Relationship between the Polymer Blend Using Chitosan, Polyethylene Glycol, Polyvinyl Alcohol, Polyvinylpyrrolidone, and Antimicrobial Activities against Staphylococcus aureus
Abstract
:1. Introduction
2. Experimental Methods
Evaluating the Antibacterial Activities of Polymer Blends
- OD600/t = optical density (600 nm) of the test well at 24 h or 72 h post-inoculation;
- OD600/t0 = optical density (600 nm) of the test well at 0 h post-inoculation;
- OD(−)600/t = optical density (600 nm) of the negative control well at 24 h or 72 h post-inoculation;
- OD(−)600/t0 = optical density (600 nm) of the negative control well at 0 h post-inoculation.
3. Results and Discussion
3.1. Predictions between Antibacterial Activities and Polymer Concentration
3.2. FTIR Characterization
3.3. UV-VIS Analysis
3.4. Minimum Bactericidal Concentration Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jain, A.; Duvvuri, L.S.; Farah, S.; Beyth, N.; Domb, A.J.; Khan, W. Antimicrobial Polymers. Adv. Healthc. Mater. 2014, 3, 1969–1985. [Google Scholar] [CrossRef] [PubMed]
- Soe, P.E.; Han, W.W.; Sagili, K.D.; Satyanarayana, S.; Shrestha, P.; Htoon, T.T.; Tin, H.H. High Prevalence of Methicillin-Resistant Staphylococcus Aureus among Healthcare Facilities and Its Related Factors in Myanmar (2018–2019). Trop. Med. Infect. Dis. 2021, 6, 70. [Google Scholar] [CrossRef] [PubMed]
- Turner, N.A.; Sharma-Kuinkel, B.K.; Maskarinec, S.A.; Eichenberger, E.M.; Shah, P.P.; Carugati, M.; Holland, T.L.; Fowler, V.G., Jr. Methicillin-Resistant Staphylococcus Aureus: An Overview of Basic and Clinical Research. Nat. Rev. Microbiol. 2019, 17, 203–218. [Google Scholar] [CrossRef] [PubMed]
- Capoluongo, E.; Lavieri, M.M.; Lesnoni-La Parola, I.; Ferraro, C.; Cristaudo, A.; Belardi, M.; Leonetti, F.; Mastroianni, A.; Cambieri, A.; Amerio, P. Genotypic and Phenotypic Characterization of Staphylococcus Aureus Strains Isolated in Subjects with Atopic Dermatitis. Higher Prevalence of Exfoliative B Toxin Production in Lesional Strains and Correlation between the Markers of Disease Intensity and Colonization Density. J. Dermatol. Sci. 2001, 26, 145–155. [Google Scholar] [PubMed]
- Ogawa, T.; Katsuoka, K.; Kawano, K.; Nishiyama, S. Comparative Study of Staphylococcal Flora on the Skin Surface of Atopic Dermatitis Patients and Healthy Subjects. J. Dermatol. 1994, 21, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Katsuyama, M.; Wachi, Y.; Kitamura, K.; Suga, C.; Onuma, S.; Ikezawa, Z. Correlation between the Population of Staphylococcus Aureus on the Skin and Severity of Score of Dry Type Atopic Dermatitis Condition. Nippon. Hifuka Gakkai Zasshi 1997, 107, 1103–1111. [Google Scholar]
- Masako, K.; Hideyuki, I.; Shigeyuki, O.; Zenro, I. A Novel Method to Control the Balance of Skin Microflora: Part 1. Attack on Biofilm of Staphylococcus Aureus without Antibiotics. J. Dermatol. Sci. 2005, 38, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial Resistance: A Global Multifaceted Phenomenon. Pathog. Glob. Health 2015, 109, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Mandapalli, P.K.; Labala, S.; Chawla, S.; Janupally, R.; Sriram, D.; Venuganti, V.V.K. Polymer-Gold Nanoparticle Composite Films for Topical Application: Evaluation of Physical Properties and Antibacterial Activity. Polym. Compos. 2017, 38, 2829–2840. [Google Scholar] [CrossRef]
- Silva, C.L.; Pereira, J.C.; Ramalho, A.; Pais, A.A.; Sousa, J.J. Films Based on Chitosan Polyelectrolyte Complexes for Skin Drug Delivery: Development and Characterization. J. Membr. Sci. 2008, 320, 268–279. [Google Scholar] [CrossRef]
- Zivanovic, S.; Li, J.; Davidson, P.M.; Kit, K. Physical, Mechanical, and Antibacterial Properties of Chitosan/PEO Blend Films. Biomacromolecules 2007, 8, 1505–1510. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Chen, X.-G.; Park, H.-J.; Liu, C.-G.; Liu, C.-S.; Meng, X.-H.; Yu, L.-J. Effect of MW and Concentration of Chitosan on Antibacterial Activity of Escherichia Coli. Carbohydr. Polym. 2006, 64, 60–65. [Google Scholar] [CrossRef]
- Kong, M.; Chen, X.G.; Xing, K.; Park, H.J. Antimicrobial Properties of Chitosan and Mode of Action: A State of the Art Review. Int. J. Food Microbiol. 2010, 144, 51–63. [Google Scholar] [CrossRef]
- Xiao, F.; Guan, Y.; Yang, D.; Li, Z.; Yao, K. Antibacterial Action of Chitosan and Carboxymethylated Chitosan. J. Appl. Polym. Sci. 2001, 79, 1324–1335. [Google Scholar]
- Zheng, L.-Y.; Zhu, J.-F. Study on Antimicrobial Activity of Chitosan with Different Molecular Weights. Carbohydr. Polym. 2003, 54, 527–530. [Google Scholar] [CrossRef]
- Chung, Y.-C.; Su, Y.P.; Chen, C.-C.; Jia, G.; Wang, H.L.; Wu, J.G.; Lin, J.G. Relationship between Antibacterial Activity of Chitosan and Surface Characteristics of Cell Wall. Acta Pharmacol. Sin. 2004, 25, 932–936. [Google Scholar] [PubMed]
- Je, J.-Y.; Kim, S.-K. Chitosan Derivatives Killed Bacteria by Disrupting the Outer and Inner Membrane. J. Agric. Food Chem. 2006, 54, 6629–6633. [Google Scholar] [CrossRef]
- Gildberg, A.; Stenberg, E. A New Process for Advanced Utilisation of Shrimp Waste. Process Biochem. 2001, 36, 809–812. [Google Scholar] [CrossRef]
- Rabea, E.I.; Badawy, M.E.-T.; Stevens, C.V.; Smagghe, G.; Steurbaut, W. Chitosan as Antimicrobial Agent: Applications and Mode of Action. Biomacromolecules 2003, 4, 1457–1465. [Google Scholar] [CrossRef]
- Sabir, S.; Yu, T.T.; Kuppusamy, R.; Almohaywi, B.; Iskander, G.; Das, T.; Willcox, M.D.P.; Black, D.S.; Kumar, N. Novel Seleno- and Thio-Urea Containing Dihydropyrrol-2-One Analogues as Antibacterial Agents. Antibiotics 2021, 10, 321. [Google Scholar] [CrossRef] [PubMed]
- Abdelghany, A.M.; Menazea, A.A.; Ismail, A.M. Synthesis, Characterization and Antimicrobial Activity of Chitosan/Polyvinyl Alcohol Blend Doped with Hibiscus sabdariffa L. Extract. J. Mol. Struct. 2019, 1197, 603–609. [Google Scholar] [CrossRef]
- Garrison, T.F.; Murawski, A.; Quirino, R.L. Bio-Based Polymers with Potential for Biodegradability. Polymers 2016, 8, 262. [Google Scholar] [CrossRef] [PubMed]
- Abdelghany, A.M.; Meikhail, M.S.; Abdelraheem, G.E.A.; Badr, S.I.; Elsheshtawy, N. Lepidium sativum Natural Seed Plant Extract in the Structural and Physical Characteristics of Polyvinyl Alcohol. Int. J. Environ. Stud. 2018, 75, 965–977. [Google Scholar] [CrossRef]
- El-Kader, F.A.; Hakeem, N.A.; Elashmawi, I.S.; Ismail, A.M. Structural, Optical and Thermal Characterization of ZnO Nanoparticles Doped in PEO/PVA Blend Films. Aust. J. Basic Appl. Sci. 2013, 7, 608–619. [Google Scholar]
- Abd El-kader, F.H.; Hakeem, N.A.; Elashmawi, I.S.; Menazea, A.A. Synthesis and Characterization of PVK/AgNPs Nanocomposites Prepared by Laser Ablation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 138, 331–339. [Google Scholar] [CrossRef]
- Abdelghany, A.M.; Oraby, A.H.; Farea, M.O. Influence of Green Synthesized Gold Nanoparticles on the Structural, Optical, Electrical and Dielectric Properties of (PVP/SA) Blend. Phys. B Condens. Matter 2019, 560, 162–173. [Google Scholar] [CrossRef]
- Menazea, A.A.; Elashmawi, I.S.; Abd El-kader, F.H.; Hakeem, N.A. Nanosecond Pulsed Laser Ablation in Liquids as New Route for Preparing Polyvinyl Carbazole/Silver Nanoparticles Composite: Spectroscopic and Thermal Studies. J. Inorg. Organomet. Polym. Mater. 2018, 28, 2564–2571. [Google Scholar] [CrossRef]
- Kumar, S.; Sarita; Nehra, M.; Dilbaghi, N.; Tankeshwar, K.; Kim, K.-H. Recent Advances and Remaining Challenges for Polymeric Nanocomposites in Healthcare Applications. Prog. Polym. Sci. 2018, 80, 1–38. [Google Scholar] [CrossRef]
- Lee, E.J.; Huh, B.K.; Kim, S.N.; Lee, J.Y.; Park, C.G.; Mikos, A.G.; Choy, Y.B. Application of Materials as Medical Devices with Localized Drug Delivery Capabilities for Enhanced Wound Repair. Prog. Mater. Sci. 2017, 89, 392–410. [Google Scholar] [CrossRef]
- Elashmawi, I.S.; Menazea, A.A. Different Time’s Nd:YAG Laser-Irradiated PVA/Ag Nanocomposites: Structural, Optical, and Electrical Characterization. J. Mater. Res. Technol. 2019, 8, 1944–1951. [Google Scholar] [CrossRef]
- Pinto Reis, C.; Neufeld, R.J.; Ribeiro, A.J.; Veiga, F.; Nanoencapsulation, I. Methods for Preparation of Drug-Loaded Polymeric Nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2006, 2, 8–21. [Google Scholar] [CrossRef] [PubMed]
- Silva, E.; Barreiros, L.; Segundo, M.A.; Costa Lima, S.A.; Reis, S. Cellular Interactions of a Lipid-Based Nanocarrier Model with Human Keratinocytes: Unravelling Transport Mechanisms. Acta Biomater. 2017, 53, 439–449. [Google Scholar] [CrossRef] [PubMed]
- Ping, Z.; Nguyen, Q.T.; Néel, J. Investigation of Poly(Vinyl Alcohol)/Poly(N-Vinyl-2-Pyrrolidone) Blends, 3. Permeation Properties of Polymer Blend Membranes. Macromol. Chem. Phys. 1994, 195, 2107–2116. [Google Scholar] [CrossRef]
- Lee, K.-H.; Kim, H.-K.; Rhim, J.-W. Pervaporation Separation of Binary Organic–Aqueous Liquid Mixtures Using Crosslinked PVA Membranes. III. Ethanol–Water Mixtures. J. Appl. Polym. Sci. 1995, 58, 1707–1712. [Google Scholar] [CrossRef]
- Abd El-Mohdy, H.L.; Ghanem, S. Biodegradability, Antimicrobial Activity and Properties of PVA/PVP Hydrogels Prepared by γ-Irradiation. J. Polym. Res. 2009, 16, 1–10. [Google Scholar] [CrossRef]
- Rolim, W.R.; Pieretti, J.C.; Renó, D.L.S.; Lima, B.A.; Nascimento, M.H.M.; Ambrosio, F.N.; Lombello, C.B.; Brocchi, M.; de Souza, A.C.S.; Seabra, A.B. Antimicrobial Activity and Cytotoxicity to Tumor Cells of Nitric Oxide Donor and Silver Nanoparticles Containing PVA/PEG Films for Topical Applications. ACS Appl. Mater. Interfaces 2019, 11, 6589–6604. [Google Scholar] [CrossRef] [PubMed]
- Rajavardhana Rao, T.; Omkaram, I.; Veera Brahmam, K.; Linga Raju, C. Role of Copper Content on EPR, Susceptibility and Optical Studies in Poly(Vinylalcohol) (PVA) Complexed Poly(Ethyleneglycol) (PEG) Polymer Films. J. Mol. Struct. 2013, 1036, 94–101. [Google Scholar] [CrossRef]
- Mansur, H.S.; Oréfice, R.L.; Mansur, A.A.P. Characterization of Poly(Vinyl Alcohol)/Poly(Ethylene Glycol) Hydrogels and PVA-Derived Hybrids by Small-Angle X-ray Scattering and FTIR Spectroscopy. Polymer 2004, 45, 7193–7202. [Google Scholar] [CrossRef]
- Husain, M.S.B.; Gupta, A.; Alashwal, B.Y.; Sharma, S. Synthesis of PVA/PVP Based Hydrogel for Biomedical Applications: A Review. Energy Sources Part A Recovery Util. Environ. Eff. 2018, 40, 2388–2393. [Google Scholar] [CrossRef]
- Falqi, F.H.; Bin-Dahman, O.A.; Hussain, M.; Al-Harthi, M.A. Preparation of Miscible PVA/PEG Blends and Effect of Graphene Concentration on Thermal, Crystallization, Morphological, and Mechanical Properties of PVA/PEG (10 Wt%) Blend. Int. J. Polym. Sci. 2018, 2018, e8527693. [Google Scholar] [CrossRef]
- Wang, J.; Liang, J.; Sun, L.; Li, G.; Temmink, H.; Rijnaarts, H.H.M. Granule-Based Immobilization and Activity Enhancement of Anammox Biomass via PVA/CS and PVA/CS/Fe Gel Beads. Bioresour. Technol. 2020, 309, 123448. [Google Scholar] [CrossRef] [PubMed]
- Al-Tayyar, N.A.; Youssef, A.M.; Al-Hindi, R.R. Antimicrobial Packaging Efficiency of ZnO-SiO2 Nanocomposites Infused into PVA/CS Film for Enhancing the Shelf Life of Food Products. Food Packag. Shelf Life 2020, 25, 100523. [Google Scholar] [CrossRef]
- Marcelo, G.A.; Galhano, J.; Duarte, M.P.; Kurutos, A.; Capelo-Martínez, J.L.; Lodeiro, C.; Oliveira, E. Functional Cyanine-Based PVA:PVP Polymers as Antimicrobial Tools toward Food and Health-Care Bacterial Infections. Macromol. Biosci. 2022, 22, 2200244. [Google Scholar] [CrossRef]
- Geetha, K.; Sivasangari, D.; Kim, H.-S.; Murugadoss, G.; Kathalingam, A. Electrospun Nanofibrous ZnO/PVA/PVP Composite Films for Efficient Antimicrobial Face Masks. Ceram. Int. 2022, 48, 29197–29204. [Google Scholar] [CrossRef]
- Sajjad, A.; Zia, M.; Xiao, X.; Olsson, R.T.; Capezza, A.J.; Rasheed, F. Wheat Gluten Hydrolysates with Embedded Ag-Nanoparticles; a Structure-Function Assessment for Potential Applications as Wound Sorbents with Antimicrobial Properties. Polym. Test. 2023, 118, 107896. [Google Scholar] [CrossRef]
- Zidan, N.S.; Aziz albalawi, M.; Alalawy, A.I.; Al-Duais, M.A.; Alzahrani, S.; Kasem, M. Modification of Edible Chitosan/Polyethylene Glycol Films Fortified with Date Palm Fruit Waste Extract as Promising Antimicrobial Food Packaging Materials for Fresh Strawberry Conservation. Eur. Polym. J. 2023, 194, 112171. [Google Scholar] [CrossRef]
- Ayesha; Imran, M.; Haider, A.; Shahzadi, I.; Moeen, S.; Ul-Hamid, A.; Nabgan, W.; Shahzadi, A.; Alshahrani, T.; Ikram, M. Polyvinylpyrrolidone and Chitosan-Coated Magnetite (Fe3O4) Nanoparticles for Catalytic and Antimicrobial Activity with Molecular Docking Analysis. J. Environ. Chem. Eng. 2023, 11, 110088. [Google Scholar] [CrossRef]
- Yang, D.; Liu, Q.; Gao, Y.; Wan, S.; Meng, F.; Weng, W.; Zhang, Y. Characterization of Silver Nanoparticles Loaded Chitosan/Polyvinyl Alcohol Antibacterial Films for Food Packaging. Food Hydrocoll. 2023, 136, 108305. [Google Scholar] [CrossRef]
- Alawi, A.I.; Al-Bermany, E. Newly Fabricated Ternary PAAm-PVA-PVP Blend Polymer Doped by SiO2: Absorption and Dielectric Characteristics for Solar Cell Applications and Antibacterial Activity. Silicon 2023, 15, 5773–5789. [Google Scholar] [CrossRef]
- AshaRani, P.V.; Low Kah Mun, G.; Hande, M.P.; Valiyaveettil, S. Cytotoxicity and Genotoxicity of Silver Nanoparticles in Human Cells. ACS Nano 2009, 3, 279–290. [Google Scholar] [CrossRef]
- Gliga, A.R.; Skoglund, S.; Odnevall Wallinder, I.; Fadeel, B.; Karlsson, H.L. Size-Dependent Cytotoxicity of Silver Nanoparticles in Human Lung Cells: The Role of Cellular Uptake, Agglomeration and Ag Release. Part. Fibre Toxicol. 2014, 11, 11. [Google Scholar] [CrossRef] [PubMed]
- Burnett, C.L. PVP (Polyvinylpyrrolidone). Int. J. Toxicol. 2017, 36, 50S–51S. [Google Scholar] [CrossRef] [PubMed]
- Final Report on the Safety Assessment of Polyethylene Glycols (PEGs)-6,-8,-32,-75,-150,-14M,-20M. J. Am. Coll. Toxicol. 1993, 12, 429–457. [CrossRef]
- Burnett, C.L. Polyvinyl Alcohol. Int. J. Toxicol. 2017, 36, 46S–47S. [Google Scholar] [CrossRef]
- Wiegand, I.; Hilpert, K.; Hancock, R.E.W. Agar and Broth Dilution Methods to Determine the Minimal Inhibitory Concentration (MIC) of Antimicrobial Substances. Nat. Protoc. 2008, 3, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Baltzar, B.K. Minimal Inhibitory Concentration (MIC). 2017. Available online: https://www.protocols.io/view/minimal-inhibitory-concentration-mic-36wgqnx3gk57/v1 (accessed on 3 April 2022).
- Stojanović, B.; Vencl, A.; Bobić, I.; Miladinović, S.; Skerlić, J. Experimental Optimisation of the Tribological Behaviour of Al/SiC/Gr Hybrid Composites Based on Taguchi’s Method and Artificial Neural Network. J. Braz. Soc. Mech. Sci. Eng. 2018, 40, 311. [Google Scholar] [CrossRef]
- Perumal, A.; Kailasanathan, C.; Stalin, B.; Rajkumar, P.R.; Gangadharan, T.; Venkatesan, G. Evaluation of EDM Process Parameters on Titanium Alloy through Taguchi Approach. Mater. Today Proc. 2021, 45, 2394–2400. [Google Scholar] [CrossRef]
- Kamaruddin, S.; Khan, Z.A.; Foong, S.H. Application of Taguchi Method in the Optimization of Injection Moulding Parameters for Manufacturing Products from Plastic Blend. Int. J. Eng. Technol. 2010, 2, 574–580. [Google Scholar] [CrossRef]
- Doan, L.; Nguyen, L.T.; Nguyen, N.T.N. Modifying Superparamagnetic Iron Oxides Nanoparticles for Doxorubicin Delivery Carriers: A Review. J. Nanoparticle Res. 2023, 25, 73. [Google Scholar] [CrossRef]
- Jasper, E.E.; Onwuka, J.C.; Bidam, Y.M. Screening of Factors That Influence the Preparation of Dialium Guineense Pods Active Carbon for Use in Methylene Blue Adsorption: A Full Factorial Experimental Design. Bull. Natl. Res. Cent. 2021, 45, 168. [Google Scholar] [CrossRef]
- Ben Ticha, M.; Haddar, W.; Meksi, N.; Guesmi, A.; Mhenni, M.F. Improving Dyeability of Modified Cotton Fabrics by the Natural Aqueous Extract from Red Cabbage Using Ultrasonic Energy. Carbohydr. Polym. 2016, 154, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Packianather, M.; Chan, F.; Griffiths, C.; Dimov, S.; Pham, D.T. Optimisation of Micro Injection Moulding Process through Design of Experiments. Procedia CIRP 2013, 12, 300–305. [Google Scholar] [CrossRef]
- Nabgan, W.; Tuan Abdullah, T.A.; Mat, R.; Nabgan, B.; Gambo, Y.; Johari, A. Evaluation of Reaction Parameters of the Phenol Steam Reforming over Ni/Co on ZrO2 Using the Full Factorial Experimental Design. Appl. Sci. 2016, 6, 223. [Google Scholar] [CrossRef]
- Naseri, A.; Ayadi-Anzabi, H. Monitoring of Decolorization of a Two Dyes Mixture Using Spectrophotometric Data and Multivariate Curve Resolution: Modeling the Removal Process Using an Experimental Design Method. Anal. Methods 2012, 4, 153–161. [Google Scholar] [CrossRef]
- Franca, T.; Goncalves, D.; Cena, C. ATR-FTIR Spectroscopy Combined with Machine Learning for Classification of PVA/PVP Blends in Low Concentration. Vib. Spectrosc. 2022, 120, 103378. [Google Scholar] [CrossRef]
- Abureesh, M.A.; Oladipo, A.A.; Gazi, M. Facile Synthesis of Glucose-Sensitive Chitosan–Poly(Vinyl Alcohol) Hydrogel: Drug Release Optimization and Swelling Properties. Int. J. Biol. Macromol. 2016, 90, 75–80. [Google Scholar] [CrossRef]
- Kharazmi, A.; Faraji, N.; Mat Hussin, R.; Saion, E.; Yunus, W.M.M.; Behzad, K. Structural, Optical, Opto-Thermal and Thermal Properties of ZnS–PVA Nanofluids Synthesized through a Radiolytic Approach. Beilstein J. Nanotechnol. 2015, 6, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Jipa, I.; Stoica, A.; Stroescu, M.; Dobre, L.-M.; Dobre, T.; Jinga, S.; Tardei, C. Potassium Sorbate Release from Poly(Vinyl Alcohol)-Bacterial Cellulose Films. Chem. Pap. 2012, 66, 138–143. [Google Scholar] [CrossRef]
- Gong, X.; Tang, C.Y.; Pan, L.; Hao, Z.; Tsui, C.P. Characterization of Poly(Vinyl Alcohol) (PVA)/ZnO Nanocomposites Prepared by a One-Pot Method. Compos. Part B Eng. 2014, 60, 144–149. [Google Scholar] [CrossRef]
- Dhumale, V.A.; Gangwar, R.K.; Datar, S.S.; Sharma, R.B. Reversible Aggregation Control of Polyvinylpyrrolidone Capped Gold Nanoparticles as a Function of pH. Mater. Express 2012, 2, 311–318. [Google Scholar] [CrossRef]
- Koczkur, K.M.; Mourdikoudis, S.; Polavarapu, L.; Skrabalak, S.E. Polyvinylpyrrolidone (PVP) in Nanoparticle Synthesis. Dalton Trans. 2015, 44, 17883–17905. [Google Scholar] [CrossRef] [PubMed]
- Safo, I.A.; Werheid, M.; Dosche, C.; Oezaslan, M. The Role of Polyvinylpyrrolidone (PVP) as a Capping and Structure-Directing Agent in the Formation of Pt Nanocubes. Nanoscale Adv. 2019, 1, 3095–3106. [Google Scholar] [CrossRef] [PubMed]
- Hung, Y.-C.; Hsieh, S.-C.; Hou, S.-R.; Kung, J.-Y.; Tang, C.-M.; Chang, C.-J. In Vivo Evaluation of PVP-Gelatin-Chitosan Composite Blended with Egg-Yolk Oil for Radiodermatitis. Appl. Sci. 2021, 11, 10290. [Google Scholar] [CrossRef]
- Li, X.-G.; Kresse, I.; Springer, J.; Nissen, J.; Yang, Y.-L. Morphology and Gas Permselectivity of Blend Membranes of Polyvinylpyridine with Ethylcellulose. Polymer 2001, 42, 6859–6869. [Google Scholar] [CrossRef]
- Abdelghany, A.M.; Mekhail, M.S.; Abdelrazek, E.M.; Aboud, M.M. Combined DFT/FTIR Structural Studies of Monodispersed PVP/Gold and Silver Nano Particles. J. Alloys Compd. 2015, 646, 326–332. [Google Scholar] [CrossRef]
- Charmi, J.; Nosrati, H.; Mostafavi Amjad, J.; Mohammadkhani, R.; Danafar, H. Polyethylene Glycol (PEG) Decorated Graphene Oxide Nanosheets for Controlled Release Curcumin Delivery. Heliyon 2019, 5, e01466. [Google Scholar] [CrossRef] [PubMed]
- Marcos, M.A.; Cabaleiro, D.; Guimarey, M.J.G.; Comuñas, M.J.P.; Fedele, L.; Fernández, J.; Lugo, L. PEG 400-Based Phase Change Materials Nano-Enhanced with Functionalized Graphene Nanoplatelets. Nanomaterials 2018, 8, 16. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.; Qiu, M.; Zhang, S. Thermal Conductivity Enhancement of PEG/SiO2 Composite PCM by in Situ Cu Doping. Sol. Energy Mater. Sol. Cells 2012, 105, 242–248. [Google Scholar] [CrossRef]
- Tang, B.; Wu, C.; Qiu, M.; Zhang, X.; Zhang, S. PEG/SiO2–Al2O3 Hybrid Form-Stable Phase Change Materials with Enhanced Thermal Conductivity. Mater. Chem. Phys. 2014, 144, 162–167. [Google Scholar] [CrossRef]
- León, A.; Reuquen, P.; Garín, C.; Segura, R.; Vargas, P.; Zapata, P.; Orihuela, P.A. FTIR and Raman Characterization of TiO2 Nanoparticles Coated with Polyethylene Glycol as Carrier for 2-Methoxyestradiol. Appl. Sci. 2017, 7, 49. [Google Scholar] [CrossRef]
- Reddy Polu, A.; Kumar, R. Impedance Spectroscopy and FTIR Studies of PEG-Based Polymer Electrolytes. E-J. Chem. 2011, 8, 347–353. [Google Scholar] [CrossRef]
- Mohd Yusof, N.; Jai, J.; Hamzah, F. Effect of Coating Materials on the Properties of Chitosan-Starch-Based Edible Coatings. IOP Conf. Ser. Mater. Sci. Eng. 2019, 507, 012011. [Google Scholar] [CrossRef]
- Hashim, N. Extraction of Degradable Biopolymer Material from Shrimp Shell. Int. J. Synerg. Eng. Technol. 2022, 3, 58–64. [Google Scholar]
- Choo, K.; Ching, Y.; Chuah, C.; Julai, S.; Liou, N.-S. Preparation and Characterization of Polyvinyl Alcohol-Chitosan Composite Films Reinforced with Cellulose Nanofiber. Materials 2016, 9, 644. [Google Scholar] [CrossRef]
Volume Added (mL) | Total Volume (mL) | |||||
---|---|---|---|---|---|---|
Polymers | PVA | PVP | PEG | CS | DI | |
M1 | 2 | 2 | 2 | 2 | 2 | 10 |
M2 | 1 | 2 | 2 | 1 | 4 | 10 |
M3 | 2 | 1 | 1 | 1 | 5 | 10 |
M4 | 1 | 2 | 2 | 2 | 3 | 10 |
M5 | 2 | 1 | 1 | 2 | 4 | 10 |
M6 | 2 | 1 | 2 | 1 | 4 | 10 |
M7 | 1 | 1 | 1 | 2 | 5 | 10 |
M8 | 1 | 1 | 1 | 1 | 6 | 10 |
M9 | 1 | 1 | 2 | 2 | 4 | 10 |
M10 | 2 | 2 | 2 | 1 | 3 | 10 |
M11 | 2 | 2 | 1 | 2 | 3 | 10 |
M12 | 1 | 2 | 1 | 2 | 4 | 10 |
M13 | 1 | 2 | 1 | 1 | 5 | 10 |
M14 | 1 | 1 | 2 | 1 | 5 | 10 |
M15 | 2 | 1 | 2 | 2 | 3 | 10 |
M16 | 2 | 2 | 1 | 1 | 4 | 10 |
Concentration (g/mL) | Mass Fraction (%) | |||||||
---|---|---|---|---|---|---|---|---|
Polymers | PVA | PVP | PEG | CS | PVA | PVP | PEG | CS |
M1 | 0.004 | 0.004 | 0.004 | 0.002 | 0.39 | 0.39 | 0.39 | 0.20 |
M2 | 0.002 | 0.004 | 0.004 | 0.001 | 0.20 | 0.40 | 0.40 | 0.10 |
M3 | 0.004 | 0.002 | 0.002 | 0.001 | 0.40 | 0.20 | 0.20 | 0.10 |
M4 | 0.002 | 0.004 | 0.004 | 0.002 | 0.20 | 0.40 | 0.40 | 0.20 |
M5 | 0.004 | 0.002 | 0.002 | 0.002 | 0.40 | 0.20 | 0.20 | 0.20 |
M6 | 0.004 | 0.002 | 0.004 | 0.001 | 0.40 | 0.20 | 0.40 | 0.10 |
M7 | 0.002 | 0.002 | 0.002 | 0.002 | 0.20 | 0.20 | 0.20 | 0.20 |
M8 | 0.002 | 0.002 | 0.002 | 0.001 | 0.20 | 0.20 | 0.20 | 0.10 |
M9 | 0.002 | 0.002 | 0.004 | 0.002 | 0.20 | 0.20 | 0.40 | 0.20 |
M10 | 0.004 | 0.004 | 0.004 | 0.001 | 0.39 | 0.39 | 0.39 | 0.10 |
M11 | 0.004 | 0.004 | 0.002 | 0.002 | 0.40 | 0.40 | 0.20 | 0.20 |
M12 | 0.002 | 0.004 | 0.002 | 0.002 | 0.20 | 0.40 | 0.20 | 0.20 |
M13 | 0.002 | 0.004 | 0.002 | 0.001 | 0.20 | 0.40 | 0.20 | 0.10 |
M14 | 0.002 | 0.002 | 0.004 | 0.001 | 0.20 | 0.20 | 0.40 | 0.10 |
M15 | 0.004 | 0.002 | 0.004 | 0.002 | 0.40 | 0.20 | 0.40 | 0.20 |
M16 | 0.004 | 0.004 | 0.002 | 0.001 | 0.40 | 0.40 | 0.20 | 0.10 |
(a) | |||||||
%Polymer | 100 | 50 | 25 | ||||
5.5 × 10−6 | 3 × 10−6 | 3.38 × 10−4 | |||||
93.46 | 99.29 | 201.9 | |||||
−3803 | 2836 | −36,037 | |||||
1457 | −12,131 | −40,514 | |||||
1128 | −1876 | −47,805 | |||||
5186 | −4598 | −42,477 | |||||
501,206 | 2,058,038 | 13,394,054 | |||||
487,671 | −1,549,183 | 13,518,231 | |||||
613,661 | 154,846 | 13,497,532 | |||||
−1,307,463 | 2,647,700 | 16,166,648 | |||||
−1,608,092 | 6,943,765 | 13,299,686 | |||||
−2,781,154 | 1,296,601 | 22,375,418 | |||||
159,862,331 | −222,576,831 | −5,097,528,902 | |||||
−103,833,371 | −1,507,737,077 | −5,015,421,713 | |||||
309,606,765 | 456,423,015 | −6,441,969,969 | |||||
1,140,611,976 | −1,372,514,719 | −7,336,917,692 | |||||
−208,114,800,733 | 187,830,797,222 | 2,462,469,583,911 | |||||
(b) | |||||||
%Polymer | 12.5 | 6.25 | 3.125 | ||||
8.15 × 10−6 | 2 × 10−3 | 1 × 10−5 | |||||
174.1 | −152.2 | −10.76 | |||||
−27,812 | 54,806 | 2998 | |||||
−18,561 | 22,999 | −2444 | |||||
−25,960 | −13,282 | 4633 | |||||
−38,752 | 163,016 | 47,425 | |||||
9,263,047 | −9,141,590 | 6,321,380 | |||||
10,430,763 | −3,826,608 | 1,303,958 | |||||
15,397,157 | −43,648,307 | −10,885,764 | |||||
7,088,313 | 7,807,002 | 1,481,389 | |||||
7,841,221 | −23,647,727 | −5,905,741 | |||||
14,228,046 | 4,956,960 | −12,761,287 | |||||
−3,367,292,860 | 11,004,673 | −1,925,949,284 | |||||
−5,671,998,721 | 9,273,389,515 | −1,364,561,504 | |||||
−6,619,041,275 | 4,061,533,740 | 2,646,742,454 | |||||
−3,917,095,529 | −4,602,633,086 | 1,673,360,195 | |||||
2,273,661,969,470 | −246,416,795,664 | 213,203,200,954 | |||||
(c) | |||||||
%Polymer | 100 | 50 | 25 | 12.5 | 6.25 | 3.125 | |
Highest % Inhibition | 93.739 | 96.872 | 86.524 | 99.162 | 99.229 | 36.803 | |
[PVA] (mg/mL) | 0.002 | 0.002 | 0.002 | 0.002 | 0.004 | 0.004 | |
[PVP] (mg/mL) | 0.002 | 0.004 | 0.002 | 0.002 | 0.004 | 0.004 | |
[PEG] (mg/mL) | 0.002 | 0.004 | 0.004 | 0.002 | 0.004 | 0.002 | |
[CS] (mg/mL) | 0.002 | 0.002 | 0.002 | 0.001 | 0.002 | 0.001 |
%Polymer | 100 | 50 | 25 | 12.5 | 6.25 | 3.125 | |
---|---|---|---|---|---|---|---|
29.21 | 64.36 | 13.92 | 76.57 | 87.8 | 55.85 | ||
93.62 | 87.74 | 76.39 | 107.67 | −31.6 | 38.56 | ||
−361 | 396 | 754 | −555 | 7209 | 860 | ||
−79 | −27 | −103 | −507 | 1314 | −960 | ||
−348 | −225 | 173 | 916 | 432 | −1168 | ||
357 | 3844 | 2379 | −10,837 | 47,936 | −8877 |
Variables | Values |
---|---|
5.90203 × 10−5 | |
52.08 | |
−15,625 | |
−10,417 | |
−4167 | |
−25,000 | |
4,687,500 | |
3,125,000 | |
8,333,333 | |
1,041,667 | |
6,250,000 | |
2,083,333 | |
−1,041,666,667 | |
−2,604,166,667 | |
−1,562,500,000 | |
−520,833,333 | |
520,833,333,333 |
Variables | Values |
---|---|
65.28 | |
16.93 | |
−781 | |
−260 | |
−260 | |
−3125 |
Chemicals | Wavelength (cm−1) | Functional Group | References |
---|---|---|---|
PVA | 3298.61 | O–H symmetric stretching | [66,67] |
1635.99 | O–H bending mode of the –OH groups | [68,69] | |
1274.28 | C–H bending vibration of CH2 | [66,68,70] | |
PVP | 3316.45 | O-H symmetric stretching | [71,72,73,74,75] |
1636.67 | C=O stretching vibration O–H bending mode of the –OH groups | [71,72,73,74] [68,69] | |
1467.79 | CH2 scissor | [75,76] | |
1467.67 | CH2 scissor | [75,76] | |
1426.55 | C–H vibration | [73] | |
1294.62 | C–N vibrations | [71,72,73,74] | |
PEG | 3312.73 | O–H symmetric stretching | [77,78,79,80] |
1635.95 | C=O stretching vibration O–H bending mode of the –OH groups | [77] [68,69] | |
1351.80 | C–H deformation vibrations | [77,81] | |
1082.85 | C–O stretching vibrations C–O–C symmetric stretching | [77,81,82] [78,79,80] | |
CS + AA | 3320.67 | O–H symmetric stretching and -NH symmetrical vibration | [67] |
1636.09 | C=O stretching (Amide I) C=O stretching vibration | [67,83] [71,72,73,74] | |
1394.97 | CH2 in CH2OH group | [84] | |
1278.48 | C–H bond in pyranose ring | [84] | |
1091.42 | –C–O– stretching vibration | [67,85] | |
1016.12 | free amino group –NH2 at the C2 position of glucosamine | [84] | |
M8 | 3314.76 | –OH stretching vibration of PVA, PVP, PEG with secondary -NH groups of CS + AA | This research |
1636.28 | C=O stretching vibration of PVP, or O–H bending mode of the –OH groups (due to the high amount of water), or C=O stretching vibration of PEG, or C=O stretching (Amide I) of CS + AA | This research | |
1280.48 | C–H bond in pyranose ring of CS + AA | This research | |
1080.17 | C–O stretching vibrations or C–O–C symmetric stretching of PEG free amino group –NH2 at the C2 position of glucosamine in CS + AA | This research |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doan, L.; Tran, K. Relationship between the Polymer Blend Using Chitosan, Polyethylene Glycol, Polyvinyl Alcohol, Polyvinylpyrrolidone, and Antimicrobial Activities against Staphylococcus aureus. Pharmaceutics 2023, 15, 2453. https://doi.org/10.3390/pharmaceutics15102453
Doan L, Tran K. Relationship between the Polymer Blend Using Chitosan, Polyethylene Glycol, Polyvinyl Alcohol, Polyvinylpyrrolidone, and Antimicrobial Activities against Staphylococcus aureus. Pharmaceutics. 2023; 15(10):2453. https://doi.org/10.3390/pharmaceutics15102453
Chicago/Turabian StyleDoan, Linh, and Khoa Tran. 2023. "Relationship between the Polymer Blend Using Chitosan, Polyethylene Glycol, Polyvinyl Alcohol, Polyvinylpyrrolidone, and Antimicrobial Activities against Staphylococcus aureus" Pharmaceutics 15, no. 10: 2453. https://doi.org/10.3390/pharmaceutics15102453
APA StyleDoan, L., & Tran, K. (2023). Relationship between the Polymer Blend Using Chitosan, Polyethylene Glycol, Polyvinyl Alcohol, Polyvinylpyrrolidone, and Antimicrobial Activities against Staphylococcus aureus. Pharmaceutics, 15(10), 2453. https://doi.org/10.3390/pharmaceutics15102453