2 ± 270.2 b |
2% HPMC K100M | 13.30 ± 0.42 c | 122.89 ± 3.87 c | 0.797 ± 0.180 | 1.03 ± 0.08 | 1768.0 ± 230.6 c |
2% PCP:HPMC K15M | 7.53 ± 0.82 d | 70.16 ± 7.83 d | 0.365 ± 0.162 | 1.08 ± 0.07 | 913.2 ± 111.1 a |
3% PCP:HPMC K15M | 6.14 ± 0.70 a | 57.09 ± 6.55 a | 0.272 ± 0.027 | 1.09 ± 0.04 | 808.4 ± 63.8 a |
3% PCP:HPMC K100M | 5.25 ± 0.89 a | 49.10 ± 8.31 a | 0.294 ± 0.037 | 1.06 ± 0.02 | 713.1 ± 89.7 a |
Formulations | Physical Properties | Percentage Remaining of DAs | ||
---|---|---|---|---|
pH | Percentage Viscosity (%) | DA1 | DA2 | |
2% PCP | ||||
Fresh gels | 4.63 ± 0.01 a | 100.00 ± 2.38 a | 100.00 ± 1.38 a | 100.00 ± 2.01 a |
6 mo accelerated-aged gels | 4.78 ± 0.01 c | 97.63 ± 3.37 a | 42.06 ± 0.34 b | 103.95 ± 1.05 a |
6 mo long-term-aged gels | 4.66 ± 0.02 a | 98.35 ± 6.67 a | 99.12 ± 1.99 a | 103.52 ± 2.44 a |
12 mo long-term-aged gels | 4.71 ± 0.01 b | 89.99 ± 4.28 a | 98.97 ± 4.46 a | 103.89 ± 2.78 a |
3% PCP | ||||
Fresh gels | 4.56 ± 0.02 a | 100.00 ± 4.42 a | 100.00 ± 2.67 a | 100.00 ± 2.79 a |
6 mo accelerated-aged gels | 4.72 ± 0.01 c | 98.84 ± 2.81 a | 45.74 ± 1.13 b | 102.82 ± 3.10 a |
6 mo long-term-aged gels | 4.59 ± 0.01 a | 99.09 ± 2.05 a | 99.07 ± 1.36 a | 103.37 ± 1.85 a |
12 mo long-term-aged gels | 4.68 ± 0.01 b | 90.95 ± 4.68 a | 95.46 ± 3.52 a | 103.58 ± 4.09 a |
2% PCP:HPMC K15M | ||||
Fresh gels | 4.64 ± 0.02 a | 100.00 ± 2.08 a | 100.00 ± 1.36 a | 100.00 ± 1.59 a |
6 mo accelerated-aged gels | 4.84 ± 0.01 b | 94.42 ± 2.97 a | 61.06 ± 1.70 b | 102.11 ± 1.53 a |
6 mo long-term-aged gels | 4.66 ± 0.01 a | 99.95 ± 4.66 a | 100.40 ± 2.89 a | 102.55 ± 3.97 a |
12 mo long-term-aged gels | 4.81 ± 0.01 b | 93.46 ± 6.05 a | 100.12 ± 3.34 a | 103.54 ± 4.17 a |
3% PCP:HPMC K15M | ||||
Fresh gels | 4.56 ± 0.01 a | 100.00 ± 3.77 a | 100.00 ± 1.86 a | 100.00 ± 1.79 a |
6 mo accelerated-aged gels | 4.83 ± 0.01 b | 93.47 ± 2.60 a | 66.22 ± 2.04 b | 101.80 ± 2.00 a |
6 mo long-term-aged gels | 4.60 ± 0.02 a | 99.77 ± 2.34 a | 100.59 ± 3.06 a | 101.19 ± 3.87 a |
12 mo long-term-aged gels | 4.81 ± 0.02 a | 92.75 ± 4.52 a | 99.21 ± 3.76 a | 102.48 ± 3.74 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Limpongsa, E.; Tabboon, P.; Tuntiyasawasdikul, S.; Sripanidkulchai, B.; Pongjanyakul, T.; Jaipakdee, N. Formulation and In Vitro Evaluation of Mucoadhesive Sustained Release Gels of Phytoestrogen Diarylheptanoids from Curcuma comosa for Vaginal Delivery. Pharmaceutics 2023, 15, 264. https://doi.org/10.3390/pharmaceutics15010264
Limpongsa E, Tabboon P, Tuntiyasawasdikul S, Sripanidkulchai B, Pongjanyakul T, Jaipakdee N. Formulation and In Vitro Evaluation of Mucoadhesive Sustained Release Gels of Phytoestrogen Diarylheptanoids from Curcuma comosa for Vaginal Delivery. Pharmaceutics. 2023; 15(1):264. https://doi.org/10.3390/pharmaceutics15010264
Chicago/Turabian StyleLimpongsa, Ekapol, Peera Tabboon, Sarunya Tuntiyasawasdikul, Bungorn Sripanidkulchai, Thaned Pongjanyakul, and Napaphak Jaipakdee. 2023. "Formulation and In Vitro Evaluation of Mucoadhesive Sustained Release Gels of Phytoestrogen Diarylheptanoids from Curcuma comosa for Vaginal Delivery" Pharmaceutics 15, no. 1: 264. https://doi.org/10.3390/pharmaceutics15010264
APA StyleLimpongsa, E., Tabboon, P., Tuntiyasawasdikul, S., Sripanidkulchai, B., Pongjanyakul, T., & Jaipakdee, N. (2023). Formulation and In Vitro Evaluation of Mucoadhesive Sustained Release Gels of Phytoestrogen Diarylheptanoids from Curcuma comosa for Vaginal Delivery. Pharmaceutics, 15(1), 264. https://doi.org/10.3390/pharmaceutics15010264