Metal–Organic Frameworks and Their Biodegradable Composites for Controlled Delivery of Antimicrobial Drugs
Abstract
:1. Introduction
2. Metal–Organic Frameworks (MOFs)
3. MOFs as Antimicrobial Agents
3.1. MOFs as Antimicrobial Agent Carrier
3.2. MOFs for Photoactive Antimicrobial Action
3.3. MOFs as Chelating Agents
3.4. MOFs as Physical Disinfectants
3.5. Other Mechanisms of MOFs Anticancer and Antimicrobial Action
MOF | Antibacterial Agent | Mechanism of Action | Target Organism | Loading Capacity (%) | Clinical Significance | Antimicrobial Efficacy | Ref./Year |
---|---|---|---|---|---|---|---|
Mn-MOF Mg-MOF | nalidixic acid | MOF disintegration | E. coli S. aureus E. faecalis C. albicans S. cerevisiae | - | Cytotoxic assay on human colorectal adenocarcinoma CaCo-2 cell. No significant effect on cell viability | In vitro Higher antimicrobial activity than for nalidixic acid | [74] (2019) |
ZIF-8 | chloramphenicol | Drug release | E. coli S. aureus | 32.58 ± 2.65 | - | In vitro >99.9% growth reduction in 24 h. | [111] (2022) |
MIL-101(Fe) | Ag+ | Drug release | E. coli S. aureus S. epidermidis A. cereus A. jungii P. aeruginosa | 0.0127 | No severe haemolytic behaviour. AD293 cell-viability studies reveal MOF non-toxic and hypotoxic | In vitro Inhib. zones (mm): 12 12.3 10 11 11 11 | [67] (2022) |
MIL-53(Fe) | vancomycin | Drug release | S. aureus | 20 | Biocompatible, promote osteogenic differentiation and proliferation of MC3T3 cells Cytotoxic studies using MTT assay prove non-toxic | In vitro Antibacterial ratio up to 90% | [112] (2017) |
UiO-66 | ciprofloxacin | Drug release | E. coli S. aureus | 84 | - | In vitro Inhib. zones: 24 mm 22 mm | [60] (2019) |
ZIF-8 | ceftazidime | Drug release MOF disintegration | E. coli | 10.9 | Cell viability studies on human lung epithelial cell line (A549) and mouse macrophage cells lines RAW 264.7 cells show dose-dependent toxicity | In vitro Less bacterial growth when exposed to loaded MOFs | [65] (2019) |
ZIF-8 | gentamicin | Drug release | E. coli S. aureus | 19 | Cytotoxicity studies on human Caucasian foetal foreskin fibroblast (HFFF2), increase of 75% in cell viability when incubated with 10–30 μg mL−1 concentrations of MOF for 48 h | In vitro Inhib. zone: <14 mm 12 mm | [72] (2018) |
ZIF-8 | ciprofloxacin | Drug release | E. coli S. aureus | 21 | - | In vitro Inhib. zone: 46 mm 49 mm | [113] (2017) |
Zn2(bdc)2(dabco) | gentamicin | Drug release | E. coli S. aureus | 14 (from TGA) | - | In vitro Inhib. zone: 9 mm 16 mm | [70] (2018) |
ZIF-8 | rifampicin 2-nitrobenzealdehyde Zn2+ | Light-triggered drug release MOF disintegration | E. coli MRSA | - | MTT assay on Hela cells prove MOF had no signs of cytotoxicity. Promotion of scar generation in mice injury model | In vitro: concentration and illumination-time-dependent effect. Optimum conditions: 10 μg mL−1 and 120 min illumination time In vivo: Mice injury model Wound infection size in mice decreased by 80% through synergistic treatment | [114] (2018) |
ZIF-8 | vancomycin folic acid | Drug release | MDR S. aureus E. coli | 24 | - | In vitro MIC: 8 µg mL−1 16 µg mL−1 | [115] (2017) |
Ag-MOFs | organic radical anions Ag+ | MOF disintegration photochromism | E. coli P. aeruginosa B. subtilis S. aureus MRSA MDR-PA | - | - | In vitro: inhibition of more than 98.47% of drug-resistant bugs in vivo: better healing of MDR-PA infected wounds in mice injury model | [116] (2022) |
IRMOF-3 MOF-5 Zn-BTC | ampicillin kanamycin | Drug release | S. aureus S. lentus L. monocytogenes E. coli | - | Cytotoxic assay on human dermal non-cancerous (HaCaT) cells using MTT assay. Low toxicity for Zn-BTC MOFs and MOF-5/ampicillin Moderate toxicity for IRMOF-3 and MOF-5/kanamycin | In vitro Enhanced antimicrobial effect against Gram-negative and Gram-negative bacteria | [76] (2018) |
PCN-224(Zr/Ti) | PCN-224 Ti | Photodynamic therapy | MDR E. coli MRSA C. baumannii MDR A. baumannii MRSE | - | Biocompatibility studies on human umbilical vein endothelial cells (HUVECs) show 90% of cells maintained vitality In vivo biological safety on mice studies through IV injection indicate negligible biotoxicity | In vitro 96.4%,96.8% and 96.2% sterilization for MDR E. coli, MRSA and MRSE, respectively | [90] (2022) |
PCN-224(Cu/Ti) | PCN-224 Cu | Photodynamic therapy (photocatalysis) | S. aureus | - | Cytotoxicity studies on mouse NIH-3T3 cells indicate MOFs are not cytotoxic In vivo toxicity evaluation show no organ damage | In vitro Highest efficacy 99.71% within 20 min of irradiation. In vivo wound-infection healing show high antimicrobial action and accelerated wound healing | [117] (2020) |
ZIF-8 | physicon | Drug release | P. putida E. coli Eng. E. coli S. aureus | 11.49% | - | In vitro Inhib. zones: 13 mm 23 mm 18 mm 20 mm | [118] (2019) |
(MIL-101-based MOFs) Fe-101 Al-101 Fe-88 | indocyanine green | Drug loaded, Photodynamic therapy | E. faecalis | 16.93 ± 0.32% 18.17 ± 0.31% - | In vivo studies in infected tooth show decreased gene expression of E. faecalis | In vitro Red. in biofilm formation 47.01% 53.68% 37.54% | [119] (2018) |
ZIF-8 | Zn2+ | MOF disintegration | E. coli | - | - | In vitro Cell reduction of 4.79 in log10 | [71] (2021) |
PEI-Ce (III) MOFs | Ce3+ PEI | Peroxidase-like activity | E. coli P. aeruginosa B. subtilis S. aureus C. albicans | - | Human blood compatibility tests: PEI-Ce(III) MOF: non-haemolytic, non-coagulative p-PEI-Ce(NO3)3 MOFs: slightly haemolytic and non-coagulative | In vitro MBC ranging from 1.25–5 mg mL−1 | [120] (2022) |
Ce-MOF | Ce-MOF | Enzyme-mimetic activity | A.flavus A.niger A. terreus C. albicans R.glutinis | - | - | In vitro 93.3–99.9% inhibition efficiency | [121] (2020) |
CuTCPP-Fe2O3 | ROS | Photodynamic therapy | P. gingivalis F. nucleatum S. aureus | - | No signs of organ damage in vivo In vivo- Higher antibacterial effect than minocycline and vancomycin for MOF-treated samples in periodontitis mice model Reduced inflammation, promoted angiogenesis | In vitro 99.87 ± 0.09% 99.57 ± 0.21% 99.03 ± 0.24% | [122] (2022) |
BIT-66 | ROS | Photocatalysis | E. coli | - | - | In vitro 44% and 96% removal efficiency in dark and light, respectively | [85] (2020) |
ZIF-67 Co-SIM-1 AgTAZ | Co2+ Ag+ | MOF disintegration | E. coli P. pudita S. cerevisiae | - | - | In vitro Inhib. zone of mostly around 15 mm, except for AgTAZ, 2 mm. -3 month antibacterial effect | [123] (2014) |
MIL-53(Al) NH2-MIL-53(Al) | Al+ | MOF disintegration | E. hirae | - | - | In vitro MIC: 8 mg L−1 | [124] (2022) |
VAC-Zn-BTC-coordination polymer | Zn-BTC vancomycin | MOF disintegration Drug release | MRSA | - | Cytotoxicity assay on human alveolar basal epithelial cells (A549), embryonic kidney cells (HEK-293) and human breast cancer cell line (MCF-7) show MOF non-toxic at conc. <80 μg mL−1. Low haemolytic activity. | In vitro MIC: 1.02 μg mL−1 | [125] (2022) |
Cu-MOF | ROS | Photodynamic therapy | E. coli S. aureus | - | Cytotoxic assay on adenocarcinomic human alveolar basal epithelial cancer cells (A549) show significant photocytotoxicity when irradiated (IC50: 15.9 mg mL−1) with minimal dark cytotoxicity (IC50: 225 mg mL−1) Interaction with blood serum albumin (BSA) | In vitro MIC: 300 μg mL−1 MIC: 350 μg mL−1 | [84] (2022) |
HFH@ZIF-8 | HMME | Cargo release Sonodynamic therapy | MRSA | - | In vivo biodistribution in myositis-bearing mice show inflammation targeting property. effective treatment of myositis in mice | In vitro Average bacteria colony number < 5 × 103 CFU g−1 In irradiation of US and O2 | [101] (2022) |
HKUST-1 | Cu2+ | MOF disintegration | S. cerevisiae G. candidum | - | - | In vitro Complete inhibition of S. cerevisiae Decrease from 6.16 to 1.29 CFU mL−1 for G. candidum | [126] (2012) |
TA-MOF | - | - | A. fumigatus F. oxysporum R. equi S. epidermidis S. dysenteriae E. coli | - | - | In vitro MIC: 64 μg mL−1 MIC: 32 μg mL−1 MIC: 16 μg mL−1 MIC: 32 μg mL−1 MIC: 128 μg mL−1 MIC: 32 μg mL−1 | [127] (2022) |
[Zn(dicarb)2]·2H2O | Zn2+ | MOF disintegration | S. aureus S. equinis B. cereus A. baumannii K. pneumoniae C. albicans F. oxysporum | - | - | In vitro MIC: 64 μg mL−1 MIC: 32 μg mL−1 MIC: 512 μg mL−1 MIC: 256 μg mL−1 MIC: 64 μg mL−1 MIC: 128 μg mL−1 MIC: 512 μg mL−1 | [128] (2021) |
([Zn(μ-4-hzba)2]2·4(H2O))n | μ-4-hzba Zn2+ | MOF disintegration | S. aureus | - | - | In vitro Inhib. Zone: 14.6 ± 3.1 mm | [129] (2017) |
Cu-BTTri | Cu2+ | MOF disintegration | P. aeruginosa | - | - | In vitro 85% reduction in bacterial attachment | [130] (2017) |
ZIF-8 | ROS | Photocatalysis | E. coli | - | - | >99.9999% inactivation efficiency | [86] (2019) |
PCN-134-2D | ROS artemisinin | Photocatalysis Artemisinin production | - | - | - | - | [42] (2019) |
UiO-66-NH2 | ROS | Photocatalysis Peroxidase-mimetic action | E. coli | - | In vitro cytotoxicity studies on mouse NIH-3T3 cells using MTT assay prove non-toxic | -antimicrobial activity in presence of UV light | [87] (2021) |
HKUST-1 | CuS | Photothermal | S. aureus E. coli | - | In vitro cytotoxicity studies on mouse NIH-3T3 cells using MTT assay show cells viability ranging from 60% to 70% without NIR. | In vitro 99.70%, 99.80% inhibition | [93] (2022) |
ZPM@Ag | Ag+ ROS | Photoactivation Ag+ release | S. aureus E. coli | - | - | In vitro 2.4% and 0.3% viability | [88] (2021) |
Zn–MoS2-ZIF-8 | ROS Zn2+ | Photocatalysis MOF disintegration | S. aureus | - | In vitro cytocompatability on NIH-3T3 cells show 49.56% survival rate upon irradiation Successful treatment of wound in mice after 10 days No damage of major organs found | In vitro 99.7% antibacterial efficacy under 660 nm irradiation | [92] (2022) |
GS5-CL-Ag@CD-MOF | Ag+ release | MOF disintegration Drug release | E. coli S. aureus | - | In vitro haemostatic studies In vivo wound healing experiment show down regulation of cytokines and inflammatory response, promote healing | In vitro MIC: 16 µg mL−1 For E. coli | [131] (2019) |
ZAG NPs (ZIF-8-derived nanoenzyme) | Zn2+ release Au NP GOx | Drug release MOF disintegration | E. coli S. aureus | - | In vivo anti-inflammatory action, enhanced wound regeneration | In vitro MIC: 8 µg mL−1 4 µg mL−1 In vivo: rapid sterilisation of S. aureus-infected wounds | [132] (2022) |
transition metal complexes | - | Chelation effect | S. aureus C. albicans B. subtilis E. coli P. aeruginosa | - | - | In vitro MIC between 6.25 and 50 µg mL−1 | [133] (2012) |
([Ni(μ1,5-dca)2(μ-hmt)]H2O)n | - | Chelation effect | K. pneumonia | - | - | In vitro MIC: 16.9 µM | [134] (2015) |
[Cu(C5H4O4)2(C6H6N2O)2(H2O)2·2(H2O)] | - | Chelation effect | E. coli S. aureus P. aeruginsoa | - | - | In vitro MIC: 0.0004 g L−1 0.00006 g L−1 0.0016 g L−1 | [135] (2016) |
Cu-MOFs | - | Chelation effect | E. coli S. aureus K. pneumonia P. aeruginosa MRSA | - | - | In vitro MBC of 20 μg mL−1 | [95] (2019) |
[Cu(L)2Cl2] | - | Chelation effect | E. coli K. pneumonia S. aureus B. subtilis | - | - | In vitro Inhib. zone: 19 mm 28 mm 24 mm 20 mm | [136] (2010) |
[Cu(L-Arg)2(µ-4,4‘-bpy)]Cl2·3H2O]∞ | - | Chelation effect | S. mutans E. hirae B. subtilis S. aureus P. aureginosa E. coli S. enterica S. flexneri S. cerevisiae C. albicans | - | - | In vitro MIC is <15 M | [137] (2015) |
Co-TDM | - | Chelation effect | E. coli | - | - | In vitro MBC ranging from 10 to 15 ppm | [96] (2012) |
Cu-BTC | surface active Cu2+ | Fenton-like reaction | P. aeruginosa K. pneumoniae MRSA | - | In vitro cytotoxicity studies on mouse embryonic fibroblast (MEF) cells. MEF viability over 95% | 97.8%, 99.9% and 77.6% reduction, respectively. | [106] (2021) |
Bi-MOFs | - | Chelation effect | E. coli E. aerogenes S. aureus B. cereus C. butyricum | - | - | In vitro Highest microbial effect was against B. cereus an C. butyricum | [138] (2019) |
[(AgL)NO3] 2H2O [(AgL)CF3SO3] 2H2O [(AgL)ClO4] 2H2O | Ag+ | MOF disintegration | E. coli S. aureus | - | - | In vitro Inhib. zones ranging from 13 to 19 mm | [139] (2010) |
[Ag(Bim)] [Ag2(NIPH)(HBim)] [Ag6(4-NPTA)(Bim)4] [Ag2(3-NPTA)(bipy)0.5(H2O)] | Ag+ | MOF disintegration | E. coli S. aureus | - | - | In vitro MIC values ranging from 5 to 20 ppm | [140] (2014) |
[Ag(L1)](NO3) [Ag(L2)]n(NO3)n(H2O) | Ag+ | MOF disintegration | E. coli S. typhimurium K. pneumoniae S. marcescens S. aureus streptococcus | - | - | In vitro Inhibition zones ranging from 14 to 26 mm | [141] (2018) |
[Ag2(O-IPA)(H2O)·(H3O)] [Ag5(PYDC)2(OH)] | Ag+ | MOF disintegration | E. coli S. aureus | - | - | In vitro MIC of 5–10 and 10–15 ppm for E. coli, and 10–15 and 15–20 ppm for S. aureus | [142] (2014) |
[Ag(NO3)(μ3-PTA═ O)]n Ag2(μ2-SO4)(μ5-PTA═ O)(H2O)]n | Ag+ | MOF disintegration | E. coli P. aeruginosa S. aureus C. albicans | - | - | In vitro MIC of E. coli and P. aeruginosa ranging between 6 and 7 μg mL−1.for S. aureus and C. albicans range 20–30 μg mL−1. | [143] (2011) |
Ag-isonicotinic acid polyethyleneglycol complexes | Ag+ | MOF disintegration | S. epidermidis S. aureus E. coli P. aeruginosa | - | - | In vitro Inhibition zones reached up to 12 and 15 mm | [144] (2010) |
[Ag(µ3-PTA=S)]n(NO3)n·nH2O Ag4(µ4-PTA=S)(m5-PTALS)(µ2-SO4)2(H2O)2]n 2nH2O (BioMOFs) | Ag+ | MOF disintegration | E. coli S. aureus P. aeruginosa C. albicans | - | - | In vitro Most active agaist Gram-negative bacteria (MIC of 4–5 μg mL−1) MIC for S. aureus 20 μg mL−1 | [145] (2013) |
Ag(I) 1,3,5-Triaza-7-phosphaadamantane coordination networks | Ag+ | MOF disintegration | E. coli S. aureus P. aeruginosa C. albicans | - | - | In vitro MIC for E. coli and C. albicans ranging from 6−7 and 30−50 μg mL−1 | [146] (2014) |
[[Ag4(μ4-pzdc)2(μ-en)2]·H2O]n | Ag+ | MOF disintegration | E. coli S. aureus C. albicans | - | - | In vitro MIC range 18–63 µg mL−1 | [147] (2012) |
Ag3(3-phosphonobenzoate) | Ag+ | MOF disintegration | S. aureus MRSA E. coli P. aeruginosa | - | In vitro haemolysis assay on human red blood cells shows MOfs did not exhibit haemolytic activity at conc. <500 µM | In vitro MBC value from 20 to 75 µM | [148] (2011) |
Cu-SURMOF-2 | Cu2+ | MOF disintegration | C. marina | - | - | In vitro 88% damaged organisms | [149] (2013) |
BioMIL-5 (BioMOF) | Zn2+ AzA | MOF disintegration | S. aureus S. epidermidis | - | - | In vitro MIC: 1.7 mg mL−1 1.7 mg mL−1 | [150] (2015) |
Ni-MOF | Ni2+ Hmim | MOF disintegration | (ESBL-1) (P. aeruiginosa) (MRSA ATCC 33591) (MRSA clinical strain N7) | - | In vivo cytotoxicity assay on A. Salina by treating the feed (nauplii) with the MOFs. Negligible toxicity, at maximum dose of 150 μg mL−1 | In vitro MIC:800 µg mL-1 ppm−1 MIC:1000 µg mL−1 ppm−1 IC50:15.19 ± 1.41 µg mL−1 IC50: 25.14 ± 0.75 µg mL-1 | [151] (2020) |
Fe(III)-MOF | Fe3+ | MOF disintegration | S. aureus E. coli Candida spp. A. niger | - | - | In vitro Inhib. zones: 51 mm 38 mm 48 mm 52 mm | [152] (2022) |
Cu-MOFs nanoparticles | - | Chelation Particle morphology | S. aureus Candida spp. E. coli Pseudomonas Sp. Klebsiella Sp. | - | - | In vitro Inhib. zone: (conc. 100 μg ml−1) 42 mm 46 mm 45 mm 49 mm 35 mm | [153] (2018) |
ZIF-L | - | Particle morphology | E. coli S. aureus C. albicans | - | 0% viability after 20 h of incubation | [98] (2017) | |
CD-MOFs | caffeic acid | Drug release | E. coli S. aureus | 19.63 ± 2.53% | - | In vitro MIC: 25 mg mL−1 25 mg mL−1 | [154] (2022) |
([Cu(dcbp)(H2O)2] 2H2O)n (rhombus lump shape) | - | Particle morphology | B. subtilis S. aureus S. enteriditis E. coli P. vulgaris P. aeruginosa | - | - | In vitro MIC (µg mL−1): 12.5 12.5 25 6.25 12.5 | [99] (2011) |
ZIF-8-derived carbon@TiO2 | TiO2 | Sonodynamic therapy | E. Faecium S. aureus K. pneumoniae A. baumannii P. aeruginosa Enterobacter | - | Biosafety studies on human umbilical vein endothelial cells (HUVEC) and mouse fibroblast cells (NIH-3T3) show no signs of toxicity at concentrations 100 µg mL−1. In vivo studies on immunocompetent mice with pneumonia showed significant antibacterial inhibition. No pathological signs of organ damage. Inhalable dosage form | In vitro Inhibition of Gram-negative bacteria. 99.2%, 87.1%, 95.6%, and 81.5% inhibition of K. pneumoniae, A. baumannii, P. aeruginosa, and K. aerogenes, respectively | [102] (2022) |
HNTM-Pt@Au | Au | Sonodynamic therapy | MRSA | - | In vitro biocompatibility studies showed good cell viability MOFs were successful in treatment of osteomyelitis with decreased inflammatory response. | In vitro 99.9% efficiency under 15 min of US irradiation | [103] (2021) |
C-Ti-MOF (NH2-MIL-125(Ti) composite) | TiO2 | Photodynamic therapy Photothermal therapy | S. aureus | - | Biosafety studies on human umbilical vein endothelial cells (HUVECs) show good biocompatibility | In vitro MIC: 0.16 mg mL−1 | [155] (2022) |
Ag NP-loaded Cu-BTC | Ag+ | Drug release | E. coli S. aureus | 1.76–2% | - | In vitro MIC ranging from 156.2 to 625 µg mL−1 | [156] (2022) |
MOF-74(Zn) MOF-74(Cu) | linezolid | Drug release | S. aureus | 4.91% 1.75% | - | In vitro MIC: 75.0 µg mL−1 32.0 µg mL−1 | [157] (2022) |
Ag-associated UiO66-Nap (4-sulfo-1,8-naphthalimide immobilised UiO66-NH2) | Ag+ | - | C. albicans E. coli P. aeruginosa K. pneumoniae MRSA S. enteriditis S. lutea B. cereus | - | In vitro MIC of 0.019 mg mL−1 against Gram-positive and Gram-negative bacteria. High antifungal activity | [158] (2022) | |
UoB-6 (BioMOF-Mn) | cationic functional groups Mn2+ | MOF disintegration Oxidative effect | E. coli C. albicans | - | - | In vitro MIC of 4096 and 2048 µg mL−1 | [159] (2022) |
Cu-MOF MCu-MOF | Cu2+ | MOF disintegration | B. subtilis L. cereus S. aureus E. coli S. enterica A. niger | - | - | In vitro Inhibition zone ranging from 10 to 17 mm | [160] (2022) |
Zn-MOF Cu-MOF Cu/Zn hybrid MOF | Cu2+ Zn2+ | MOF disintegration | E. coli S. enterica subsp. enterica P. mirabilis R. equi C. albicans | - | - | In vitro MIC ranging from 32 to 1024 μg mL−1 | [161] (2022) |
Fe3O4/Zn-MOF | Zn2+ | MOF disintegration | P. aeruginosa S. dysenteriae S. agalactiae C. albicans | - | - | In vitro MIC values for Gram-positive and Gram-negative bacterial strains, between 16 and 128 μg mL−1, and for fungal strain, 128 μg mL−1 | [162] (2022) |
MIL-100(Fe) | carvacarol | Drug loading, Redox activity | E. coli L. innocua | 42 | In vitro Cell viability studies on human embryonic kidney cells (HEK293). 100% cell viability when exposed to 200 μg/mL equivalent carvacrol for 24 h | In vitro Antimicrobial activity of films(log(CFU/mL)): 7.28 ± 0.1 7.64 ± 0.87 | [163] (2022) |
MOF-derived CuO composite Deposited with CuO/AgX (X = Cl, Br, or I) | ROS Cu2+ Ag+ | Photocatalysis MOF disintegration | E. coli S. aureus | - | - | In vitro CuO/AgBr-15 has highest catalytic disinfection, followed by CuO/AgBr-15 and CuO/AgCl-15 | [164] (2022) |
MOF-NC (MOF nanocages) | Ag+ Zn2+ ascorbic acid | MOF disintegration Drug release | S. aureus S. pyogenes B. subtilis P. aeruginosa C. albicans | Approximately 55.8% | In vitro cytotoxicity assay on cell line human skin fibroblast (HSF) show IC50 of 95.7% In vitro wound healing assay show monolayer of HSF were healed fast during 48 h and mostly reached to 90% for ZAg NCs | In vitro Inhib. zones: 20 mm 18 mm 21 mm 19 mm 17 mm | [165] (2022) |
Cu-SER | Cu2+ | Surface neutralisation MOF disintegration | S. aureus E. coli | - | Pro-osteogenic activity on human adipose-derived stem cells (hASCs). | In vitro Change in bacterial surface change, induction of morphological change. | [107] (2022) |
ONP@ZnO2@ZIF-67(ONP@ZZ) | ROS | Chemodynamic therapy Photodynamic therapy | MRSA E. coli | - | In vitro cytotoxic and haemolysis assay on Murine L929 and raw 264.7 cells demonstrate biocompatibility. biosafe up to concentration of 25 µg mL−1. No haemolysis of red blood cells at concentration below 100 µg mL−1. No signs of inflammation or abnormality in vivo | In vitro The majority of MRSA was eradicated at concentration of 25 μg mL− 1 under irradiation of 660 nm light In vivo, increase in the average skin wound recovery to 98% | [110] (2022) |
4. MOF and Polymer Hybrid Materials as Antimicrobial Materials
Polymer/MOF | Composition/Synthesis Method | Antimicrobial Agent | Applications | Mechanism | Target Organism | Antimicrobial Efficiency | Ref./Year |
---|---|---|---|---|---|---|---|
Cellulose–MOF199 | Rapid solvent exchange upon dispersion in water | Cu2+ | Water purification | MOF disintegration | E. coli | Optical density lower in the PolyMOF solution compared to controls after 4 h | [173] (2019) |
Polylactic acid (PLA) fibres containing Co-SIM-1 | 2–6 weight % Co-SIM-1 to PLA. Electrospinning | Co2+ | Membranes for biomedical applications | MOF disintegration | P. putida S. aureus | Inhib. zones: 23.6 ± 1.4 mm 25.4 ± 0.801 mm | [174] (2015) |
PCL/Cur@ ZIF-8 | 0–35% MOF to PCL. Curcumin loaded during ZIF-8 synthesis, and solvent casting used to add PCL | Curcumin and ZIF-8 ROS Zn2+ | Antimicrobial food packaging | Curcumin release ~doubled when Poly-MOF exposed to pH 5 compared to a neutral pH following 72-h | E. coli S. aureus | 99.9% decrease in the growth of E. coli and S. aureus when over 15% of Cur@ZIF-8 was loaded. Detachment of bacteria | [175] (2019) |
PCN−224 NPs@PCL | Up to 13.32 weight % PCN−224 NPs loaded Co-electrospinning | ROS/ photoirradiation | Antimicrobial wound dressing | Photoactivation | S. aureus MRSA E. coli | The survival rates of S. aureus, MRSA, and E. coli were 0.13%, 1.91%, and 2.06%, respectively. | [176] (2021) |
MOF-525/PCL MMMs | 10–30 weight % MOF-525 was loaded. Solvent casting | ROS/ photoirradiation | “Smart” biologically responsive material | Photoactivity | E. coli | Most colonies removed after 30 min up to 90 min of irradiation. Less than 80 viable colonies were left after 90 min or irradiation. | [177] (2017) |
ZIF-8@PVA/CH/HA (polyvinyl alcohol, chitosan, hyaluronic acid) | 0 to 1.0% wv of ZIF-8: composite Electrospinning | ROS/ photoirradiation | Biological materials for bone/tissue regeneration | Photoactivity | B. cereus L. monocytogenes E. coli P. aeruginosa C. tropical C. glabrata C. albicans | 0.8%wv ZIF-8@PVA/CH/HA was the most active with the smallest inhibition zone being 9.67 ± 2.56 mm, and the largest 23.0 ± 2.0 mm. | [178] (2022) |
I2@AuNR@SiO2@UiO-66 in (PVDF) film | 8% and 25% of AuNR@SiO2@UiO-66: PVDF I2 content: 0.012 and 0.159 mg (mg film)−1 Drop casting | I2 | Prophylactic treatment | Chemical effect NIR triggered release | E. coli S. aureus | Inhib. zone: 15.6 ± 3.8 and 41.6 ± 2.7 mm, for E. coli 19.5 ± 1.3 and 43.2 ± 4.3 mm, for S. aureus | [179] (2022) |
UiO66@I2/PCL composite | 0.5 and 1.0 wt% iodine Solvent casting | I2 | Iodine-based antimicrobials | Chemical effect. | S. aureus E. coli | Inhib. zone: ~2 (between 3 and 5 mm) ~6 mm (between 11 and 12 mm) | [180] (2022) |
MOF199@bamboo (carboxymethylated bamboo) | 11.1 wt% Cu2+ two stage synthesis to immobilise MOF-199 | Cu2+ MOF composite | MOF-coated wood-based materials | Physical disinfection Surface active metal sites | E. coli | Reduction in colony number by 38. 91.4% antibacterial ratio | [181] (2021) |
PUF@Cu-BTC (Polyurethane foams) | Crosslinking reaction of castor oil and chitosan with toluene-2,4-diisocyanate. | CuBTC/ composite Active Cu+2 centres | Skin disease and wound treatment | Synergistic effect of composite and MOF | P. aeruginosa K. pneumoniae MRSA | 97.8%, 99.9% and 77.6% reduction, respectively. | [106] (2021) |
CP/CNF/ZIF-67 (Cellulose nanofibres, modified using sodium carboxylate groups) | 20.5% MOF composition In situ synthesis | Co2+ 2-methylimidazole | Medical and health security | MOF disintegration | E. coli | Inhib. zone: 12 mm | [182] (2018) |
ZIF-8/cotton fabrics (polydopamine templated cottons) | 14.5% MOF/composite ratio in situ synthesis | Zn2+ -NH2 groups in polydopamine | Multifunctional textiles | MOF disintegration Formation of amine phosphate complexes | E. coli | Inhib. zone present. (not quantified) | [183] (2020) |
Wool@MOF (HKUST-1 MOF) | in situ synthesis | Cu2+ | Biologically functional fabrics | MOF disintegration | E. coli S. aureus | Before washing: 100% reduction after 24 and 48 h. After washing: 99.7% and 100% reduction for 24 and 48 h, respectively. | [184] (2019) |
cotton@(ZIF-67)3/PDMS | 12.97 wt% cobalt in situ synthesis, PSM with polydimethylsiloxane | Co2+ | Multifunctional cotton fabric for use in the antibacterial and anti-ultraviolet field | MOF disintegration | E. coli S. aureus | Inhib. zone: 15 mm 15 mm (slight increase for S. aureus) | [185] (2021) |
CS-Van-NMOFs | Vancomycin content: 9.87 ± 1.23% Mixing method | Vancomycin Metal ion | Antibiotic therapy of multiple drug resistant infections | Cargo release MOF disintegration | Vancomycin-sensitive S. aureus Vancomycin-resistant S. aureus | Refer to Table 3 | [186] (2019) |
PolyCu-MOF@AgNPs | Ag% wt: 7.24%; Cu% wt:3.46% | Cu2+ Ag+ | Wound healing | MOF disintegration Cargo release | E. coli S. aureus | MIC: 10 µg mL−1 10 µg mL−1 | [187] (2022) |
THY@PCN/PUL/PVA | Electrospinning | ROS/photoirradiation Thymol | Food packaging | Photodynamic therapy Cargo release | E. coli S. aureus | Inhibition of ~99% and ~98% for S. aureus and E. coli, upon irradiation, respectively | [188] (2021) |
GelMA-graft-poly(AA-co-AAm)/MIL-53(Fe)/CS extract | Grafting | Camellia sinensis Fe2+ | Antibacterial hydrogel wound dressing | (cargo release) (MOF disintegration) | B. cereus S. aureus S. mutans K. pneumoniae P. aeruginosa C. albicans strain | Inhib. zone: 27 ± 3 mm, 17 ± 4 mm, 23 ± 1 mm, 25 ± 2 mm, 20 ± 1 mm, 22 ± 4 mm, and 25 ± 3 mm, respectively | [189] (2022) |
ZIF-8/cellulose | 77.5% disposition ratio in situ synthesis | Zn2+ | Composite filters | (MOF disintegration) | E. coli | Inhib. zone: 9.1 mm | [190] (2018) |
MOF-199/cellulose | 88.4% disposition ratio loading by in situ synthesis | Cu2+ | Composite filters | (MOF disintegration) | E. coli | Inhib. zone: 15.2 mm | [190] (2018) |
Ag-MOF/cellulose | 87.2% disposition ratio Loading by in situ synthesis | Ag+ | Composite filters | (MOF disintegration) | E. coli | Inhib. zone: 20.8 mm | [190] (2018) |
Cu-BTC/cellulose | Surface grafting | Cu2+ | Antimicrobial fabric | (MOF disintegration) | E. coli | MIC: 25 µM | [191] (2014) |
CuBTC/silk | Layer by- layer | Cu2+ CuBTC | Antimicrobial fabric | (MOF disintegration) | E. coli S. aureus | Inhib. zone: 7.7–8.0 mm 6.5–7.5 mm | [192] (2012) |
CuBTC/PVA | 10 and 15% by weight Electrospinning | Cu2+ CuBTC | Antimicrobial fabrics | (MOF disintegration) | E. coli S. aureus | Inhib zone: S. aureus ranging from 2 to 4 mm | [193] (2018) |
Cu3(NH2BTC)2 Cotton | Layer by layer | - Cu3(NH2BTC)2 | Wound dressing | (Post-synthetic modification/MOF disintegration) (surface antibacterial properties, bacterial detachment) | E. coli | Reduction in viability of 4-log in modified MOF and 5-log in unmodified MOF, in 24 h | [194] (2018) |
Cu-BTTri/chitosan | 1%, 5% and 20% w/w mixing method | Cu2+ | - | MOF disintegration Surface interaction | P. aeruginosa | Detachment of bacteria | [130] (2017) |
CuBTC/polymer (nylon and polyester hybrid) | 97.14–127.33 mg MOF (g fabric)−1 in situ synthesis | Cu2+ CuBTC | - | - (MOF disintegration) | E. coli S. aureus C. albicans | MIC: 60–64 mM 65–70 mM 62–67 mM | [195] (2018) |
HKUST-1/chitosan | 40% MOF: composite ratio from TGA freeze-drying | Cu2+ CuBTC | Wound dressing | (MOF disintegration) (contact-based action) | E. coli S. aureus | Shrinking of bacterial cell Upon 45 min of contact | [196] 2019 |
Ag NPs@ HKUST-1@ CFs (carboxymethylated fibres) | Deposition ratio: 31.64% by weight Ag wt%:4.79; Cu wt%: 13.3 in situ preparation | Ag+ Cu2+ | Cellulose-based antibacterial materials (food and medical packaging) | Cargo release MOF disintegration | S. aureus E. coli | 99.41% inhibition for S.aureus | [197] (2018) |
2D Cu-TCPP(Fe)/GOx | 2.5 ± 0.03 weight % glucose oxidase incorporated into MOF. Stirring and centrifugation | •OH | MOF-based nanozymes for biological applications | Glucose catalysis | S. aureus E. coli | Inactivation percentage of ~88~90% | [198] (2019) |
MIL@GOx-MIL NR | 7.5% glucose oxidase loaded Solvothermal method with centrifugation | •OH | MOF/enzyme hybrid nanoreactors | Glucose catalysis | Methicillin-resistant staphylococcus aureus | 80 μg/mL MIL@GOx-MIL NRs antibacterial rate was greater than 99.99%. | [199] (2020) |
MMNPs | Ultrasonication treatment followed by biomineralization process in alkaline conditions | ROS/photoirradiation | Antimicrobial photodynamic therapy | Photodynamic therapy | S. aureus E. coli | Following H2O2 addition and irradiation 99% E. coli and 90% S. aureus were eradicated. | [200] (2019) |
PAN-PCN | 0.1–0.6 wt% PCN-224 NPs in polyacrylonitrile Electrospinning | ROS/photoirradiation | To combat pathogen drug resistance and spreading | Photodynamic therapy | S. aureus E. coli | Antimicrobial photodynamic inactivation study (0.6 wt% PCN-224 NPs): S. aureus—4.70 log unit elimination E. coli—3.00 log unit elimination | [201] (2021) |
TFC-Ag-MOF composites | In situ TFC functionalisation | Ag+ | Antifouling membrane for FO applications | Ag+ release | P. aeruginosa | Bacterial mortality of 100% was nearly reached | [202] 2019 |
4.1. MOF and Synthetic Polymers as Hybrid Antimicrobial Materials (PolyMOFs)
4.2. MOF and Semi-Synthetic Polymers Hybrid for Antimicrobial Studies
4.3. MOF and Natural Polymers as Hybrid Antimicrobial Materials
Bacterial Species | Minimum Inhibitory Concentration (μg/mL) | Minimum Bactericidal Concentration (μg/mL) | Concentration Causing Inhibition of 50% Bacteria (μg/mL) |
---|---|---|---|
Vancomycin-sensitive S. aureus | 3.81 ± 1.13 | 127.81 ± 2.66 | 16.73 ± 0.88 |
Vancomycin resistant S. aureus | 8.92 ± 0.69 | 169.34 ± 2.58 | 24.06 ± 1.18 |
5. MOF and other Miscellaneous Agents as Hybrid Antimicrobial Materials
6. Use of Computational Modelling in Drug Delivery Studies Using MOFs
7. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Esser, C. Principles of the Immune System: Players and Organization. In Environmental Influences on the Immune System; Esser, C., Ed.; Springer Vienna: Vienna, Austria, 2016; pp. 1–17. [Google Scholar]
- Jiao, Y.; Niu, L.N.; Ma, S.; Li, J.; Tay, F.R.; Chen, J.H. Quaternary ammonium-based biomedical materials: State-of-the-art, toxicological aspects and antimicrobial resistance. Prog. Polym. Sci. 2017, 71, 53–90. [Google Scholar] [CrossRef] [PubMed]
- Laxminarayan, R.; Matsoso, P.; Pant, S.; Brower, C.; Røttingen, J.A.; Klugman, K.; Davies, S. Access to effective antimicrobials: A worldwide challenge. Lancet 2016, 387, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.C.; Lin, C.H.; Sung, C.T.; Fang, J.Y. Antibacterial activities of bacteriocins: Application in foods and pharmaceuticals. Front. Microbiol. 2014, 5, 10. [Google Scholar] [CrossRef] [Green Version]
- Michael, C.A.; Dominey-Howes, D.; Labbate, M. The antimicrobial resistance crisis: Causes, consequences, and management. Public Health Front. 2014, 2, 145. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-Z. Antimicrobial Resistance in Bacteria: An Overview of Mechanisms and Role of Drug Efflux Pumps; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 131–163. [Google Scholar]
- McDonnell, G.; Russell, A.D. Antiseptics and disinfectants: Activity, action, and resistance. Clin. Microbiol. Rev. 1999, 12, 147–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sompayrac, L.M. How the Immune System Works; John Wiley & Sons, Incorporated: Newark, NJ, USA, 2015. [Google Scholar]
- Laxminarayan, R.; Duse, A.; Wattal, C.; Zaidi, A.K.M.; Wertheim, H.F.L.; Sumpradit, N.; Vlieghe, E.; Hara, G.L.; Gould, I.M.; Goossens, H.; et al. Antibiotic resistance-the need for global solutions. Lancet Infect. Dis. 2013, 13, 1057–1098. [Google Scholar] [CrossRef] [Green Version]
- Hasan, C.M.; Dutta, D.; Nguyen, A.N.T. Revisiting Antibiotic Resistance: Mechanistic Foundations to Evolutionary Outlook. Antibiotics 2022, 11, 40. [Google Scholar] [CrossRef]
- Srivastava, J.; Chandra, H.; Nautiyal, A.R.; Kalra, S.J. Antimicrobial resistance (AMR) and plant-derived antimicrobials (PDA(m)s) as an alternative drug line to control infections. 3 Biotech 2014, 4, 451–460. [Google Scholar] [CrossRef] [Green Version]
- Cofsky, R.; Vangala, K.; Haag, R.; Recco, R.; Maccario, E.; Sathe, S.; Landman, D.; Mayorga, D.; Burgonio, B.; Sepkowitz, D.; et al. The cost of antibiotic resistance: Effect of resistance among Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudmonas aeruginosa on length of hospital stay. Infect. Control Hosp. Epidemiol. 2002, 23, 106–108. [Google Scholar]
- de Kraker, M.E.A.; Stewardson, A.J.; Harbarth, S. Will 10 Million People Die a Year due to Antimicrobial Resistance by 2050? PLos Med. 2016, 13, 6. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, I.; Pangule, R.C.; Kane, R.S. Antifouling Coatings: Recent Developments in the Design of Surfaces That Prevent Fouling by Proteins, Bacteria, and Marine Organisms. Adv. Mater. 2011, 23, 690–718. [Google Scholar] [CrossRef]
- Rai, M.K.; Deshmukh, S.D.; Ingle, A.P.; Gade, A.K. Silver nanoparticles: The powerful nanoweapon against multidrug-resistant bacteria. J. Appl. Microbiol. 2012, 112, 841–852. [Google Scholar] [CrossRef]
- Pham, H.; Ramos, K.; Sua, A.; Acuna, J.; Slowinska, K.; Nguyen, T.; Bui, A.; Weber, M.D.R.; Tian, F. Tuning Crystal Structures of Iron-Based Metal–Organic Frameworks for Drug Delivery Applications. ACS Omega 2020, 5, 3418–3427. [Google Scholar] [CrossRef] [Green Version]
- Menezes, J.; dos Santos, H.S.; Ferreira, M.K.A.; Magalhaes, F.E.A.; da Silva, D.S.; Bandeira, P.N.; Saraiva, G.D.; Pessoa, O.D.L.; Ricardo, N.; Cruz, B.G.; et al. Preparation, structural and spectroscopic characterization of chitosan membranes containing allantoin. J. Mol. Struct. 2020, 1199, 8. [Google Scholar] [CrossRef]
- Ye, M.Z.; Zhao, Y.; Wang, Y.Y.; Yodsanit, N.; Xie, R.S.; Gong, S.Q. pH-Responsive Polymer-Drug Conjugate: An Effective Strategy to Combat the Antimicrobial Resistance. Adv. Funct. Mater. 2020, 30, 11. [Google Scholar] [CrossRef]
- Kim, J.; Chen, B.L.; Reineke, T.M.; Li, H.L.; Eddaoudi, M.; Moler, D.B.; O’Keeffe, M.; Yaghi, O.M. Assembly of metal-organic frameworks from large organic and inorganic secondary building units: New examples and simplifying principles for complex structures. J. Am. Chem. Soc. 2001, 123, 8239–8247. [Google Scholar] [CrossRef] [Green Version]
- Batten, S.R.; Champness, N.R.; Chen, X.-M.; Garcia-Martinez, J.; Kitagawa, S.; Öhrström, L.; O’Keeffe, M.; Suh, M.P.; Reedijk, J. Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013). Pure Appl. Chem. 2013, 85, 1715–1724. [Google Scholar] [CrossRef] [Green Version]
- Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341, 1230444. [Google Scholar] [CrossRef] [Green Version]
- Hirscher, M.; Panella, B. Hydrogen storage in metal–organic frameworks. Scripta Materialia 2007, 56, 809–812. [Google Scholar] [CrossRef]
- Nguyen, P.T.K.; Le, H.V.; Nguyen, K.-T.T.; Hoang, V.-A.T.; Dinh, T.T.; Quach, B.-V.M.; La, N.L.; Nguyen, H.T.; Co, T.T.; Phung, Q.; et al. Chromium-Based Metal-Organic Framework MIL101(Cr)–CdSe Quantum Dot Composites: Synthesis, Morphology, Gas Adsorption and Photoluminescent Properties. J. Electron. Mater. 2019, 48, 662–668. [Google Scholar] [CrossRef]
- Kobielska, P.A.; Howarth, A.J.; Farha, O.K.; Nayak, S. Metal–Organic Frameworks for Heavy Metal Removal from Water. Coord. Chem. Rev. 2018, 358, 92. [Google Scholar] [CrossRef]
- Kandiah, M.; Nilsen, M.H.; Usseglio, S.; Jakobsen, S.; Olsbye, U.; Tilset, M.; Larabi, C.; Quadrelli, E.A.; Bonino, F.; Lillerud, K.P. Synthesis and Stability of Tagged UiO-66 Zr-MOFs. Chem. Mater. 2010, 22, 6632–6640. [Google Scholar] [CrossRef]
- Ou, R.; Zhang, H.; Wei, J.; Kim, S.; Wan, L.; Nguyen, N.S.; Hu, Y.; Zhang, X.; Simon, G.P.; Wang, H. Thermoresponsive Amphoteric Metal–Organic Frameworks for Efficient and Reversible Adsorption of Multiple Salts from Water. Adv. Mater. 2018, 30, 1802767. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Ye, G.; Liao, D.; Chen, X.; Lu, C.; Nezamzadeh-Ejhieh, A.; Khan, M.S.; Liu, J.; Pan, Y.; Dai, Z. Recent Advances of Silver-Based Coordination Polymers on Antibacterial Applications. Molecules 2022, 27, 7166. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Li, D.; Li, Y.; Sakiyama, H.; Muddassir, M.; Pan, Y.; Srivastava, D.; Kumar, A. A 3,8-connected Cd(ii)-based metal–organic framework as an appropriate luminescent sensor for the antibiotic sulfasalazine. Crystengcomm 2022, 24, 7157–7165. [Google Scholar] [CrossRef]
- Qin, L.; Liang, F.; Li, Y.; Wu, J.; Guan, S.; Wu, M.; Xie, S.; Luo, M.; Ma, D. A 2D Porous Zinc-Organic Framework Platform for Loading of 5-Fluorouracil. Inorganics 2022, 10, 202. [Google Scholar] [CrossRef]
- Qin, L.; Li, Y.; Liang, F.L.; Li, L.J.; Lan, Y.W.; Li, Z.Y.; Lu, X.T.; Yang, M.Q.; Ma, D.Y. A microporous 2D cobalt-based MOF with pyridyl sites and open metal sites for selective adsorption of CO2. Microporous Mesoporous Mat. 2022, 341, 8. [Google Scholar] [CrossRef]
- Jin, J.-C.; Wang, J.; Guo, J.; Yan, M.-H.; Wang, J.; Srivastava, D.; Kumar, A.; Sakiyama, H.; Muddassir, M.; Pan, Y. A 3D rare cubane-like tetramer Cu(II)-based MOF with 4-fold dia topology as an efficient photocatalyst for dye degradation. Colloids Surf. A 2023, 656, 130475. [Google Scholar] [CrossRef]
- Sillar, K.; Hofmann, A.; Sauer, J. Ab Initio Study of Hydrogen Adsorption in MOF-5. J. Am. Chem. Soc. 2009, 131, 4143–4150. [Google Scholar] [CrossRef]
- Lazaro, I.A.; Wells, C.J.R.; Forgan, R.S. Multivariate Modulation of the Zr MOF UiO-66 for Defect-Controlled Combination Anticancer Drug Delivery. Angew. Chem.-Int. Edit. 2020, 59, 5211–5217. [Google Scholar] [CrossRef]
- Xiang, W.; Zhang, Y.; Chen, Y.; Liu, C.-J.; Tu, X. Synthesis, characterization and application of defective metal–organic frameworks: Current status and perspectives. J. Mater. Chem. A 2020, 8, 21526–21546. [Google Scholar] [CrossRef]
- Klinowski, J.; Almeida Paz, F.A.; Silva, P.; Rocha, J. Microwave-Assisted Synthesis of Metal–Organic Frameworks. Dalton Trans. 2011, 40, 321–330. [Google Scholar] [CrossRef]
- Lu, W.G.; Wei, Z.W.; Gu, Z.Y.; Liu, T.F.; Park, J.; Park, J.; Tian, J.; Zhang, M.W.; Zhang, Q.; Gentle, T.; et al. Tuning the structure and function of metal-organic frameworks via linker design. Chem. Soc. Rev. 2014, 43, 5561–5593. [Google Scholar] [CrossRef]
- Schnobrich, J.K.; Koh, K.; Sura, K.N.; Matzger, A.J. A Framework for Predicting Surface Areas in Microporous Coordination Polymers. Langmuir 2010, 26, 5808–5814. [Google Scholar] [CrossRef]
- Wu, H.B.; Lou, X.W. Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: Promises and challenges. Sci. Adv. 2017, 3. [Google Scholar] [CrossRef] [Green Version]
- Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O’Keeffe, M.; Yaghi, O.M. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 2002, 295, 469–472. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Dou, Y.B.; Xie, L.H.; Rutledge, W.; Li, J.R.; Zhou, H.C. Zr-based metal-organic frameworks: Design, synthesis, structure, and applications. Chem. Soc. Rev. 2016, 45, 2327–2367. [Google Scholar] [CrossRef]
- Mahmoud, L.A.M.; Telford, R.; Livesey, T.C.; Katsikogianni, M.; Kelly, A.L.; Terry, L.R.; Ting, V.P.; Nayak, S. Zirconium-Based MOFs and Their Biodegradable Polymer Composites for Controlled and Sustainable Delivery of Herbicides. ACS Appl. Bio Mater. 2022, 5, 3972–3981. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, L.; Pang, J.; Li, J.; Huang, N.; Day, G.S.; Cheng, L.; Drake, H.F.; Wang, Y.; Lollar, C.; et al. Photosensitizer-Anchored 2D MOF Nanosheets as Highly Stable and Accessible Catalysts toward Artemisinin Production. Adv. Sci. 2019, 6, 1802059. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.R.; Tong, R.L.; Shi, Z.Q.; Yang, B.; Liu, H.; Ding, S.P.; Wang, X.; Lei, Q.F.; Wu, J.; Fang, W.J. MOF Nanoparticles with Encapsulated Autophagy Inhibitor in Controlled Drug Delivery System for Antitumor. ACS Appl. Mater. Interfaces 2018, 10, 2328–2337. [Google Scholar] [CrossRef]
- Wu, M.X.; Yang, Y.W. Metal-Organic Framework (MOF)-Based Drug/Cargo Delivery and Cancer Therapy. Adv. Mater. 2017, 29, 20. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.Q.; Zhang, Y.N.; Liu, L.F.; Wan, W.; Guo, P.; Nystrom, A.M.; Zou, X.D. One-pot Synthesis of Metal Organic Frameworks with Encapsulated Target Molecules and Their Applications for Controlled Drug Delivery. J. Am. Chem. Soc. 2016, 138, 962–968. [Google Scholar] [CrossRef] [PubMed]
- Naeem, A.; Ting, V.P.; Hintermair, U.; Tian, M.; Telford, R.; Halim, S.; Nowell, H.; Holynska, M.; Teat, S.J.; Scowen, I.J.; et al. Mixed-linker approach in designing porous zirconium-based metal-organic frameworks with high hydrogen storage capacity. Chem. Commun. 2016, 52, 7826–7829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wyszogrodzka, G.; Marszalek, B.; Gil, B.; Dorozynski, P. Metal-organic frameworks: Mechanisms of antibacterial action and potential applications. Drug Discov. Today 2016, 21, 1009–1018. [Google Scholar] [CrossRef] [PubMed]
- Beg, S.; Rahman, M.; Jain, A.; Saini, S.; Midoux, P.; Pichon, C.; Ahmad, F.J.; Akhter, S. Nanoporous metal organic frameworks as hybrid polymer-metal composites for drug delivery and biomedical applications. Drug Discov. Today 2017, 22, 625–637. [Google Scholar] [CrossRef]
- Orellana-Tavra, C.; Mercado, S.A.; Fairen-Jimenez, D. Endocytosis Mechanism of Nano Metal-Organic Frameworks for Drug Delivery. Adv. Healthc. Mater. 2016, 5, 2261–2270. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Lachmanski, L.; Safi, S.; Sene, S.; Serre, C.; Greneche, J.M.; Zhang, J.; Gref, R. New insights into the degradation mechanism of metal-organic frameworks drug carriers. Sci. Rep. 2017, 7, 11. [Google Scholar] [CrossRef] [Green Version]
- Della Rocca, J.; Liu, D.M.; Lin, W.B. Nanoscale Metal-Organic Frameworks for Biomedical Imaging and Drug Delivery. Accounts Chem. Res. 2011, 44, 957–968. [Google Scholar] [CrossRef] [Green Version]
- zur Muhlen, A.; Schwarz, C.; Mehnert, W. Solid lipid nanoparticles (SLN) for controlled drug delivery—Drug release and release mechanism. Eur. J. Pharm. Biopharm. 1998, 45, 149–155. [Google Scholar] [CrossRef]
- Zhang, F.-M.; Dong, H.; Zhang, X.; Sun, X.-J.; Liu, M.; Yang, D.-D.; Liu, X.; Wei, J.-Z. Postsynthetic Modification of ZIF-90 for Potential Targeted Codelivery of Two Anticancer Drugs. ACS Appl. Mater. Interfaces 2017, 9, 27332–27337. [Google Scholar] [CrossRef]
- Ren, J.W.; Ledwaba, M.; Musyoka, N.M.; Langan, H.W.; Mathe, M.; Liao, S.J.; Pang, W. Structural defects in metal-organic frameworks (MOFs): Formation, detection and control towards practices of interests. Coord. Chem. Rev. 2017, 349, 169–197. [Google Scholar] [CrossRef]
- Sun, K.K.; Li, L.; Yu, X.L.; Liu, L.; Meng, Q.T.; Wang, F.; Zhang, R. Functionalization of mixed ligand metal-organic frameworks as the transport vehicles for drugs. J. Colloid Interface Sci. 2017, 486, 128–135. [Google Scholar] [CrossRef]
- Velasquez-Hernandez, M.D.; Ricco, R.; Carraro, F.; Limpoco, F.T.; Linares-Moreau, M.; Leitner, E.; Wiltsche, H.; Rattenberger, J.; Schrottner, H.; Fruhwirt, P.; et al. Degradation of ZIF-8 in phosphate buffered saline media. Crystengcomm 2019, 21, 4538–4544. [Google Scholar] [CrossRef] [Green Version]
- Motakef-Kazemi, N.; Shojaosadati, S.A.; Morsali, A. In situ synthesis of a drug-loaded MOF at room temperature. Microporous Mesoporous Mat. 2014, 186, 73–79. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Li, Q.; Liu, R.L.; Zhang, X.K.; Li, Z.H.; Luan, Y.X. A Versatile Prodrug Strategy to In Situ Encapsulate Drugs in MOF Nanocarriers: A Case of Cytarabine-IR820 Prodrug Encapsulated ZIF-8 toward Chemo-Photothermal Therapy. Adv. Funct. Mater. 2018, 28, 10. [Google Scholar] [CrossRef]
- Liu, Y.; Gong, C.S.; Dai, Y.L.; Yang, Z.; Yu, G.C.; Liu, Y.J.; Zhang, M.R.; Lin, L.S.; Tang, W.; Zhou, Z.J.; et al. In situ polymerization on nanoscale metal-organic frameworks for enhanced physiological stability and stimulus-responsive intracellular drug delivery. Biomaterials 2019, 218, 11. [Google Scholar] [CrossRef]
- Nasrabadi, M.; Ghasemzadeh, M.A.; Zand Monfared, M.R. The preparation and characterization of UiO-66 metal–organic frameworks for the delivery of the drug ciprofloxacin and an evaluation of their antibacterial activities. NJC 2019, 43, 16033–16040. [Google Scholar] [CrossRef]
- Gao, P.; Nie, X.; Zou, M.; Shi, Y.; Cheng, G. Recent advances in materials for extended-release antibiotic delivery system. J. Antibiot 2011, 64, 625–634. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, M.R. Optimisation of antimicrobial therapy using pharmacokinetic and pharmacodynamic parameters. CMI 2001, 7, 589–596. [Google Scholar] [CrossRef] [Green Version]
- Drusano, G.L. Role of pharmacokinetics in the outcome of infections. Antimicrob. Agents Chemother. 1988, 32, 289–297. [Google Scholar] [CrossRef] [Green Version]
- Turnidge, J.D. The Pharmacodynamics of β-Lactams. Clin. Infect. Dis. 1998, 27, 10–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sava Gallis, D.F.; Butler, K.S.; Agola, J.O.; Pearce, C.J.; McBride, A.A. Antibacterial Countermeasures via Metal–Organic Framework-Supported Sustained Therapeutic Release. ACS Appl. Mater. Interfaces 2019, 11, 7782–7791. [Google Scholar] [CrossRef] [PubMed]
- Vaidya, M.Y.; McBain, A.J.; Butler, J.A.; Banks, C.E.; Whitehead, K.A. Antimicrobial Efficacy and Synergy of Metal Ions against Enterococcus faecium, Klebsiella pneumoniae and Acinetobacter baumannii in Planktonic and Biofilm Phenotypes. Sci. Rep. 2017, 7, 5911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Zheng, H.; Chen, J.; Xu, M.; Bai, Y.; Liu, T. MIL-101 (Fe) @Ag Rapid Synergistic Antimicrobial and Biosafety Evaluation of Nanomaterials. Molecules 2022, 27, 3497. [Google Scholar] [CrossRef] [PubMed]
- Mortada, B.; Abou Matar, T.; Sakaya, A.; Atallah, H.; Ali, Z.K.; Karam, P.; Hmadeh, M. Postmetalated Zirconium Metal Organic Frameworks as a Highly Potent Bactericide. Inorg. Chem. 2017, 56, 4739–4744. [Google Scholar] [CrossRef]
- Xu, M.; Li, X.; Zheng, H.; Chen, J.; Ye, X.; Liu, T. Anti-Influenza Virus Study of Composite Material with MIL-101(Fe)-Adsorbed Favipiravir. Molecules 2022, 27, 2288. [Google Scholar] [CrossRef]
- Nabipour, H.; Soltani, B.; Ahmadi Nasab, N. Gentamicin Loaded Zn2(bdc)2(dabco) Frameworks as Efficient Materials for Drug Delivery and Antibacterial Activity. J. Inorg. Organomet. Polym. Mater. 2018, 28, 1206–1213. [Google Scholar] [CrossRef]
- Taheri, M.; Ashok, D.; Sen, T.; Enge, T.G.; Verma, N.K.; Tricoli, A.; Lowe, A.; Nisbet, D.R.; Tsuzuki, T. Stability of ZIF-8 nanopowders in bacterial culture media and its implication for antibacterial properties. Chem. Eng. J. 2021, 413, 10. [Google Scholar] [CrossRef]
- Soltani, B.; Nabipour, H.; Nasab, N.A. Efficient Storage of Gentamicin in Nanoscale Zeolitic Imidazolate Framework-8 Nanocarrier for pH-Responsive Drug Release. J. Inorg. Organomet. Polym. Mater. 2018, 28, 1090–1097. [Google Scholar] [CrossRef]
- Bunzen, H. Chemical Stability of Metal-organic Frameworks for Applications in Drug Delivery. ChemNanoMat 2021, 7, 998–1007. [Google Scholar] [CrossRef]
- André, V.; Da Silva, A.R.F.; Fernandes, A.; Frade, R.; Garcia, C.; Rijo, P.; Antunes, A.M.M.; Rocha, J.; Duarte, M.T. Mg- and Mn-MOFs Boost the Antibiotic Activity of Nalidixic Acid. ACS Appl. Bio Mater. 2019, 2, 2347–2354. [Google Scholar] [CrossRef]
- Loh, Z.H.; Samanta, A.K.; Sia Heng, P.W. Overview of milling techniques for improving the solubility of poorly water-soluble drugs. AJPS 2015, 10, 255–274. [Google Scholar] [CrossRef] [Green Version]
- Bhardwaj, N.; Pandey, S.K.; Mehta, J.; Bhardwaj, S.K.; Kim, K.-H.; Deep, A. Bioactive nano-metal–organic frameworks as antimicrobials against Gram-positive and Gram-negative bacteria. Toxicol. Res. 2018, 7, 931–941. [Google Scholar] [CrossRef] [Green Version]
- Lismont, M.; Dreesen, L.; Wuttke, S. Metal-Organic Framework Nanoparticles in Photodynamic Therapy: Current Status and Perspectives. Adv. Funct. Mater. 2017, 27, 1606314. [Google Scholar] [CrossRef]
- Cheng, L.; Wang, C.; Feng, L.; Yang, K.; Liu, Z. Functional Nanomaterials for Phototherapies of Cancer. Chem. Rev. 2014, 114, 10869–10939. [Google Scholar] [CrossRef]
- Jaber, G.; Dariush, R.; Shahin, A.; Alireza, T.; Abbas, B. Photosensitizers in antibacterial photodynamic therapy: An overview. Laser Ther. 2018, 27, 293–302. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Ma, Y.; Zhao, Y.; Sun, X.; Gándara, F.; Furukawa, H.; Liu, Z.; Zhu, H.; Zhu, C.; Suenaga, K.; et al. Weaving of organic threads into a crystalline covalent organic framework. Science 2016, 351, 365–369. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Jiang, Q.; Feng, D.; Mao, L.; Zhou, H.-C. Size-Controlled Synthesis of Porphyrinic Metal–Organic Framework and Functionalization for Targeted Photodynamic Therapy. J. Am. Chem. Soc. 2016, 138, 3518–3525. [Google Scholar] [CrossRef]
- Fu, X.; Yang, Z.; Deng, T.; Chen, J.; Wen, Y.; Fu, X.; Zhou, L.; Zhu, Z.; Yu, C. A natural polysaccharide mediated MOF-based Ce6 delivery system with improved biological properties for photodynamic therapy. J. Mater. Chem. B 2020, 8, 1481–1488. [Google Scholar] [CrossRef]
- Zheng, Q.; Liu, X.; Zheng, Y.; Yeung, K.W.K.; Cui, Z.; Liang, Y.; Li, Z.; Zhu, S.; Wang, X.; Wu, S. The recent progress on metal–organic frameworks for phototherapy. Chem. Soc. Rev. 2021, 50, 5086–5125. [Google Scholar] [CrossRef]
- Chakraborty, D.; Musib, D.; Saha, R.; Das, A.; Raza, M.K.; Ramu, V.; Chongdar, S.; Sarkar, K.; Bhaumik, A. Highly stable tetradentate phosphonate-based green fluorescent Cu-MOF for anticancer therapy and antibacterial activity. Mater. Today Chem. 2022, 24, 15. [Google Scholar] [CrossRef]
- Ma, D.; Li, P.; Duan, X.; Li, J.; Shao, P.; Lang, Z.; Bao, L.; Zhang, Y.; Lin, Z.; Wang, B. A Hydrolytically Stable Vanadium(IV) Metal–Organic Framework with Photocatalytic Bacteriostatic Activity for Autonomous Indoor Humidity Control. Angew. Chem. Int. Ed. Engl. 2020, 59, 3905–3909. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Li, J.; Feng, X.; Li, J.; Hao, Y.; Zhang, J.; Wang, H.; Yin, A.; Zhou, J.; Ma, X.; et al. Metal-organic frameworks with photocatalytic bactericidal activity for integrated air cleaning. Nat. Commun. 2019, 10, 2177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Zhou, X.; Yang, K.; Li, Q.; Wan, R.; Hu, G.; Ye, J.; Zhang, Y.; He, J.; Gu, H.; et al. Peroxidase- and UV-triggered oxidase mimetic activities of the UiO-66-NH2/chitosan composite membrane for antibacterial properties. Biomater. Sci. 2021, 9, 2647–2657. [Google Scholar] [CrossRef] [PubMed]
- Mao, K.; Zhu, Y.; Rong, J.; Qiu, F.; Chen, H.; Xu, J.; Yang, D.; Zhang, T.; Zhong, L. Rugby-ball like Ag modified zirconium porphyrin metal–organic frameworks nanohybrid for antimicrobial activity: Synergistic effect for significantly enhancing photoactivation capacity. Colloids Surf. A 2021, 611, 125888. [Google Scholar] [CrossRef]
- Tu, J.P.; Zeng, X.L.; Xu, F.J.; Wu, X.; Tian, Y.F.; Hou, X.D.; Long, Z. Microwave-induced fast incorporation of titanium into UiO-66 metal-organic frameworks for enhanced photocatalytic properties. Chem. Commun. 2017, 53, 3361–3364. [Google Scholar] [CrossRef]
- Chen, M.; Long, Z.; Dong, R.; Wang, L.; Zhang, J.; Li, S.; Zhao, X.; Hou, X.; Shao, H.; Jiang, X. Titanium Incorporation into Zr-Porphyrinic Metal–Organic Frameworks with Enhanced Antibacterial Activity against Multidrug-Resistant Pathogens. Small 2020, 16, 1906240. [Google Scholar] [CrossRef]
- Feng, D.; Chung, W.-C.; Wei, Z.; Gu, Z.-Y.; Jiang, H.-L.; Chen, Y.-P.; Darensbourg, D.J.; Zhou, H.-C. Construction of Ultrastable Porphyrin Zr Metal–Organic Frameworks through Linker Elimination. J. Am. Chem. Soc. 2013, 135, 17105–17110. [Google Scholar] [CrossRef]
- Wang, C.; Luo, Y.; Liu, X.; Cui, Z.; Zheng, Y.; Liang, Y.; Li, Z.; Zhu, S.; Lei, J.; Feng, X.; et al. The enhanced photocatalytic sterilization of MOF-Based nanohybrid for rapid and portable therapy of bacteria-infected open wounds. Bioact. Mater. 2022, 13, 200–211. [Google Scholar] [CrossRef]
- Yu, P.; Han, Y.; Han, D.; Liu, X.; Liang, Y.; Li, Z.; Zhu, S.; Wu, S. In-situ sulfuration of Cu-based metal-organic framework for rapid near-infrared light sterilization. J. Hazard. Mater. 2020, 390, 122126. [Google Scholar] [CrossRef]
- Patel, M.N.; Pansuriya, P.B.; Parmar, P.A.; Gandhi, D.S. Synthesis, characterization, and thermal and biocidal aspects of drug-based metal complexes. Pharm. Chem. J. 2008, 42, 687–692. [Google Scholar] [CrossRef]
- Jo, J.H.; Kim, H.C.; Huh, S.; Kim, Y.; Lee, D.N. Antibacterial Activities of Cu-MOFs Containing Glutarates and Bipyridyl Ligands. Dalton Trans. 2019, 48, 8084. [Google Scholar] [CrossRef]
- Zhuang, W.; Yuan, D.; Li, J.R.; Luo, Z.; Zhou, H.C.; Bashir, S.; Liu, J. Highly Potent Bactericidal Activity of Porous Metal–Organic Frameworks. Adv. Healthc. Mater. 2012, 1, 225. [Google Scholar] [CrossRef]
- Johnson, D.C.; Dean, D.R.; Smith, A.D.; Johnson, M.K. Structure, Function, and Formation of Biological Iron-Sulfur Clusters. Annu. Rev. Biochem. 2005, 74, 247–281. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhang, Y. Enhanced Biomimic Bactericidal Surfaces by Coating with Positively-Charged ZIF Nano-Dagger Arrays. Nanomedicine 2017, 13, 2199. [Google Scholar] [CrossRef]
- Wang, K.; Geng, Z.; Yin, Y.; Ma, X.; Wang, Z. Morphology effect on the luminescent property and antibacterial activity of coordination polymer particles with identical crystal structures. Crystengcomm 2011, 13, 5100. [Google Scholar] [CrossRef]
- Li, D.; Yang, Y.; Li, D.; Pan, J.; Chu, C.; Liu, G. Organic Sonosensitizers for Sonodynamic Therapy: From Small Molecules and Nanoparticles toward Clinical Development. Small 2021, 17, 2101976. [Google Scholar] [CrossRef]
- Geng, X.R.; Chen, Y.H.; Chen, Z.Y.; Wei, X.Y.; Dai, Y.L.; Yuan, Z. Oxygen-carrying biomimetic nanoplatform for sonodynamic killing of bacteria and treatment of infection diseases. Ultrason. Sonochem. 2022, 84, 11. [Google Scholar] [CrossRef]
- Pan, X.; Wu, N.; Tian, S.; Guo, J.; Wang, C.; Sun, Y.; Huang, Z.; Chen, F.; Wu, Q.; Jing, Y.; et al. Inhalable MOF-Derived Nanoparticles for Sonodynamic Therapy of Bacterial Pneumonia. Adv. Funct. Mater. 2022, 32, 2112145. [Google Scholar] [CrossRef]
- Yu, Y.; Tan, L.; Li, Z.; Liu, X.; Zheng, Y.; Feng, X.; Liang, Y.; Cui, Z.; Zhu, S.; Wu, S. Single-Atom Catalysis for Efficient Sonodynamic Therapy of Methicillin-Resistant Staphylococcus aureus-Infected Osteomyelitis. ACS Nano 2021, 15, 10628–10639. [Google Scholar] [CrossRef]
- Yang, B.W.; Ding, L.; Yao, H.L.; Chen, Y.; Shi, J.L. A Metal-Organic Framework (MOF) Fenton Nanoagent-Enabled Nanocatalytic Cancer Therapy in Synergy with Autophagy Inhibition. Adv. Mater. 2020, 32, 12. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Dan, J.; Liang, Y.M.; Li, M.; Zhuo, J.C.; Kang, Y.; Su, Z.H.; Zhang, Q.P.; Wang, J.L.; Zhang, W.T. Dimensionality reduction boosts the peroxidase-like activity of bimetallic MOFs for enhanced multidrug-resistant bacteria eradication. Nanoscale 2022, 14, 11693–11702. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.N.; Gwon, K.; Nam, Y.; Lee, S.J.; Tran, N.M.; Yoo, H. Polyurethane Foam Incorporated with Nanosized Copper-Based Metal-Organic Framework: Its Antibacterial Properties and Biocompatibility. Int. J. Mol. Sci. 2021, 22, 13. [Google Scholar] [CrossRef] [PubMed]
- Kundu, B.; Reis, R.L.; Kundu, S.C. Biomimetic Antibacterial Pro-Osteogenic Cu-Sericin MOFs for Osteomyelitis Treatment. Biomimetics 2022, 7, 64. [Google Scholar] [CrossRef] [PubMed]
- Alves, C.S.; Melo, M.N.; Franquelim, H.G.; Ferre, R.; Planas, M.; Feliu, L.; Bardají, E.; Kowalczyk, W.; Andreu, D.; Santos, N.C.; et al. Escherichia coli Cell Surface Perturbation and Disruption Induced by Antimicrobial Peptides BP100 and pepR. JBC 2010, 285, 27536–27544. [Google Scholar] [CrossRef] [Green Version]
- Kunz, R.I.; Brancalhão, R.M.C.; Ribeiro, L.D.F.C.; Natali, M.R.M. Silkworm Sericin: Properties and Biomedical Applications. Biomed Res. Int. 2016, 2016, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Huang, K.; Li, F.; Yuan, K.; Yang, Y.; Chang, H.; Liang, Y.; Yan, X.; Zhao, J.; Tang, T.; Yang, S. A MOF-armored zinc-peroxide nanotheranostic platform for eradicating drug resistant bacteria via image-guided and in situ activated photodynamic therapy. Appl. Mater. Today 2022, 28, 101513. [Google Scholar] [CrossRef]
- Soltani, S.; Akhbari, K. Facile and single-step entrapment of chloramphenicol in ZIF-8 and evaluation of its performance in killing infectious bacteria with high loading content and controlled release of the drug. Crystengcomm 2022, 24, 1934–1941. [Google Scholar] [CrossRef]
- Lin, S.; Liu, X.; Tan, L.; Cui, Z.; Yang, X.; Yeung, K.W.K.; Pan, H.; Wu, S. Porous Iron-Carboxylate Metal–Organic Framework: A Novel Bioplatform with Sustained Antibacterial Efficacy and Nontoxicity. ACS Appl. Mater. Interfaces 2017, 9, 19248. [Google Scholar] [CrossRef]
- Nabipour, H.; Sadr, M.H.; Bardajee, G.R. Synthesis and Characterization of Nanoscale Zeolitic Imidazolate Frameworks with Ciprofloxacin and Their Applications as Antimicrobial Agents. NJC 2017, 41, 7364. [Google Scholar] [CrossRef]
- Song, Z.; Wu, Y.; Cao, Q.; Wang, H.; Wang, X.; Han, H. pH-Responsive, Light-Triggered On-Demand Antibiotic Release from Functional Metal–Organic Framework for Bacterial Infection Combination Therapy. Adv. Funct. Mater. 2018, 28, 1800011. [Google Scholar] [CrossRef]
- Chowdhuri, A.R.; Das, B.; Kumar, A.; Tripathy, S.; Roy, S.; Sahu, S.K. One-Pot Synthesis of Multifunctional Nanoscale Metal–Organic Frameworks as an Effective Antibacterial Agent against Multidrug-Resistant Staphylococcus aureus. Nanotechnology 2017, 28, 095102. [Google Scholar] [CrossRef]
- Hu, F.; Xia, S.-s.; He, Y.; Huang, Z.-l.; Ke, H.; Liao, J.-Z. Reactive organic radical-doped Ag(I)-based coordination compounds for highly efficient antibacterial wound therapy. Colloids Surf. B Biointerfaces 2022, 213, 112425. [Google Scholar] [CrossRef]
- Han, D.; Han, Y.; Li, J.; Liu, X.; Yeung, K.W.K.; Zheng, Y.; Cui, Z.; Yang, X.; Liang, Y.; Li, Z.; et al. Enhanced photocatalytic activity and photothermal effects of cu-doped metal-organic frameworks for rapid treatment of bacteria-infected wounds. Appl. Catal. B Environ. 2020, 261, 118248. [Google Scholar] [CrossRef]
- Soomro, N.A.; Wu, Q.; Amur, S.A.; Liang, H.; Ur Rahman, A.; Yuan, Q.; Wei, Y. Natural Drug Physcion Encapsulated Zeolitic Imidazolate Framework, and Their Application as Antimicrobial Agent. Colloids Surf. B 2019, 182, 110364. [Google Scholar] [CrossRef]
- Golmohamadpour, A.; Bahramian, B.; Khoobi, M.; Pourhajibagher, M.; Barikani, H.R.; Bahador, A. Antimicrobial Photodynamic Therapy Assessment of Three Indocyanine Green-Loaded Metal–Organic Frameworks against Enterococcus faecalis. Photodiagnosis Photodyn. Ther. 2018, 23, 331. [Google Scholar] [CrossRef]
- Demirci, S.; Sahiner, N. Polyethyleneimine based Cerium(III) and Ce(NO3)(3) metal-organic frameworks with blood compatible, antioxidant and antimicrobial properties. Inorg. Chim. Acta 2022, 534, 12. [Google Scholar] [CrossRef]
- Abdelhamid, H.N.; Mahmoud, G.A.-E.; Sharmouk, W. A cerium-based MOFzyme with multi-enzyme-like activity for the disruption and inhibition of fungal recolonization. J. Mater. Chem. B 2020, 8, 7548–7556. [Google Scholar] [CrossRef]
- Li, J.; Song, S.; Meng, J.S.; Tan, L.; Liu, X.M.; Zheng, Y.F.; Li, Z.Y.; Yeung, K.W.K.; Cui, Z.D.; Liang, Y.Q.; et al. 2D MOF Periodontitis Photodynamic Ion Therapy. J. Am. Chem. Soc. 2021, 143, 15427–15439. [Google Scholar] [CrossRef]
- Aguado, S.; Quirós, J.; Canivet, J.; Farrusseng, D.; Boltes, K.; Rosal, R. Antimicrobial activity of cobalt imidazolate metal–organic frameworks. Chemosphere 2014, 113, 188–192. [Google Scholar] [CrossRef]
- Gecgel, C.; Gonca, S.; Turabik, M.; Özdemir, S. An aluminum-based MOF and its amine form as novel biological active materials for antioxidant, DNA cleavage, antimicrobial, and biofilm inhibition activities. Mater. Today Sustain. 2022, 19, 100204. [Google Scholar] [CrossRef]
- Singh, S.; Aldawsari, H.M.; Alam, A.; Alqarni, M.H.S.; Ranjan, S.; Kesharwani, P. Synthesis and antimicrobial activity of vancomycin–conjugated zinc coordination polymer nanoparticles against methicillin-resistant staphylococcus aureus. J. Drug Deliv. Sci. Technol. 2022, 70, 103255. [Google Scholar] [CrossRef]
- Chiericatti, C.; Basilico, J.C.; Zapata Basilico, M.L.; Zamaro, J.M. Novel application of HKUST-1 metal–organic framework as antifungal: Biological tests and physicochemical characterizations. Microporous Mesoporous Mat. 2012, 162, 60–63. [Google Scholar] [CrossRef]
- Ahmad, I.; Jasim, S.A.; Yasin, G.; Al-Qargholi, B.; Hammid, A.T. Synthesis and characterization of new 1,4-dihydropyran derivatives by novel Ta-MOF nanostructures as reusable nanocatalyst with antimicrobial activity. Frontiers in Chemistry 2022, 10, 11. [Google Scholar] [CrossRef] [PubMed]
- Zeraati, M.; Moghaddam-Manesh, M.; Khodamoradi, S.; Hosseinzadegan, S.; Golpayegani, A.; Chauhan, N.P.S.; Sargazi, G. Ultrasonic assisted reverse micelle synthesis of a novel Zn-metal organic framework as an efficient candidate for antimicrobial activities. J. Mol. Struct. 2022, 1247, 10. [Google Scholar] [CrossRef]
- Restrepo, J.; Serroukh, Z.; Santiago-Morales, J.; Aguado, S.; Gómez-Sal, P.; Mosquera, M.E.G.; Rosal, R. An Antibacterial Zn–MOF with Hydrazinebenzoate Linkers. Eur. J. Inorg. Chem. 2017, 2017, 574–580. [Google Scholar] [CrossRef]
- Neufeld, B.H.; Neufeld, M.J.; Lutzke, A.; Schweickart, S.M.; Reynolds, M.M. Metal–Organic Framework Material Inhibits Biofilm Formation of Pseudomonas aeruginosa. Adv. Funct. Mater. 2017, 27, 1702255. [Google Scholar] [CrossRef]
- Shakya, S.; He, Y.; Ren, X.; Guo, T.; Maharjan, A.; Luo, T.; Wang, T.; Dhakhwa, R.; Regmi, B.; Li, H.; et al. Ultrafine Silver Nanoparticles Embedded in Cyclodextrin Metal-Organic Frameworks with GRGDS Functionalization to Promote Antibacterial and Wound Healing Application. Small 2019, 15, 1901065. [Google Scholar] [CrossRef]
- Wang, M.; Zhou, X.; Li, Y.; Dong, Y.; Meng, J.; Zhang, S.; Xia, L.; He, Z.; Ren, L.; Chen, Z.; et al. Triple-synergistic MOF-nanozyme for efficient antibacterial treatment. Bioact. Mater. 2022, 17, 289–299. [Google Scholar] [CrossRef]
- Liu, C.B.; Gong, Y.N.; Chen, Y.; Wen, H.L. Self-Assembly and Structures of New Transition Metal Complexes with Phenyl Substituted Pyrazole Carboxylic Acid and N-Donor co-Ligands. Inorg. Chim. Acta 2012, 383, 277. [Google Scholar] [CrossRef]
- Tabrizi, L.; Chiniforoshan, H.; Araújo, J.P.; Lopes, A.M.L.; Görls, H.; Plass, W.; Mohammadnezhad, G. New 3D Dicyanamide Bridged Coordination Polymer of Ni(II): Synthesis, Crystal Structure, Magnetic Properties and Antibacterial Assay. Inorg. Chim. Acta 2015, 426, 195. [Google Scholar] [CrossRef]
- Tella, A.C.; Owalude, S.O.; Ajibade, P.A.; Simon, N.; Olatunji, S.J.; Abdelbaky, M.S.M.; Garcia-Granda, S. Synthesis, Characterization, Crystal Structure and Antimicrobial Studies of a Novel Cu(II) Complex Based on Itaconic Acid and Nicotinamide. J. Mol. Struct. 2016, 1125, 570. [Google Scholar] [CrossRef]
- Prathima, B.; Subba Rao, Y.; Adinarayana Reddy, S.; Reddy, Y.P.; Varada Reddy, A. Copper(II) and Nickel(II) Complexes of Benzyloxybenzaldehyde-4-Phenyl-3-Thiosemicarbazone: Synthesis, Characterization and Biological Activity. Spectrochim. Acta Part A 2010, 77, 248. [Google Scholar] [CrossRef]
- Wojciechowska, A.; Gagor, A.; Zierkiewicz, W.; Jarzab, A.; Dylong, A.; Duczmal, M. Metal–Organic Framework in an L-Arginine Copper(II) Ion Polymer: Structure, Properties, Theoretical Studies and Microbiological Activity. RSC Adv. 2015, 5, 36295. [Google Scholar] [CrossRef]
- Iram, S.; Imran, M.; Kanwal, F.; Iqbal, Z.; Deeba, F.; Iqbal, Q.J. Bismuth(III) Based Metal Organic Frameworks: Luminescence, Gas Adsorption, and Antibacterial Studies. Z. Anorg. Allg. Chem. 2019, 645, 50. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Xu, X.; Xia, Q.; Yuan, G.; He, Q.; Cui, Y. Multiple topological isomerism of three-connected networks in silver-based metal–organoboron frameworks. Chem. Commun. 2010, 46, 2608. [Google Scholar] [CrossRef]
- Lu, X.; Ye, J.; Sun, Y.; Bogale, R.F.; Zhao, L.; Tian, P.; Ning, G. Ligand Effects on the Structural Dimensionality and Antibacterial Activities of Silver-Based Coordination Polymers. Dalton Trans. 2014, 43, 10104. [Google Scholar] [CrossRef]
- Bouhidel, Z.; Cherouana, A.; Durand, P.; Doudouh, A.; Morini, F.; Guillot, B.; Dahaoui, S. Synthesis, Spectroscopic Characterization, Crystal Structure, Hirshfeld Surface Analysis and Antimicrobial Activities of Two Triazole Schiff Bases and Their Silver Complexes. Inorg. Chim. Acta 2018, 482, 34. [Google Scholar] [CrossRef]
- Lu, X.; Ye, J.; Zhang, D.; Xie, R.; Bogale, R.F.; Sun, Y.; Zhao, L.; Zhao, Q.; Ning, G. Silver Carboxylate Metal–Organic Frameworks with Highly Antibacterial Activity and Biocompatibility. J. Inorg. Biochem. 2014, 138, 114. [Google Scholar] [CrossRef]
- Kirillov, A.M.; Wieczorek, S.W.; Lis, A.; Guedes da Silva, M.F.C.; Florek, M.; Krol, J.ł.; Staroniewicz, Z.ł.; Smolenski, P.; Pombeiro, A.J.L. 1,3,5-Triaza-7-Phosphaadamantane-7-Oxide (PTAdO): New Diamondoid Building Block for Design of Three-Dimensional Metal–Organic Frameworks. Cryst. Growth Des. 2011, 11, 2711. [Google Scholar] [CrossRef]
- Slenters, T.V.; Sagué, J.L.; Brunetto, P.S.; Zuber, S.; Fleury, A.; Mirolo, L.; Robin, A.Y.; Meuwly, M.; Gordon, Q.; Landmann, R.; et al. Of Chains and Rings: Synthetic Strategies and Theoretical Investigations for Tuning the Structure of Silver Coordination Compounds and Their Applications. Materials 2010, 3, 3407. [Google Scholar] [CrossRef] [Green Version]
- Jaros, S.W.; Smolenski, P.; Guedes da Silva, M.F.C.; Florek, M.; Krol, J.ł.; Staroniewicz, Z.ł.; Pombeiro, A.J.L.; Kirillov, A.M. New Silver BioMOFs Driven by 1,3,5-Triaza-7-Phosphaadamantane-7-Sulfide (PTALS): Synthesis, Topological Analysis and Antimicrobial Activity. Crystengcomm 2013, 15, 8060. [Google Scholar] [CrossRef]
- Jaros, S.W.; Guedes da Silva, M.F.C.; Florek, M.; Oliveira, M.C.; Smolenski, P.; Pombeiro, A.J.L.; Kirillov, A.M. Aliphatic Dicarboxylate Directed Assembly of Silver(I) 1,3,5-Triaza-7-Phosphaadamantane Coordination Networks: Topological Versatility and Antimicrobial Activity. Cryst. Growth Des. 2014, 14, 5408. [Google Scholar] [CrossRef]
- Yesilel, O.Z.; Günay, G.; Darcan, C.; Soylu, M.S.; Keskin, S.; Ng, S.W. An Unusual 3D Metal–Organic Framework, {[Ag4(μ4-pzdc)2(μ-en)2]·H2O}n:C–H···Ag, N–H···Ag and (O–H)···Ag Interactions and an Unprecedented Coordination Mode for Pyrazine-2,3-Dicarboxylate. Crystengcomm 2012, 14, 2817. [Google Scholar] [CrossRef]
- Berchel, M.; Gall, T.L.; Denis, C.; Hir, S.L.; Quentel, F.; Elléouet, C.; Montier, T.; Rueff, J.-M.; Salaün, J.-Y.; Haelters, J.-P.; et al. A silver-based metal–organic framework material as a ‘reservoir’ of bactericidal metal ions. NJC 2011, 35, 1000. [Google Scholar] [CrossRef]
- Arpa Sancet, M.P.; Hanke, M.; Wang, Z.; Bauer, S.; Azucena, C.; Arslan, H.K.; Heinle, M.; Gliemann, H.; Woll, C.; Rosenhahn, A. Surface Anchored Metal–Organic Frameworks as Stimulus Responsive Antifouling Coatings. Biointerphases 2013, 8, 29. [Google Scholar] [CrossRef] [Green Version]
- Tamames-Tabar, C.; Imbuluzqueta, E.; Guillou, N.; Serre, C.; Miller, S.R.; Elkaïm, E.; Horcajada, P.; Blanco-Prieto, M.G. A Zn Azelate MOF: Combining Antibacterial Effect. Crystengcomm 2015, 17, 456. [Google Scholar] [CrossRef]
- Raju, P.; Ramalingam, T.; Nooruddin, T.; Natarajan, S. In Vitro Assessment of Antimicrobial, Antibiofilm and Larvicidal Activities of Bioactive Nickel Metal Organic Framework. J. Drug Deliv. Sci. Technol. 2020, 56, 101560. [Google Scholar] [CrossRef]
- Sheta, S.M.; Salem, S.R.; El-Sheikh, S.M. A novel Iron(III)-based MOF: Synthesis, characterization, biological, and antimicrobial activity study. Mater. Res. 2022, 37, 2356–2367. [Google Scholar] [CrossRef]
- Sheta, S.M.; El-Sheikh, S.M.; Abd-Elzaher, M.M. Simple Synthesis of Novel Copper Metal–Organic Framework Nanoparticles: Biosensing and Biological Applications. Dalton Trans. 2018, 47, 4847. [Google Scholar] [CrossRef]
- Shen, M.F.; Zhou, J.W.; Elhadidy, M.; Xianyu, Y.L.; Feng, J.S.; Liu, D.H.; Ding, T. Cyclodextrin metal-organic framework by ultrasound-assisted rapid synthesis for caffeic acid loading and antibacterial application. Ultrason. Sonochem. 2022, 86, 10. [Google Scholar] [CrossRef]
- Xie, L.; Yang, H.; Wu, X.; Wang, L.; Zhu, B.; Tang, Y.; Bai, M.; Li, L.; Cheng, C.; Ma, T. Ti-MOF-based biosafety materials for efficient and long-life disinfection via synergistic photodynamic and photothermal effects. Biosaf. Health 2022, 4, 135–146. [Google Scholar] [CrossRef]
- Soltani, S.; Akhbari, K.; Phuruangrat, A. Incorporation of silver nanoparticles on Cu-BTC metal-organic framework under the influence of reaction conditions and investigation of their antibacterial activity. Appl. Organomet. Chem. 2022, 36, 10. [Google Scholar] [CrossRef]
- Ramos, D.; Aguila-Rosas, J.; Quirino-Barreda, C.T.; Santiago-Tellez, A.; Lara-Garcia, H.A.; Guzman, A.; Ibarra, I.A.; Lima, E. Linezolid@MOF-74 as a host-guest system with antimicrobial activity. J. Mater. Chem. B 2022, 8, 9984–9991. [Google Scholar] [CrossRef]
- Yildirim, A.; Kocer, M.B.; Uysal, A.; Yilmaz, M. Synthesis of new fluorescent metal-organic framework (4-sulfo-1,8-naphthalimide-UiO66) for detection of Cr(III)/Cr(VI) ions in aqueous media and its antimicrobial studies. Mater. Today Commun. 2022, 32, 8. [Google Scholar] [CrossRef]
- Kargar, P.G.; Bagherzade, G.; Beyzaei, H.; Arghavani, S. BioMOF-Mn: An Antimicrobial Agent and an Efficient Nanocatalyst for Domino One-Pot Preparation of Xanthene Derivatives. Inorg. Chem. 2022, 16, 10678–10693. [Google Scholar] [CrossRef]
- Abdelmoaty, A.S.; El-Beih, A.A.; Hanna, A.A. Synthesis, Characterization and Antimicrobial Activity of Copper-Metal Organic Framework (Cu-MOF) and Its Modification by Melamine. J. Inorg. Organomet. Polym. Mater. 2022, 32, 1778–1785. [Google Scholar] [CrossRef]
- Abdieva, G.A.; Patra, I.; Al-Qargholi, B.; Shahryari, T.; Chauhan, N.P.S.; Moghaddam-manesh, M. An Efficient Ultrasound-Assisted Synthesis of Cu/Zn Hybrid MOF Nanostructures With High Microbial Strain Performance. Front. Bioeng. Biotechnol. 2022, 10, 8. [Google Scholar] [CrossRef]
- Bashar, B.S.; Kareem, H.A.; Hasan, Y.M.; Ahmad, N.; Alshehri, A.M.; Al-Majdi, K.; Hadrawi, S.K.; Al Kubaisy, M.M.R.; Qasim, M.T. Application of novel Fe3O4/Zn-metal organic framework magnetic nanostructures as an antimicrobial agent and magnetic nanocatalyst in the synthesis of heterocyclic compounds. Front. Chem. 2022, 10, 17. [Google Scholar] [CrossRef]
- Caamano, K.; Heras-Mozos, R.; Calbo, J.; Diaz, J.C.; Waerenborgh, J.C.; Vieira, B.J.C.; Hernandez-Munoz, P.; Gavara, R.; Gimenez-Marques, M. Exploiting the Redox Activity of MIL-100(Fe) Carrier Enables Prolonged Carvacrol Antimicrobial Activity. ACS Appl. Mater. Interfaces 2022, 14, 10758–10768. [Google Scholar] [CrossRef]
- Francis, M.M.; Thakur, A.; Balapure, A.; Dutta, J.R.; Ganesan, R. Fabricating effective heterojunction in metal-organic framework-derived self-cleanable and dark/visible-light dual mode antimicrobial CuO/AgX (X = Cl, Br, or I) nanocomposites. Chem. Eng. J. 2022, 446, 15. [Google Scholar] [CrossRef]
- Moaness, M.; Mabrouk, M.; Ahmed, M.M.; Das, D.B.; Beherei, H.H. Novel zinc-silver nanocages for drug delivery and wound healing: Preparation, characterization and antimicrobial activities. Int. J. Pharm. 2022, 616, 15. [Google Scholar] [CrossRef] [PubMed]
- Kitao, T.; Zhang, Y.Y.; Kitagawa, S.; Wang, B.; Uemura, T. Hybridization of MOFs and polymers. Chem. Soc. Rev. 2017, 46, 3108–3133. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Chen, S.; Gou, X.; Yang, J.; An, J.; Jin, X.; Yang, Y.-W.; Chen, L.; Gao, H. Biodegradable Supramolecular Materials Based on Cationic Polyaspartamides and Pillar[5]arene for Targeting Gram-Positive Bacteria and Mitigating Antimicrobial Resistance. Adv. Funct. Mater. 2019, 29, 1904683. [Google Scholar] [CrossRef]
- Giliopoulos, D.; Zamboulis, A.; Giannakoudakis, D.; Bikiaris, D.; Triantafyllidis, K. Polymer/Metal Organic Framework (MOF) Nanocomposites for Biomedical Applications. Molecules 2020, 25, 28. [Google Scholar] [CrossRef] [Green Version]
- Lazaro, I.A.; Haddad, S.; Sacca, S.; Orellana-Tavra, C.; Fairen-Jimenez, D.; Forgan, R.S. Selective Surface PEGylation of UiO-66 Nanoparticles for Enhanced Stability, Cell Uptake, and pH-Responsive Drug Delivery. Chem 2017, 2, 561–578. [Google Scholar] [CrossRef] [Green Version]
- Filippousi, M.; Turner, S.; Leus, K.; Siafaka, P.I.; Tseligka, E.D.; Vandichel, M.; Nanaki, S.G.; Vizirianakis, I.S.; Bikiaris, D.N.; Van Der Voort, P.; et al. Biocompatible Zr-based nanoscale MOFs coated with modified poly(ε-caprolactone) as anticancer drug carriers. Int. J. Pharm. 2016, 509, 208–218. [Google Scholar] [CrossRef]
- Souza, B.E.; Donà, L.; Titov, K.; Bruzzese, P.; Zeng, Z.; Zhang, Y.; Babal, A.S.; Möslein, A.F.; Frogley, M.D.; Wolna, M.; et al. Elucidating the Drug Release from Metal–Organic Framework Nanocomposites via In Situ Synchrotron Microspectroscopy and Theoretical Modeling. ACS Appl. Mater. Interfaces 2020, 12, 5147–5156. [Google Scholar] [CrossRef]
- Rahimi, M.; Charmi, G.; Matyjaszewski, K.; Banquy, X.; Pietrasik, J. Recent developments in natural and synthetic polymeric drug delivery systems used for the treatment of osteoarthritis. Acta Biomater. 2021, 123, 31–50. [Google Scholar] [CrossRef]
- Rickhoff, T.A.; Sullivan, E.; Werth, L.K.; Kissel, D.S.; Keleher, J.J. A biomimetic cellulose-based composite material that incorporates the antimicrobial metal-organic framework HKUST-1. J. Appl. Polym. Sci. 2019, 136, 12. [Google Scholar] [CrossRef]
- Quiros, J.; Boltes, K.; Aguado, S.; de Villoria, R.G.; Vilatela, J.J.; Rosal, R. Antimicrobial metal-organic frameworks incorporated into electrospun fibers. Chem. Eng. J. 2015, 262, 189–197. [Google Scholar] [CrossRef]
- Cai, Y.; Guan, J.W.; Wang, W.; Wang, L.; Su, J.Y.; Fang, L.M. pH and light-responsive polycaprolactone/curcumin@zif-8 composite films with enhanced antibacterial activity. J. Food Sci. 2021, 86, 3550–3562. [Google Scholar] [CrossRef]
- Zhang, H.R.; Xu, Z.H.; Mao, Y.; Zhang, Y.J.; Li, Y.; Lao, J.H.; Wang, L. Integrating Porphyrinic Metal-Organic Frameworks in Nanofibrous Carrier for Photodynamic Antimicrobial Application. Polymers 2021, 13, 17. [Google Scholar] [CrossRef]
- Liu, M.; Wang, L.; Zheng, X.H.; Xie, Z.G. Zirconium-Based Nanoscale Metal-Organic Framework/Poly(epsilon-caprolactone) Mixed-Matrix Membranes as Effective Antimicrobials. ACS Appl. Mater. Interfaces 2017, 9, 41512–41520. [Google Scholar] [CrossRef]
- Salim, S.A.; Taha, A.A.; Khozemy, E.E.; El-Moslamy, S.H.; Kamoun, E.A. Electrospun zinc-based metal organic framework loaded-PVA/chitosan/ hyaluronic acid interfaces in antimicrobial composite nanofibers scaffold for bone regeneration applications. J. Drug Deliv. Sci. Technol. 2022, 76, 12. [Google Scholar] [CrossRef]
- Han, X.; Boix, G.; Balcerzak, M.; Moriones, O.H.; Cano-Sarabia, M.; Cortes, P.; Bastus, N.; Puntes, V.; Llagostera, M.; Imaz, I.; et al. Antibacterial Films Based on MOF Composites that Release Iodine Passively or Upon Triggering by Near-Infrared Light. Adv. Funct. Mater. 2022, 32, 12. [Google Scholar] [CrossRef]
- Chen, W.; Zhu, P.; Chen, Y.T.; Liu, Y.G.; Du, L.P.; Wu, C.S. Iodine Immobilized UiO-66-NH2 Metal-Organic Framework as an Effective Antibacterial Additive for Poly(epsilon-caprolactone). Polymers 2022, 14, 9. [Google Scholar] [CrossRef]
- Su, M.L.; Zhang, R.; Li, J.P.; Jin, X.B.; Zhang, X.F.; Qin, D.C. Tailoring growth of MOF199 on hierarchical surface of bamboo and its antibacterial property. Cellulose 2021, 28, 11713–11727. [Google Scholar] [CrossRef]
- Qian, L.W.; Lei, D.; Duan, X.; Zhang, S.F.; Song, W.Q.; Hou, C.; Tang, R.H. Design and preparation of metal-organic framework papers with enhanced mechanical properties and good antibacterial capacity. Carbohydr. Polym. 2018, 192, 44–51. [Google Scholar] [CrossRef]
- Ran, J.H.; Chen, H.B.; Bi, S.G.; Guo, Q.F.; Deng, Z.M.; Cai, G.M.; Cheng, D.S.; Tang, X.N.; Wang, X. One-step in-situ growth of zeolitic imidazole frameworks-8 on cotton fabrics for photocatalysis and antimicrobial activity. Cellulose 2020, 27, 10447–10459. [Google Scholar] [CrossRef]
- Lis, M.J.; Caruzi, B.B.; Gil, G.A.; Samulewski, R.B.; Bail, A.; Scacchetti, F.A.P.; Moises, M.P.; Bezerra, F.M. In-Situ Direct Synthesis of HKUST-1 in Wool Fabric for the Improvement of Antibacterial Properties. Polymers 2019, 11, 11. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.Y.; Zhang, S.Y.; Huang, W.; Guo, Z.P.; Huang, J.J.; Yang, H.J.; Ye, D.Z.; Xu, W.L.; Gu, S.J. Multi-functional cotton textiles design using in situ generating zeolitic imidazolate framework-67 (ZIF-67) for effective UV resistance, antibacterial activity, and self-cleaning. Cellulose 2021, 28, 5923–5935. [Google Scholar] [CrossRef]
- Ghaffar, I.; Imran, M.; Perveen, S.; Kanwal, T.; Saifullah, S.; Bertino, M.F.; Ehrhardt, C.J.; Yadavalli, V.K.; Shah, M.R. Synthesis of chitosan coated metal organic frameworks (MOFs) for increasing vancomycin bactericidal potentials against resistant S. aureus strain. Mater. Sci. Eng. C—Mater. Biol. Appl. 2019, 105, 10. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.P.; Cheng, F.; Liang, G.L.; Zhang, S.; Jia, Q.J.; He, L.H.; Duan, S.X.; Fu, Y.K.; Zhang, Z.H.; Du, M. Copper-based polymer-metal-organic framework embedded with Ag nanoparticles: Long-acting and intelligent antibacterial activity and accelerated wound healing. Chem. Eng. J. 2022, 435, 13. [Google Scholar] [CrossRef]
- Min, T.T.; Sun, X.L.; Zhou, L.P.; Du, H.Y.; Zhu, Z.; Wen, Y.Q. Electrospun pullulan/PVA nanofibers integrated with thymol-loaded porphyrin metal-organic framework for antibacterial food packaging. Carbohydr. Polym. 2021, 270, 12. [Google Scholar] [CrossRef]
- Hezari, S.; Olad, A.; Dilmaghani, A. Modified gelatin/iron- based metal-organic framework nanocomposite hydrogel as wound dressing: Synthesis, antibacterial activity, and Camellia sinensis release. Int. J. Biol. Macromol. 2022, 218, 488–505. [Google Scholar] [CrossRef]
- Ma, S.S.; Zhang, M.Y.; Nie, J.Y.; Yang, B.; Song, S.X.; Lu, P. Multifunctional cellulose-based air filters with high loadings of metal-organic frameworks prepared by in situ growth method for gas adsorption and antibacterial applications. Cellulose 2018, 25, 5999–6010. [Google Scholar] [CrossRef]
- Rodriguez, H.S.; Hinestroza, J.P.; Ochoa-Puentes, C.; Sierra, C.A.; Soto, C.Y. Antibacterial Activity Against Escherichia coli of Cu-BTC (MOF-199) Metal-Organic Framework Immobilized onto Cellulosic Fibers. J. Appl. Polym. Sci. 2014, 131, 5. [Google Scholar] [CrossRef]
- Abbasi, A.R.; Akhbari, K.; Morsali, A. Dense coating of surface mounted CuBTC Metal-Organic Framework nanostructures on silk fibers, prepared by layer-by-layer method under ultrasound irradiation with antibacterial activity. Ultrason. Sonochem. 2012, 19, 846–852. [Google Scholar] [CrossRef]
- Singbumrung, K.; Motina, K.; Pisitsak, P.; Chitichotpanya, P.; Wongkasemjit, S.; Inprasit, T. Preparation of Cu-BTC/PVA Fibers with Antibacterial Applications. Fibers Polym. 2018, 19, 1373–1378. [Google Scholar] [CrossRef]
- Rubin, H.N.; Neufeld, B.H.; Reynolds, M.M. Surface-Anchored Metal–Organic Framework–Cotton Material for Tunable Antibacterial Copper Delivery. ACS Appl. Mater. Interfaces 2018, 10, 15189–15199. [Google Scholar] [CrossRef]
- Emam, H.E.; Darwesh, O.M.; Abdelhameed, R.M. In-growth metal organic framework/synthetic hybrids as antimicrobial fabrics and its toxicity. Colloid Surf. B—Biointerfaces 2018, 165, 219–228. [Google Scholar] [CrossRef]
- Ren, X.; Yang, C.; Zhang, L.; Li, S.; Shi, S.; Wang, R.; Zhang, X.; Yue, T.; Sun, J.; Wang, J. Copper metal–organic frameworks loaded on chitosan film for the efficient inhibition of bacteria and local infection therapy. Nanoscale 2019, 11, 11830–11838. [Google Scholar] [CrossRef]
- Duan, C.; Meng, J.R.; Wang, X.Q.; Meng, X.; Sun, X.L.; Xu, Y.J.; Zhao, W.; Ni, Y.H. Synthesis of novel cellulose- based antibacterial composites of Ag nanoparticles@ metal-organic frameworks@ carboxymethylated fibers. Carbohydr. Polym. 2018, 193, 82–88. [Google Scholar] [CrossRef]
- Liu, X.P.; Yan, Z.Q.; Zhang, Y.; Liu, Z.W.; Sun, Y.H.; Ren, J.S.; Qu, X.G. Two-Dimensional Metal-Organic Framework/Enzyme Hybrid Nanocatalyst as a Benign and m Self-Activated Cascade Reagent for in Vivo Wound Healing. ACS Nano 2019, 13, 5222–5230. [Google Scholar] [CrossRef]
- Li, T.; Qiu, H.Q.; Liu, N.; Li, J.W.; Bao, Y.H.; Tong, W.J. Construction of Self-activated Cascade Metal-Organic Framework/Enzyme Hybrid Nanoreactors as Antibacterial Agents. Colloid Surf. B—Biointerfaces 2020, 191, 7. [Google Scholar] [CrossRef]
- Deng, Q.Q.; Sun, P.P.; Zhang, L.; Liu, Z.W.; Wang, H.; Ren, J.S.; Qu, X.G. Porphyrin MOF Dots-Based, Function -Adaptive Nanoplatform for Enhanced Penetration and Photodynamic Eradication of Bacterial Biofilms. Adv. Funct. Mater. 2019, 29, 9. [Google Scholar] [CrossRef]
- Nie, X.L.; Wu, S.L.; Hussain, T.; Wei, Q.F. PCN-224 Nanoparticle/Polyacrylonitrile Nanofiber Membrane for Light-Driven Bacterial Inactivation. Nanomaterials 2021, 11, 11. [Google Scholar] [CrossRef]
- Seyedpour, S.F.; Rahimpour, A.; Najafpour, G. Facile in-Situ Assembly of Silver-Based MOFs to Surface Functionalization of TFC Membrane: A Novel Approach toward Long-Lasting Biofouling Mitigation. J. Membr. Sci. 2019, 573, 257. [Google Scholar] [CrossRef]
- Asadniaye Fardjahromi, M.; Nazari, H.; Ahmadi Tafti, S.M.; Razmjou, A.; Mukhopadhyay, S.; Warkiani, M.E. Metal-organic framework-based nanomaterials for bone tissue engineering and wound healing. Mater. Today Chem. 2022, 23, 100670. [Google Scholar] [CrossRef]
- Liu, Z.W.; Wang, F.M.; Ren, J.S.; Qu, X.G. A series of MOF/Ce-based nanozymes with dual enzyme-like activity disrupting biofilms and hindering recolonization of bacteria. Biomaterials 2019, 208, 21–31. [Google Scholar] [CrossRef]
- Qiu, H.; Pu, F.; Liu, Z.W.; Deng, Q.Q.; Sun, P.P.; Ren, J.S.; Qu, X.G. Depriving Bacterial Adhesion-Related Molecule to Inhibit Biofilm Formation Using CeO2-Decorated Metal-Organic Frameworks. Small 2019, 15, 8. [Google Scholar] [CrossRef]
- Travlou, N.A.; Algarra, M.; Alcoholado, C.; Cifuentes-Rueda, M.; Labella, A.M.; Lazaro-Martinez, J.M.; Rodriguez-Castellon, E.; Bandosz, T.J. Carbon Quantum Dot Surface-Chemistry-Dependent Ag Release Governs the High Antibacterial Activity of Ag-Metal-Organic Framework Composites. ACS Appl. Bio Mater. 2018, 1, 693–707. [Google Scholar] [CrossRef]
- Kotzabasaki, M.; Galdadas, I.; Tylianakis, E.; Klontzas, E.; Cournia, Z.; Froudakis, G.E. Multiscale simulations reveal IRMOF-74-III as a potent drug carrier for gemcitabine delivery. J. Mater. Chem. B 2017, 5, 3277–3282. [Google Scholar] [CrossRef]
- Erucar, I.; Keskin, S. Computational investigation of metal organic frameworks for storage and delivery of anticancer drugs. J. Mater. Chem. B 2017, 5, 7342–7351. [Google Scholar] [CrossRef]
- Taylor-Edinbyrd, K.; Li, T.; Kumar, R. Effect of chemical structure of S-nitrosothiols on nitric oxide release mediated by the copper sites of a metal organic framework based environment. Phys. Chem. Chem. Phys. 2017, 19, 11947–11959. [Google Scholar] [CrossRef]
- Santos, J.; Quimque, M.T.; Liman, R.A.; Agbay, J.C.; Macabeo, A.P.G.; Corpuz, M.J.-A.; Wang, Y.-M.; Lu, T.-T.; Lin, C.-H.; Villaflores, O.B. Computational and Experimental Assessments of Magnolol as a Neuroprotective Agent and Utilization of UiO-66(Zr) as Its Drug Delivery System. ACS Omega 2021, 6, 24382–24396. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Keywanlu, M.; Tayebee, R. Experimental and molecular dynamics simulation study on the delivery of some common drugs by ZIF-67, ZIF-90, and ZIF-8 zeolitic imidazolate frameworks. Appl. Organomet. Chem. 2021, 35, e6377. [Google Scholar] [CrossRef]
- Rojas, S.; Hidalgo, T.; Luo, Z.; Ávila, D.; Laromaine, A.; Horcajada, P. Pushing the Limits on the Intestinal Crossing of Metal–Organic Frameworks: An <i>Ex Vivo</i> and <i>In Vivo</i> Detailed Study. ACS Nano 2022, 16, 5830–5838. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.H.; Quimque, M.T.J.; Macabeo, A.P.G.; Corpuz, M.J.-A.T.; Wang, Y.-M.; Lu, T.-T.; Lin, C.-H.; Villaflores, O.B. Enhanced Oral Bioavailability of the Pharmacologically Active Lignin Magnolol via Zr-Based Metal Organic Framework Impregnation. Pharmaceutics 2020, 12, 437. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Wang, C.; Wang, L.; Liu, Z.; Wu, L.; Zhang, G.; Yu, L.; Ren, X.; York, P.; Sun, L.; et al. Nanoporous CD-MOF particles with uniform and inhalable size for pulmonary delivery of budesonide. Int. J. Pharm. 2019, 564, 153–161. [Google Scholar] [CrossRef]
- Kim, S.-N.; Park, C.G.; Huh, B.K.; Lee, S.H.; Min, C.H.; Lee, Y.Y.; Kim, Y.K.; Park, K.H.; Choy, Y.B. Metal-organic frameworks, NH2-MIL-88(Fe), as carriers for ophthalmic delivery of brimonidine. Acta Biomater. 2018, 79, 344–353. [Google Scholar] [CrossRef]
- Rojas, S.; Horcajada, P. Understanding the Incorporation and Release of Salicylic Acid in Metal-Organic Frameworks for Topical Administration. Eur. J. Inorg. Chem. 2021, 2021, 1325–1331. [Google Scholar] [CrossRef]
- Singh, N.; Qutub, S.; Khashab, N.M. Biocompatibility and biodegradability of metal organic frameworks for biomedical applications. J. Mater. Chem. B 2021, 9, 5925–5934. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Livesey, T.C.; Mahmoud, L.A.M.; Katsikogianni, M.G.; Nayak, S. Metal–Organic Frameworks and Their Biodegradable Composites for Controlled Delivery of Antimicrobial Drugs. Pharmaceutics 2023, 15, 274. https://doi.org/10.3390/pharmaceutics15010274
Livesey TC, Mahmoud LAM, Katsikogianni MG, Nayak S. Metal–Organic Frameworks and Their Biodegradable Composites for Controlled Delivery of Antimicrobial Drugs. Pharmaceutics. 2023; 15(1):274. https://doi.org/10.3390/pharmaceutics15010274
Chicago/Turabian StyleLivesey, Tayah C., Lila A. M. Mahmoud, Maria G. Katsikogianni, and Sanjit Nayak. 2023. "Metal–Organic Frameworks and Their Biodegradable Composites for Controlled Delivery of Antimicrobial Drugs" Pharmaceutics 15, no. 1: 274. https://doi.org/10.3390/pharmaceutics15010274
APA StyleLivesey, T. C., Mahmoud, L. A. M., Katsikogianni, M. G., & Nayak, S. (2023). Metal–Organic Frameworks and Their Biodegradable Composites for Controlled Delivery of Antimicrobial Drugs. Pharmaceutics, 15(1), 274. https://doi.org/10.3390/pharmaceutics15010274