Tamoxifen-Loaded Eudragit Nanoparticles: Quality by Design Approach for Optimization of Nanoparticles as Delivery System
Abstract
:1. Introduction
- The planning phase includes the selection of responses (outcome parameters) and identifying and assessing process variables that can affect the characteristics of Eudragit-NP.
- The screening phase includes the screening of the most promising variables to identify relevant process parameters and the first strategy for optimization using the screening findings.
- The optimization phase includes controlled modification of final product quality by altering the most impactful parameters within the RSM (response surface methodology)
- The verification phase includes prediction and confirmation of the ideal process variables.
2. Materials and Methods
2.1. Chemicals
2.2. Design of Experiments
2.3. Nanoparticle Preparation
2.4. Purification of Nanoparticles
2.5. Particle Size and Poly-Dispersibility Index (PDI)
2.6. Zeta Potential
2.7. Encapsulation Efficiency and Drug Loading
2.8. Scanning Electron Microscope (SEM)
2.9. Transmission Electron Microscope (TEM)
2.10. X-ray Diffraction (XRD)
2.11. Thermo-Gravimetric (TGA) Analysis
2.12. In Vitro Drug Release
2.13. Drug-Release Kinetics
2.14. Stability Studies
3. Results
3.1. Target Product Profile Set Up
3.2. Design of Experiment
3.3. Effect on Particle Size
3.4. Statistical Analysis of Particle Size
3.5. ANOVA of Particle Size
3.6. Final Equation in Terms of Coded and Actual Factors
3.7. Model Diagnostic Plot
3.7.1. Normal Plot of Residuals
3.7.2. Residuals vs. Predicted Plots
3.7.3. Model Graphs
3.8. Effect on %EE
3.9. Statistical Analysis of %EE
3.10. ANOVA of %EE
3.11. Final Equation in Terms of Coded and Actual Factors
3.12. Model Diagnostic Plot
3.12.1. Normal Plot of Residuals
3.12.2. Residuals vs. Predicted Plots
3.12.3. Model Graphs
3.13. Optimization, Validation of the Optimized Condition
3.14. Confirmation of the Results
3.15. Particle Size and PDI
3.16. Zeta Potential
3.17. Scanning Electron Microscopy (SEM)
3.18. TEM of Drug-Loaded Eudragit Nanoparticles
3.19. X-ray Diffraction
3.20. Thermo-Gravimetric Analysis (TGA)
3.21. In Vitro Drug Release Evaluation of Drug Loaded Eudragit Nanoparticles
3.22. In vitro Release Kinetics
3.23. Stabilities Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feng, S.-S. Chemotherapeutic engineering: Concept, feasibility, safety and prospect—A tribute to Shu Chien’s 80th birthday. Cell. Mol. Bioeng. 2011, 4, 708–716. [Google Scholar] [CrossRef]
- Feng, S.-S.; Chien, S. Chemotherapeutic engineering: Application and further development of chemical engineering principles for chemotherapy of cancer and other diseases. Chem. Eng. Sci. 2003, 58, 4087–4114. [Google Scholar] [CrossRef]
- Feng, S.-S.; Zhao, L.; Zhang, Z.; Bhakta, G.; Win, K.Y.; Dong, Y.; Chien, S. Chemotherapeutic engineering: Vitamin E TPGS-emulsified nanoparticles of biodegradable polymers realized sustainable paclitaxel chemotherapy for 168 h in vivo. Chem. Eng. Sci. 2007, 62, 6641–6648. [Google Scholar] [CrossRef]
- Petros, R.A.; DeSimone, J.M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 2010, 9, 615–627. [Google Scholar] [CrossRef]
- Mi, Y.; Liu, Y.; Guo, Y.; Feng, S.-S. Herceptin®-conjugated nanocarriers for targeted imaging and treatment of HER2-positive cancer. Nanomedicine 2011, 6, 311–312. [Google Scholar] [CrossRef]
- Jia, J.; Zhu, F.; Ma, X.; Cao, Z.W.; Li, Y.X.; Chen, Y.Z. Mechanisms of drug combinations: Interaction and network perspectives. Nat. Rev. Drug Discov. 2009, 8, 111–128. [Google Scholar] [CrossRef]
- Lehár, J.; Krueger, A.S.; Avery, W.; Heilbut, A.M.; Johansen, L.M.; Price, E.R.; Rickles, R.J.; Short Iii, G.F.; Staunton, J.E.; Jin, X. Synergistic drug combinations tend to improve therapeutically relevant selectivity. Nat. Biotechnol. 2009, 27, 659–666. [Google Scholar] [CrossRef]
- Woodcock, J.; Griffin, J.P.; Behrman, R.E. Development of novel combination therapies. N. Engl. J. Med. 2011, 364, 985–987. [Google Scholar] [CrossRef]
- Mitsiades, C.S.; Davies, F.E.; Laubach, J.P.; Joshua, D.; Miguel, J.S.; Anderson, K.C.; Richardson, P.G. Future directions of next-generation novel therapies, combination approaches, and the development of personalized medicine in myeloma. J. Clin. Oncol. 2011, 29, 1916–1923. [Google Scholar] [CrossRef]
- Hellfritzsch, M.; Scherließ, R. Mucosal vaccination via the respiratory tract. Pharmaceutics 2019, 11, 375. [Google Scholar] [CrossRef]
- Esmaeili, F.; Ghahremani, M.H.; Esmaeili, B.; Khoshayand, M.R.; Atyabi, F.; Dinarvand, R. PLGA nanoparticles of different surface properties: Preparation and evaluation of their body distribution. Int. J. Pharm. 2008, 349, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Reis, C.P.; Neufeld, R.J.; Ribeiro, A.J.; Veiga, F. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2006, 2, 8–21. [Google Scholar] [CrossRef] [PubMed]
- Real, D.A.; Gagliano, A.; Sonsini, N.; Wicky, G.; Orzan, L.; Leonardi, D.; Salomon, C. Design and optimization of pH-sensitive Eudragit nanoparticles for improved oral delivery of triclabendazole. Int. J. Pharm. 2022, 617, 121594. [Google Scholar] [CrossRef]
- European Medicines Agency. ICH Guideline Q8 (R2) on Pharmaceutical Development; European Medicines Agency: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Mandal, B.; Alexander, K.S.; Riga, A.T. Sulfacetamide loaded Eudragit RL100 nanosuspension with potential for ocular delivery. J. Pharm. Pharm. Sci. 2010, 13, 510–523. [Google Scholar] [CrossRef] [PubMed]
- Thakral, S.; Thakral, N.K.; Majumdar, D.K. Eudragit®: A technology evaluation. Expert Opin. Drug Deliv. 2013, 10, 131–149. [Google Scholar] [CrossRef] [PubMed]
- Wulff, R.; Leopold, C.S. Coatings of Eudragit® RL and L-55 blends: Investigations on the drug release mechanism. AAPS PharmSciTech 2016, 17, 493–503. [Google Scholar] [CrossRef] [PubMed]
- Nasef, A.M.; Gardouh, A.R.; Ghorab, M.M. Polymeric nanoparticles: Influence of polymer, surfactant and composition of manufacturing vehicle on particle size. World J. Pharm. Sci. 2015, 3, 2292–2514. [Google Scholar]
- Mendenhall, D.; Kobayashi, H.; Shih, F.; Sternson, L.; Higuchi, T.; Fabian, C. Clinical analysis of tamoxifen, an anti-neoplastic agent, in plasma. Clin. Chem. 1978, 24, 1518–1524. [Google Scholar] [CrossRef]
- Das, S.; Suresh, P.K.; Desmukh, R. Design of Eudragit RL 100 nanoparticles by nanoprecipitation method for ocular drug delivery. Nanomed. Nanotechnol. Biol. Med. 2010, 6, 318–323. [Google Scholar] [CrossRef]
- Shin, S.-C.; Choi, J.-S. Effects of epigallocatechin gallate on the oral bioavailability and pharmacokinetics of tamoxifen and its main metabolite, 4-hydroxytamoxifen, in rats. Anti-Cancer Drugs 2009, 20, 584–588. [Google Scholar] [CrossRef]
- McVie, J.; Simonetti, G.; Stevenson, D.; Briggs, R.; Guelen, P.; De Vos, D. The bioavailability of Tamoplex (tamoxifen). Part 1. A pilot study. Methods Find. Exp. Clin. Pharmacol. 1986, 8, 505–512. [Google Scholar]
- Tukker, J.; Blankenstein, M.; Nortier, J. Comparison of bioavailability in man of tamoxifen after oral and rectal administration. J. Pharm. Pharmacol. 1986, 38, 888–892. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.-C.; Choi, J.-S.; Li, X. Enhanced bioavailability of tamoxifen after oral administration of tamoxifen with quercetin in rats. Int. J. Pharm. 2006, 313, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.K.; Swarnakar, N.K.; Godugu, C.; Singh, R.P.; Jain, S. The effect of the oral administration of polymeric nanoparticles on the efficacy and toxicity of tamoxifen. Biomaterials 2011, 32, 503–515. [Google Scholar] [CrossRef] [PubMed]
- Parvez, S.; Tabassum, H.; Rehman, H.; Banerjee, B.D.; Athar, M.; Raisuddin, S. Catechin prevents tamoxifen-induced oxidative stress and biochemical perturbations in mice. Toxicology 2006, 225, 109–118. [Google Scholar] [CrossRef]
- Rakić, T.; Kasagić-Vujanović, I.; Jovanović, M.; Jančić-Stojanović, B.; Ivanović, D. Comparison of full factorial design, central composite design, and box-behnken design in chromatographic method development for the determination of fluconazole and its impurities. Anal. Lett. 2014, 47, 1334–1347. [Google Scholar] [CrossRef]
- Montgomery, D.C. Design and Analysis of Experiments, 8th ed.; John Wiley and Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Oehlert, G.W. A First Course in Design and Analysis of Experiments; University of Minnesota: Minneapolis, MN, USA, 2010. [Google Scholar]
- Fisher, R.A. The Design of Experiments; Hafner: New York, NY, USA, 1935. [Google Scholar]
- Guthrie, W. NIST/SEMATECH Engineering Statistics Handbook; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2010. [Google Scholar]
- Pal, S.L.; Jana, U.; Manna, P.K.; Mohanta, G.P.; Manavalan, R. Nanoparticle: An overview of preparation and characterization. J. Appl. Pharm. Sci. 2011, 1, 228–234. [Google Scholar]
- Nalwa, H.S. Encyclopedia of Nanoscience and Nanotechnology; American Scientific Publishers: Valencia, CA, USA, 2004; Volume 5. [Google Scholar]
- Sharma, N.; Madan, P.; Lin, S. Effect of process and formulation variables on the preparation of parenteral paclitaxel-loaded biodegradable polymeric nanoparticles: A co-surfactant study. Asian J. Pharm. Sci. 2016, 11, 404–416. [Google Scholar] [CrossRef]
- Dora, C.P.; Singh, S.K.; Kumar, S.; Datusalia, A.K.; Deep, A. Development and characterization of nanoparticles of glibenclamide by solvent displacement method. Acta Pol. Pharm. 2010, 67, 283–290. [Google Scholar]
- Ahmeda, I.S.; Hosayb, R.E.; Shalabyb, S.; Noura, S.; El-Ashmoony, M. Prepasration and In-Vitro Evalauation of Poly-ε-Caprolactone Nanoparticles Containing Atorvastation Calcium. J. Pharm. Res. Opin. 2014, 4. Available online: https://medicaleditor.uk/index.php/jpro/article/view/634 (accessed on 17 August 2023).
- Thanh, N.T.; Maclean, N.; Mahiddine, S. Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev. 2014, 114, 7610–7630. [Google Scholar] [CrossRef] [PubMed]
- Naik, A.N.; Patra, S.; Sen, D.; Goswami, A. Evaluating the mechanism of nucleation and growth of silver nanoparticles in a polymer membrane under continuous precursor supply: Tuning of multiple to single nucleation pathway. Phys. Chem. Chem. Phys. 2019, 21, 4193–4199. [Google Scholar] [CrossRef]
- Kim, S.R.; Ho, M.J.; Lee, E.; Lee, J.W.; Choi, Y.W.; Kang, M.J. Cationic PLGA/Eudragit RL nanoparticles for increasing retention time in synovial cavity after intra-articular injection in knee joint. Int. J. Nanomed. 2015, 10, 5263–5271. [Google Scholar]
- Mahesh, K.V.; Singh, S.K.; Gulati, M. A comparative study of top-down and bottom-up approaches for the preparation of nanosuspensions of glipizide. Powder Technol. 2014, 256, 436–449. [Google Scholar] [CrossRef]
- George, M.; Ghosh, I. Identifying the correlation between drug/stabilizer properties and critical quality attributes (CQAs) of nanosuspension formulation prepared by wet media milling technology. Eur. J. Pharm. Sci. 2013, 48, 142–152. [Google Scholar] [CrossRef]
- Abdel-Wahhab, M.A.; Abdel-Wahhab, K.G.; Mannaa, F.A.; Hassan, N.S.; Safar, R.; Diab, R.; Foliguet, B.; Ferrari, L.; Rihn, B.H. Uptake of Eudragit Retard L (Eudragit® RL) nanoparticles by human THP-1 cell line and its effects on hematology and erythrocyte damage in rats. Materials 2014, 7, 1555–1572. [Google Scholar] [CrossRef]
- Sohrabi Kashani, A.; Packirisamy, M. Cancer-nano-interaction: From cellular uptake to mechanobiological responses. Int. J. Mol. Sci. 2021, 22, 9587. [Google Scholar] [CrossRef]
- Zhang, P.; Chen, D.; Li, L.; Sun, K. Charge reversal nano-systems for tumor therapy. J. Nanobiotechnol. 2022, 20, 31. [Google Scholar] [CrossRef]
- Patil, S.; Sandberg, A.; Heckert, E.; Self, W.; Seal, S. Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials 2007, 28, 4600–4607. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Tran, T.H.; Kim, J.O.; Yong, C.S.; Nguyen, C.N. Enhancing the in vitro anti-cancer efficacy of artesunate by loading into poly-D, L-lactide-co-glycolide (PLGA) nanoparticles. Arch. Pharmacal Res. 2015, 38, 716–724. [Google Scholar] [CrossRef]
- Sukhbir, S.; Yashpal, S.; Sandeep, A. Development and statistical optimization of nefopam hydrochloride loaded nanospheres for neuropathic pain using Box–Behnken design. Saudi Pharm. J. 2016, 24, 588–599. [Google Scholar] [CrossRef] [PubMed]
- Naik, J.; Rajput, R.; Singh, M.K. Development and Evaluation of Ibuprofen Loaded Hydrophilic Biocompatible Polymeric Nanoparticles for the Taste Masking and Solubility Enhancement. BioNanoScience 2021, 11, 21–31. [Google Scholar] [CrossRef]
- Cetin, M.; Atila, A.; Sahin, S.; Vural, I. Preparation and characterization of metformin hydrochloride loaded-Eudragit® RSPO and Eudragit® RSPO/PLGA nanoparticles. Pharm. Dev. Technol. 2013, 18, 570–576. [Google Scholar] [CrossRef]
- Das, S.; Das, N. Preparation and in vitro dissolution profile of dual polymer (Eudragit RS100 and RL100) microparticles of diltiazem hydrochloride. J. Microencapsul. 1998, 15, 445–452. [Google Scholar] [CrossRef]
- Shegokar, R.; Müller, R.H. Nanocrystals: Industrially feasible multifunctional formulation technology for poorly soluble actives. Int. J. Pharm. 2010, 399, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Pignatello, R.; Bucolo, C.; Spedalieri, G.; Maltese, A.; Puglisi, G. Flurbiprofen-loaded acrylate polymer nanosuspensions for ophthalmic application. Biomaterials 2002, 23, 3247–3255. [Google Scholar] [CrossRef]
- Costa, P.; Lobo, J.S. Influence of dissolution medium agitation on release profiles of sustained-release tablets. Drug Dev. Ind. Pharm. 2001, 27, 811–817. [Google Scholar] [CrossRef]
- Dillen, K.; Vandervoort, J.; Van den Mooter, G.; Ludwig, A. Evaluation of ciprofloxacin-loaded Eudragit® RS100 or RL100/PLGA nanoparticles. Int. J. Pharm. 2006, 314, 72–82. [Google Scholar] [CrossRef]
- Heurtault, B.; Saulnier, P.; Pech, B.; Proust, J.-E.; Benoit, J.-P. Physico-chemical stability of colloidal lipid particles. Biomaterials 2003, 24, 4283–4300. [Google Scholar] [CrossRef]
Independent Factors | Levels | ||
---|---|---|---|
−1 | 0 | 1 | |
Amount of the drug | 1 mg | 2 mg | 3 mg |
Amount of the polymer (Eudragit) | 2.5 mg | 5 mg | 7.5 mg |
Amount of SDS | 0.1% | 0.2% | 0.3% |
Standard Run Order | Randomized Run Order | Conc. of Drug (mg) | Conc. of Eudragit (mg) | Conc. of Stabilizer (%) SDS |
---|---|---|---|---|
1 | 9 | 1 | 2.5 | 0.1 |
2 | 3 | 3 | 2.5 | 0.1 |
3 | 8 | 1 | 7.5 | 0.1 |
4 | 6 | 3 | 7.5 | 0.1 |
5 | 5 | 1 | 2.5 | 0.3 |
6 | 7 | 3 | 2.5 | 0.3 |
7 | 10 | 1 | 7.5 | 0.3 |
8 | 11 | 3 | 7.5 | 0.3 |
9 | 1 | 1 | 5 | 0.2 |
10 | 4 | 3 | 5 | 0.2 |
11 | 2 | 1 | 5 | 0.2 |
Std | Run | Factor A Drug (mg) | Factor B Polymer (mg) | Factor C Stabilizer (%) | Responses | |
---|---|---|---|---|---|---|
Particle Size (nm) | %EE | |||||
1 | 9 | −1.00 | −1.00 | −1.00 | 187 | 94 |
2 | 3 | 1.00 | −1.00 | −1.00 | 142 | 79 |
3 | 8 | −1.00 | 1.00 | −1.00 | 149 | 95 |
4 | 6 | 1.00 | 1.00 | −1.00 | 132 | 78 |
5 | 5 | −1.00 | −1.00 | 1.00 | 177 | 63 |
6 | 7 | 1.00 | −1.00 | 1.00 | 142 | 72 |
7 | 10 | −1.00 | 1.00 | 1.00 | 151 | 69 |
8 | 11 | 1.00 | 1.00 | 1.00 | 148 | 79 |
9 | 1 | 0.00 | 0.00 | 0.00 | 152 | 75 |
10 | 4 | 0.00 | 0.00 | 0.00 | 149 | 75 |
11 | 2 | 0.00 | 0.00 | 0.00 | 149 | 73 |
Term | Stdized Effects | Sum of Squares | %Contribution | |
---|---|---|---|---|
m | A-drug | −25 | 1250 | 50.1861 |
m | B-polymer | −17 | 578 | 23.2061 |
e | C-surfactant | 2 | 8 | 0.321191 |
m | AB | 15 | 450 | 18.067 |
e | AC | 6 | 72 | 2.89072 |
e | BC | 7 | 98 | 3.93459 |
e | ABC | 1 | 2 | 0.0802978 |
e | Curvature | −3.65563 | 26.7273 | 1.07307 |
e | Lack of Fit | 0 | 0 | |
e | Pure Error | 6 | 0.240893 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 2278.00 | 3 | 759.33 | 24.99 | 0.0004 | significant |
A-Drug | 1250.00 | 1 | 1250.00 | 41.13 | 0.0004 | |
B-Polymer | 578.00 | 1 | 578.00 | 19.02 | 0.0033 | |
AB | 450.00 | 1 | 450.00 | 14.81 | 0.0063 | |
Residual | 212.73 | 7 | 30.39 | |||
Lack of Fit | 206.73 | 5 | 41.35 | 13.78 | 0.0690 | not significant |
Pure Error | 6.00 | 2 | 3.00 | |||
Cor Total | 2490.73 | 10 |
Std. Dev. | 5.51 | R2 | 0.9146 |
Mean | 152.55 | Adjusted R2 | 0.8780 |
C.V. % | 3.61 | Predicted R2 | 0.7240 |
Adeq Precision | 12.6344 |
Term | Stdized Effects | Sum of Squares | %Contribution | |
---|---|---|---|---|
m | A-drug | −3.25 | 21.125 | 2.27462 |
e | B-polymer | −3.25 | 21.125 | 2.27462 |
m | C-surfactant | −15.75 | 496.125 | 53.4199 |
e | AB | 0.25 | 0.125 | 0.0134593 |
m | AC | −12.75 | 325.125 | 35.0076 |
e | BC | 3.25 | 21.125 | 2.27462 |
e | ABC | −0.75 | 1.125 | 0.121134 |
e | Curvature | −4.4825 | 40.1856 | 4.32695 |
e | Lack of Fit | 0 | 0 | |
e | Pure Error | 2.66667 | 0.287131 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 842.38 | 3 | 280.79 | 22.76 | 0.0005 | significant |
A-Drug | 21.13 | 1 | 21.13 | 1.71 | 0.2320 | |
C-SDS | 496.13 | 1 | 496.13 | 40.22 | 0.0004 | significant |
AC | 325.12 | 1 | 325.12 | 26.36 | 0.0013 | significant |
Residual | 86.35 | 7 | 12.34 | |||
Lack of Fit | 83.69 | 5 | 16.74 | 12.55 | 0.0754 | not significant |
Pure Error | 2.67 | 2 | 1.33 | |||
Cor Total | 928.73 | 10 |
Std. Dev. | 3.51 | R2 | 0.9070 |
Mean | 77.45 | Adjusted R2 | 0.8672 |
C.V.% | 4.53 | Predicted R2 | 0.7529 |
Adeq Precision | 13.4562 |
Formulation Variables | Coded Value | Actual Values |
---|---|---|
Factor A (Drug) | −1.00 | 1 mg |
Factor B (Polymer) | −1.00 | 2.5 mg |
Factor C (Surfactant) | −1.00 | 0.1% |
Predicted Particle size | 181 nm | |
Experimental Particle size | 178 nm | |
Predicted %EE | 93% | |
Experimental %EE | 90% | |
Drug loading | 43% |
Solution 1 of 87 Response | Predicted Mean | Predicted Median | Std Dev | n | SE Pred | 95% PI low | Data Mean | 95% PI High |
---|---|---|---|---|---|---|---|---|
PS | 181.045 | 181.045 | 5.51268 | 1 | 6.67446 | 165.263 | 178 | 196.828 |
EE | 93.3295 | 93.3295 | 3.51227 | 1 | 4.25247 | 83.274 | 90 | 103.385 |
S. No | Model | R2 | k | n |
---|---|---|---|---|
1 | Zero order | 0.812 | 0.684 | -- |
2 | First order | 0.770 | 0.228 | -- |
3 | Hixson and Crowell | 0.934 | 0.022 | -- |
4 | Higuchi | 0.948 | 13.16 | -- |
5 | Korsmeyer and Peppas | 0.959 | -- | 0.335 |
Time | NPs | Stored at 4 °C | Stored at 25 °C | ||||||
---|---|---|---|---|---|---|---|---|---|
PS | PDI | Zeta | %EE | PS | PDI | Zeta | %EE | ||
Day 1 | Drug-loaded Eudragit NPs | 178.7 ± 0.04 | 0.01 ± 0.04 | −48.7 ± 0.09 | 90.3 ± 0.12 | 178.8 ± 0.11 | 0.13 ± 0.01 | −48.6 ± 0.15 | 90.2 ± 0.12 |
Week 1 | 178.7 ± 0.16 | 0.01 ± 0.08 | −48.5 ± 0.016 | 90.2 ± 0.16 | 185.4 ± 0.2 | 0.17 ± 0.02 | −44.3 ± 0.20 | 89.7 ± 0.14 | |
Week 2 | 177.7 ± 0.12 | 0.03 ± 0.03 | −47.4 ± 0.20 | 89.6 ± 0.16 | 192.8 ± 0.58 | 0.23 ± 0.02 | −41.5 ± 0.15 | 88.7 ± 0.24 | |
Week 3 | 177.5 ± 0.12 | 0.13 ± 0.08 | −46.6 ± 0.50 | 88.9 ± 0.16 | 202.6 ± 1.15 | 0.37 ± 0.01 | −39.7 ± 0.23 | 87.7 ± 0.64 | |
Week 4 | 177.7 ± 0.65 | 0.13 ± 0.04 | −46.9 ± 0.28 | 88.5 ± 0.24 | 209.6 ± 0.41 | 0.40 ± 0.01 | −35.5 ± 0.25 | 85.6 ± 0.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khattak, M.A.; Iqbal, Z.; Nasir, F.; Neau, S.H.; Khan, S.I.; Hidayatullah, T.; Pervez, S.; Sakhi, M.; Zainab, S.R.; Gohar, S.; et al. Tamoxifen-Loaded Eudragit Nanoparticles: Quality by Design Approach for Optimization of Nanoparticles as Delivery System. Pharmaceutics 2023, 15, 2373. https://doi.org/10.3390/pharmaceutics15102373
Khattak MA, Iqbal Z, Nasir F, Neau SH, Khan SI, Hidayatullah T, Pervez S, Sakhi M, Zainab SR, Gohar S, et al. Tamoxifen-Loaded Eudragit Nanoparticles: Quality by Design Approach for Optimization of Nanoparticles as Delivery System. Pharmaceutics. 2023; 15(10):2373. https://doi.org/10.3390/pharmaceutics15102373
Chicago/Turabian StyleKhattak, Muzna Ali, Zafar Iqbal, Fazli Nasir, Steven H. Neau, Sumaira Irum Khan, Talaya Hidayatullah, Sadia Pervez, Mirina Sakhi, Syeda Rabqa Zainab, Shazma Gohar, and et al. 2023. "Tamoxifen-Loaded Eudragit Nanoparticles: Quality by Design Approach for Optimization of Nanoparticles as Delivery System" Pharmaceutics 15, no. 10: 2373. https://doi.org/10.3390/pharmaceutics15102373
APA StyleKhattak, M. A., Iqbal, Z., Nasir, F., Neau, S. H., Khan, S. I., Hidayatullah, T., Pervez, S., Sakhi, M., Zainab, S. R., Gohar, S., Alasmari, F., Rahman, A., Maryam, G. e., & Tahir, A. (2023). Tamoxifen-Loaded Eudragit Nanoparticles: Quality by Design Approach for Optimization of Nanoparticles as Delivery System. Pharmaceutics, 15(10), 2373. https://doi.org/10.3390/pharmaceutics15102373