Predicting Maternal and Infant Tetrahydrocannabinol Exposure in Lactating Cannabis Users: A Physiologically Based Pharmacokinetic Modeling Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. PBPK Model Development Workflow
2.2. PBPK Model Development
2.2.1. General Model Structure
2.2.2. Base Model: Intravenous PBPK Model
2.2.3. Base Model Expansion: Inhalation PBPK Model
2.2.4. Base Model Expansion: Lactation PBPK Model
2.2.5. Base Model Reduction: Infant Oral PBPK Model
2.2.6. Model Training, Verification, and Simulation
2.2.7. Sensitivity Analysis
3. Results
3.1. Observed Data for PBPK Model Development
3.2. PBPK Model Training and Verification
3.2.1. Intravenous PBPK Model
3.2.2. Inhalation PBPK Model
3.2.3. Lactation PBPK Model
3.2.4. Infant Oral PBPK Model
3.2.5. Simulations
3.2.6. Sensitivity Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hasin, D.; Walsh, C. Trends over time in adult cannabis use: A review of recent findings. Curr. Opin. Psychol. 2021, 38, 80–85. [Google Scholar] [CrossRef]
- Navarrete, F.; García-Gutiérrez, M.S.; Gasparyan, A.; Austrich-Olivares, A.; Femenía, T.; Manzanares, J. Cannabis Use in Pregnant and Breastfeeding Women: Behavioral and Neurobiological Consequences. Front. Psychiatry 2020, 11, 586447. [Google Scholar] [CrossRef]
- Matheson, J.; Le Foll, B. Impacts of recreational cannabis legalization on use and harms: A narrative review of sex/gender differences. Front. Psychiatry 2023, 14, 1127660. [Google Scholar] [CrossRef]
- Hall, W. The costs and benefits of cannabis control policies. Dialogues Clin. Neurosci. 2020, 22, 281–287. [Google Scholar] [CrossRef]
- National Institute of Child Health and Human Development. Cannabis. In Drugs and Lactation Database (LactMed®); National Institute of Child Health and Human Development: Bethesda MD, USA, 2006. [Google Scholar]
- Garry, A.; Rigourd, V.; Amirouche, A.; Fauroux, V.; Aubry, S.; Serreau, R. Cannabis and Breastfeeding. J. Toxicol. 2009, 2009, 596149. [Google Scholar] [CrossRef] [PubMed]
- Djulus, J.; Moretti, M.; Koren, G. Marijuana use and breastfeeding. Can. Fam. Physician 2005, 51, 349–350. [Google Scholar] [PubMed]
- Fried, P.A. The Ottawa Prenatal Prospective Study (OPPS): Methodological issues and findings--it’s easy to throw the baby out with the bath water. Life Sci. 1995, 56, 2159–2168. [Google Scholar] [CrossRef]
- Tennes, K.; Avitable, N.; Blackard, C.; Boyles, C.; Hassoun, B.; Holmes, L.; Kreye, M. Marijuana: Prenatal and postnatal exposure in the human. NIDA Res. Monogr. 1985, 59, 48–60. [Google Scholar] [PubMed]
- Astley, S.J.; Little, R.E. Maternal marijuana use during lactation and infant development at one year. Neurotoxicol Teratol. 1990, 12, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Yamaori, S.; Funahashi, T.; Kimura, T.; Yamamoto, I. Cytochrome P450 enzymes involved in the metabolism of tetrahydrocannabinols and cannabinol by human hepatic microsomes. Life Sci. 2007, 80, 1415–1419. [Google Scholar] [CrossRef]
- Patilea-Vrana, G.I.; Anoshchenko, O.; Unadkat, J.D. Hepatic Enzymes Relevant to the Disposition of (−)-∆9-Tetrahydrocannabinol (THC) and Its Psychoactive Metabolite, 11-OH-THC. Drug Metab. Dispos. 2019, 47, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Baker, T.; Datta, P.; Rewers-Felkins, K.; Thompson, H.; Kallem, R.R.; Hale, T.W. Transfer of Inhaled Cannabis Into Human Breast Milk. Obs. Gynecol. 2018, 131, 783–788. [Google Scholar] [CrossRef]
- Monfort, A.; Ferreira, E.; Leclair, G.; Lodygensky, G.A. Pharmacokinetics of Cannabis and Its Derivatives in Animals and Humans During Pregnancy and Breastfeeding. Front. Pharmacol. 2022, 13, 919630. [Google Scholar] [CrossRef] [PubMed]
- Moss, M.J.; Bushlin, I.; Kazmierczak, S.; Koop, D.; Hendrickson, R.G.; Zuckerman, K.E.; Grigsby, T.M. Cannabis use and measurement of cannabinoids in plasma and breast milk of breastfeeding mothers. Pediatr. Res. 2021, 90, 861–868. [Google Scholar] [CrossRef] [PubMed]
- Wymore, E.M.; Palmer, C.; Wang, G.S.; Metz, T.D.; Bourne, D.W.A.; Sempio, C.; Bunik, M. Persistence of Δ-9-Tetrahydrocannabinol in Human Breast Milk. JAMA Pediatr. 2021, 175, 632–634. [Google Scholar] [CrossRef] [PubMed]
- Perez-Reyes, M.; Wall, M.E. Presence of delta9-tetrahydrocannabinol in human milk. N. Engl. J. Med. 1982, 307, 819–820. [Google Scholar] [CrossRef]
- Illamola, S.M.; Bucci-Rechtweg, C.; Costantine, M.M.; Tsilou, E.; Sherwin, C.M.; Zajicek, A. Inclusion of pregnant and breastfeeding women in research—efforts and initiatives. Br. J. Clin. Pharmacol. 2018, 84, 215–222. [Google Scholar] [CrossRef]
- Bergeria, C.L.; Heil, S.H. Surveying Lactation Professionals Regarding Marijuana Use and Breastfeeding. Breastfeed. Med. 2015, 10, 377–380. [Google Scholar] [CrossRef]
- Larsen, L.A.; Ito, S.; Koren, G. Prediction of milk/plasma concentration ratio of drugs. Ann. Pharmacother. 2003, 37, 1299–1306. [Google Scholar] [CrossRef] [PubMed]
- Begg, E.J.; Atkinson, H.C. Modelling of the passage of drugs into milk. Pharmacol. Ther. 1993, 59, 301–310. [Google Scholar] [CrossRef]
- Maharaj, A.R.; Barrett, J.S.; Edginton, A.N. A Workflow Example of PBPK Modeling to Support Pediatric Research and Development: Case Study with Lorazepam. AAPS J. 2013, 15, 455–464. [Google Scholar] [CrossRef] [PubMed]
- Verscheijden, L.F.M.; Koenderink, J.B.; Johnson, T.N.; de Wildt, S.N.; Russel, F.G.M. Physiologically-based pharmacokinetic models for children: Starting to reach maturation? Pharmacol. Ther. 2020, 211, 107541. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Sun, X.-g.; Mao, S.; Budoff, M.J.; Stringer, W.W.; Ge, W.; Li, H.; Huang, J.; Liu, F.; Hu, S. Normal reference values and predict equations of heart function. Zhongguo Ying Yong Sheng Li Xue Za Zhi 2015, 31, 332–336. [Google Scholar]
- Boer, P. Estimated lean body mass as an index for normalization of body fluid volumes in humans. Am. J. Physiol. 1984, 247, F632–F636. [Google Scholar] [CrossRef] [PubMed]
- Valentin, J. Basic anatomical and physiological data for use in radiological protection: Reference values: ICRP Publication 89: Approved by the Commission in September 2001. Ann ICRP 2002, 32, 1–277. [Google Scholar] [CrossRef]
- Kyle, U.G.; Genton, L.; Slosman, D.O.; Pichard, C. Fat-free and fat mass percentiles in 5225 healthy subjects aged 15 to 98 years. Nutrition 2001, 17, 534–541. [Google Scholar] [CrossRef]
- Martin, A.D.; Daniel, M.Z.; Drinkwater, D.T.; Clarys, J.P. Adipose tissue density, estimated adipose lipid fraction and whole body adiposity in male cadavers. Int. J. Obes. Relat. Metab. Disord. 1994, 18, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Thomas, L.W. The Chemical Composition of Adipose Tissue of Man and Mice. Q. J. Exp. Physiol. Cogn. Med. Sci. 1962, 47, 179–188. [Google Scholar] [CrossRef]
- Kotronen, A.; Seppänen-Laakso, T.; Westerbacka, J.; Kiviluoto, T.; Arola, J.; Ruskeepää, A.-L.; Yki-Järvinen, H.; Oresic, M. Comparison of lipid and fatty acid composition of the liver, subcutaneous and intra-abdominal adipose tissue, and serum. Obesity 2010, 18, 937–944. [Google Scholar] [CrossRef]
- Poulin, P.; Theil, F.-P. Prediction of pharmacokinetics prior to in vivo studies. 1. Mechanism-based prediction of volume of distribution. J. Pharm. Sci. 2002, 91, 129–156. [Google Scholar] [CrossRef]
- Meema, H.E.; Meema, S. Compact bone mineral density of the normal human radius. Acta Radiol. Oncol. Radiat. Phys. Biol. 1978, 17, 342–352. [Google Scholar] [CrossRef]
- Nadler, S.B.; Hidalgo, J.H.; Bloch, T. Prediction of blood volume in normal human adults. Surgery 1962, 51, 224–232. [Google Scholar]
- Sharma, R.; Sharma, S. Physiology, Blood Volume. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Gelman, S. Venous function and central venous pressure: A physiologic story. Anesthesiology 2008, 108, 735–748. [Google Scholar] [CrossRef]
- Keys, A.; Fidanza, F.; Karvonen, M.J.; Kimura, N.; Taylor, H.L. Indices of relative weight and obesity. J. Chronic Dis. 1972, 25, 329–343. [Google Scholar] [CrossRef]
- ElSohly, M.A.; Mehmedic, Z.; Foster, S.; Gon, C.; Chandra, S.; Church, J.C. Changes in Cannabis Potency over the Last Two Decades (1995–2014)—Analysis of Current Data in the United States. Biol. Psychiatry 2016, 79, 613. [Google Scholar] [CrossRef] [PubMed]
- Ridgeway, G.; Kilmer, B. Bayesian inference for the distribution of grams of marijuana in a joint. Drug Alcohol. Depend. 2016, 165, 175–180. [Google Scholar] [CrossRef] [PubMed]
- PubChem. 6,6,9-Trimethyl-3-pentyl-6a,7,8,10a-tetrahydrobenzo[c]chromen-1-ol. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/2978 (accessed on 19 June 2023).
- Thomas, B.F.; Compton, D.R.; Martin, B.R. Characterization of the lipophilicity of natural and synthetic analogs of delta 9-tetrahydrocannabinol and its relationship to pharmacological potency. J. Pharmacol. Exp. Ther. 1990, 255, 624–630. [Google Scholar]
- Giroud, C.; Ménétrey, A.; Augsburger, M.; Buclin, T.; Sanchez-Mazas, P.; Mangin, P. Δ9-THC, 11-OH-Δ9-THC and Δ9-THCCOOH plasma or serum to whole blood concentrations distribution ratios in blood samples taken from living and dead people. Forensic Sci. Int. 2001, 123, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Murthy, P.; Bharath, M.M.S. Chemistry, Metabolism, and Toxicology of Cannabis: Clinical Implications. Iran. J. Psychiatry 2012, 7, 149–156. [Google Scholar]
- Patilea-Vrana, G.I.; Unadkat, J.D. Development and Verification of a Linked Δ9-THC/11-OH-THC Physiologically Based Pharmacokinetic Model in Healthy, Nonpregnant Population and Extrapolation to Pregnant Women. Drug Metab. Dispos. 2021, 49, 509–520. [Google Scholar] [CrossRef]
- Patilea-Vrana, G.I.; Unadkat, J.D. Quantifying Hepatic Enzyme Kinetics of (-)-∆9-Tetrahydrocannabinol (THC) and Its Psychoactive Metabolite, 11-OH-THC, through In Vitro Modeling. Drug Metab. Dispos. 2019, 47, 743–752. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.-J.; Wang, J.-S.; Markowitz, J.S.; Donovan, J.L.; Gibson, B.B.; Gefroh, H.A.; DeVane, C.L. Characterization of P-glycoprotein Inhibition by Major Cannabinoids from Marijuana. J. Pharmacol. Exp. Ther. 2006, 317, 850–857. [Google Scholar] [CrossRef] [PubMed]
- Hiller, F.C.; Wilson, F.J.; Mazumder, M.K.; Wilson, J.D.; Bone, R.C. Concentration and particle size distribution in smoke from marijuana cigarettes with different Δ9-tetrahydrocannabinol content. Fundam. Appl. Toxicol. 1984, 4, 451–454. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.J.; Olfert, J.S.; Yurteri, C.U.; Cabot, R.; McAughey, J. Hygroscopic effects on the mobility and mass of cigarette smoke particles. J. Aerosol Sci. 2015, 86, 69–78. [Google Scholar] [CrossRef]
- Berezhkovskiy, L.M. Volume of distribution at steady state for a linear pharmacokinetic system with peripheral elimination. J. Pharm. Sci. 2004, 93, 1628–1640. [Google Scholar] [CrossRef] [PubMed]
- Citti, C.; Linciano, P.; Russo, F.; Luongo, L.; Iannotta, M.; Maione, S.; Laganà, A.; Capriotti, A.L.; Forni, F.; Vandelli, M.A.; et al. A novel phytocannabinoid isolated from Cannabis sativa L. with an in vivo cannabimimetic activity higher than Δ9-tetrahydrocannabinol: Δ9-Tetrahydrocannabiphorol. Sci. Rep. 2019, 9, 20335. [Google Scholar] [CrossRef] [PubMed]
- Stott, C.G.; White, L.; Wright, S.; Wilbraham, D.; Guy, G.W. A phase I study to assess the single and multiple dose pharmacokinetics of THC/CBD oromucosal spray. Eur. J. Clin. Pharmacol. 2013, 69, 1135–1147. [Google Scholar] [CrossRef] [PubMed]
- Sachse-Seeboth, C.; Pfeil, J.; Sehrt, D.; Meineke, I.; Tzvetkov, M.; Bruns, E.; Poser, W.; Vormfelde, S.V.; Brockmöller, J. Interindividual variation in the pharmacokinetics of Delta9-tetrahydrocannabinol as related to genetic polymorphisms in CYP2C9. Clin. Pharmacol. Ther. 2009, 85, 273–276. [Google Scholar] [CrossRef]
- Ladumor, M.K.; Unadkat, J.D. Predicting Regional Respiratory Tissue and Systemic Concentrations of Orally Inhaled Drugs through a Novel PBPK Model. Drug Metab. Dispos. 2022, 50, 519–528. [Google Scholar] [CrossRef]
- Hartung, N.; Borghardt, J.M. A mechanistic framework for a priori pharmacokinetic predictions of orally inhaled drugs. PLoS Comput. Biol. 2020, 16, e1008466. [Google Scholar] [CrossRef]
- Hintz, R.J.; Johnson, K.C. The effect of particle size distribution on dissolution rate and oral absorption. Int. J. Pharm. 1989, 51, 9–17. [Google Scholar] [CrossRef]
- Brillault, J.; De Castro, W.V.; Couet, W. Relative Contributions of Active Mediated Transport and Passive Diffusion of Fluoroquinolones with Various Lipophilicities in a Calu-3 Lung Epithelial Cell Model. Antimicrob. Agents Chemother. 2010, 54, 543–545. [Google Scholar] [CrossRef]
- Stabin, M.G.; Breitz, H.B. Breast milk excretion of radiopharmaceuticals: Mechanisms, findings, and radiation dosimetry. J. Nucl. Med. 2000, 41, 863–873. [Google Scholar]
- Fleishaker, J.C.; Desai, N.; McNamara, P.J. Factors affecting the milk-to-plasma drug concentration ratio in lactating women: Physical interactions with protein and fat. J. Pharm. Sci. 1987, 76, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Koshimichi, H.; Ito, K.; Hisaka, A.; Honma, M.; Suzuki, H. Analysis and prediction of drug transfer into human milk taking into consideration secretion and reuptake clearances across the mammary epithelia. Drug Metab. Dispos. 2011, 39, 2370–2380. [Google Scholar] [CrossRef] [PubMed]
- Kent, J.C.; Mitoulas, L.; Cox, D.B.; Owens, R.A.; Hartmann, P.E. Breast volume and milk production during extended lactation in women. Exp. Physiol. 1999, 84, 435–447. [Google Scholar] [CrossRef] [PubMed]
- Vandeweyer, E.; Hertens, D. Quantification of glands and fat in breast tissue: An experimental determination. Ann. Anat. 2002, 184, 181–184. [Google Scholar] [CrossRef]
- Swinford, A.E.; Adler, D.D.; Garver, K.A. Mammographic appearance of the breasts during pregnancy and lactation: False assumptions. Acad. Radiol. 1998, 5, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Abduljalil, K.; Pansari, A.; Ning, J.; Jamei, M. Prediction of drug concentrations in milk during breastfeeding, integrating predictive algorithms within a physiologically-based pharmacokinetic model. CPT Pharmacomet. Syst. Pharmacol. 2021, 10, 878–889. [Google Scholar] [CrossRef]
- Ansell, C.; Moore, A.; Barrie, H. Electrolyte and pH changes in Human Milk. Pediatr. Res. 1977, 11, 1177–1179. [Google Scholar] [CrossRef]
- Allen, J.C.; Keller, R.P.; Archer, P.; Neville, M.C. Studies in human lactation: Milk composition and daily secretion rates of macronutrients in the first year of lactation. Am. J. Clin. Nutr. 1991, 54, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Morriss, F.H.; Brewer, E.D.; Spedale, S.B.; Riddle, L.; Temple, D.M.; Caprioli, R.M.; West, M.S. Relationship of human milk pH during course of lactation to concentrations of citrate and fatty acids. Pediatrics 1986, 78, 458–464. [Google Scholar] [CrossRef]
- Malhotra, S.L. Effect of non-suckling on the pH of breast milk and its possible relationship with breast cancer. Postgrad. Med. J. 1982, 58, 749–752. [Google Scholar] [CrossRef]
- Paredes, E.S.D. Atlas of Mammography; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2007; ISBN 978-0-7817-6433-9. [Google Scholar]
- Bliznakova, K.; Bliznakov, Z.; Bravou, V.; Kolitsi, Z.; Pallikarakis, N. A three-dimensional breast software phantom for mammography simulation. Phys. Med. Biol. 2003, 48, 3699–3719. [Google Scholar] [CrossRef]
- Neville, M.C.; Monks, J. The Cell Biology of the Lactating Mammary Epithelium. In Encyclopedia of Reproduction, 2nd ed.; Skinner, M.K., Ed.; Academic Press: Oxford, UK, 2018; pp. 779–785. ISBN 978-0-12-815145-7. [Google Scholar]
- Tinning, K.; Acworth, J. Make your Best Guess: An updated method for paediatric weight estimation in emergencies. Emerg. Med. Australas. 2007, 19, 528–534. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.P.; Kim, S.J.; Wu, D.; Shah, K.; Shah, D.K. Age-Related Changes in Pediatric Physiology: Quantitative Analysis of Organ Weights and Blood Flows: Age-Related Changes in Pediatric Physiology. AAPS J. 2021, 23, 50. [Google Scholar] [CrossRef] [PubMed]
- Fanali, G.; Cao, Y.; Ascenzi, P.; Trezza, V.; Rubino, T.; Parolaro, D.; Fasano, M. Binding of δ9-tetrahydrocannabinol and diazepam to human serum albumin. IUBMB Life 2011, 63, 446–451. [Google Scholar] [CrossRef]
- Wahlqvist, M.; Nilsson, I.M.; Sandberg, F.; Agurell, S. Binding of delta-1-tetrahydrocannabinol to human plasma proteins. Biochem. Pharmacol. 1970, 19, 2579–2584. [Google Scholar] [CrossRef]
- Johnson, T.N.; Rostami-Hodjegan, A.; Tucker, G.T. Prediction of the clearance of eleven drugs and associated variability in neonates, infants and children. Clin. Pharmacokinet. 2006, 45, 931–956. [Google Scholar] [CrossRef]
- Yim, D.-S.; Bae, S.H.; Choi, S. Predicting human pharmacokinetics from preclinical data: Clearance. Transl. Clin. Pharmacol. 2021, 29, 78–87. [Google Scholar] [CrossRef]
- Yu, L.X.; Amidon, G.L. A compartmental absorption and transit model for estimating oral drug absorption. Int. J. Pharm. 1999, 186, 119–125. [Google Scholar] [CrossRef]
- Rios-Leyvraz, M.; Yao, Q. The Volume of Breast Milk Intake in Infants and Young Children: A Systematic Review and Meta-Analysis. Breastfeed. Med. 2023, 18, 188–197. [Google Scholar] [CrossRef]
- BREASTFEEDING. In Counselling for Maternal and Newborn Health Care: A Handbook for Building Skills; World Health Organization: Geneva, Switzerland, 2013.
- How Much and How Often to Breastfeed. Available online: https://www.cdc.gov/nutrition/infantandtoddlernutrition/breastfeeding/how-much-and-how-often.html (accessed on 6 July 2023).
- Abduljalil, K.; Cain, T.; Humphries, H.; Rostami-Hodjegan, A. Deciding on Success Criteria for Predictability of Pharmacokinetic Parameters from In Vitro Studies: An Analysis Based on In Vivo Observations. Drug Metab. Dispos. 2014, 42, 1478–1484. [Google Scholar] [CrossRef] [PubMed]
- Poulin, P.; Jones, H.M.; Do Jones, R.; Yates, J.W.; Gibson, C.R.; Chien, J.Y.; Ring, B.J.; Adkison, K.K.; He, H.; Vuppugalla, R.; et al. PhRMA CPCDC initiative on predictive models of human pharmacokinetics, part 1: Goals, properties of the PhRMA dataset, and comparison with literature datasets. J. Pharm. Sci. 2011, 100, 4050–4073. [Google Scholar] [CrossRef]
- Liu, T.; Lewis, T.; Gauda, E.; Gobburu, J.; Ivaturi, V. Mechanistic Population Pharmacokinetics of Morphine in Neonates with Abstinence Syndrome after Oral Administration of Diluted Tincture of Opium. J. Clin. Pharmacol. 2016, 56, 1009–1018. [Google Scholar] [CrossRef] [PubMed]
- Ramamoorthy, A.; Bende, G.; Chow, E.C.Y.; Dimova, H.; Hartman, N.; Jean, D.; Pahwa, S.; Ren, Y.; Shukla, C.; Yang, Y.; et al. Human radiolabeled mass balance studies supporting the FDA approval of new drugs. Clin. Transl. Sci. 2022, 15, 2567–2575. [Google Scholar] [CrossRef] [PubMed]
- Beaumont, C.; Young, G.C.; Cavalier, T.; Young, M.A. Methods in Clinical Pharmacology Series. Br. J. Clin. Pharmacol. 2014, 78, 1185–1200. [Google Scholar] [CrossRef] [PubMed]
- Ohlsson, A.; Lindgren, J.E.; Wahlen, A.; Agurell, S.; Hollister, L.E.; Gillespie, H.K. Plasma delta-9 tetrahydrocannabinol concentrations and clinical effects after oral and intravenous administration and smoking. Clin. Pharmacol. Ther. 1980, 28, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Lindgren, J.-E.; Ohlsson, A.; Agurell, S.; Hollister, L.; Gillespie, H. Clinical effects and plasma levels of Δ9-Tetrahydrocannabinol (Δ9-THC) in heavy and light users of cannabis. Psychopharmacology 1981, 74, 208–212. [Google Scholar] [CrossRef]
- Kelly, P.; Jones, R.T. Metabolism of tetrahydrocannabinol in frequent and infrequent marijuana users. J. Anal. Toxicol. 1992, 16, 228–235. [Google Scholar] [CrossRef]
- Naef, M.; Russmann, S.; Petersen-Felix, S.; Brenneisen, R. Development and pharmacokinetic characterization of pulmonal and intravenous delta-9-tetrahydrocannabinol (THC) in humans. J. Pharm. Sci. 2004, 93, 1176–1184. [Google Scholar] [CrossRef] [PubMed]
- Morrison, P.D.; Zois, V.; McKeown, D.A.; Lee, T.D.; Holt, D.W.; Powell, J.F.; Kapur, S.; Murray, R.M. The acute effects of synthetic intravenous Delta9-tetrahydrocannabinol on psychosis, mood and cognitive functioning. Psychol. Med. 2009, 39, 1607–1616. [Google Scholar] [CrossRef]
- Barkus, E.; Morrison, P.D.; Vuletic, D.; Dickson, J.C.; Ell, P.J.; Pilowsky, L.S.; Brenneisen, R.; Holt, D.W.; Powell, J.; Kapur, S.; et al. Does intravenous Δ9-tetrahydrocannabinol increase dopamine release? A SPET study. J. Psychopharmacol. 2011, 25, 1462–1468. [Google Scholar] [CrossRef] [PubMed]
- Meyer, P.; Langos, M.; Brenneisen, R. Human Pharmacokinetics and Adverse Effects of Pulmonary and Intravenous THC-CBD Formulations. Med. Cannabis Cannabinoids 2018, 1, 36–43. [Google Scholar] [CrossRef]
- Huestis, M.A.; Henningfield, J.E.; Cone, E.J. Blood cannabinoids. I. Absorption of THC and formation of 11-OH-THC and THCCOOH during and after smoking marijuana. J. Anal. Toxicol. 1992, 16, 276–282. [Google Scholar] [CrossRef]
- Abrams, D.I.; Vizoso, H.P.; Shade, S.B.; Jay, C.; Kelly, M.E.; Benowitz, N.L. Vaporization as a smokeless cannabis delivery system: A pilot study. Clin. Pharmacol. Ther. 2007, 82, 572–578. [Google Scholar] [CrossRef] [PubMed]
- Toennes, S.W.; Ramaekers, J.G.; Theunissen, E.L.; Moeller, M.R.; Kauert, G.F. Comparison of Cannabinoid Pharmacokinetic Properties in Occasional and Heavy Users Smoking a Marijuana or Placebo Joint. J. Anal. Toxicol. 2008, 32, 470–477. [Google Scholar] [CrossRef]
- Hunault, C.C.; Mensinga, T.T.; de Vries, I.; Kelholt-Dijkman, H.H.; Hoek, J.; Kruidenier, M.; Leenders, M.E.C.; Meulenbelt, J. Delta-9-tetrahydrocannabinol (THC) serum concentrations and pharmacological effects in males after smoking a combination of tobacco and cannabis containing up to 69 mg THC. Psychopharmacology 2008, 201, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Toennes, S.W.; Schneider, K.; Kauert, G.F.; Wunder, C.; Moeller, M.R.; Theunissen, E.L.; Ramaekers, J.G. Influence of ethanol on cannabinoid pharmacokinetic parameters in chronic users. Anal. Bioanal. Chem. 2011, 400, 145–152. [Google Scholar] [CrossRef]
- Hunault, C.C.; Böcker, K.B.E.; Stellato, R.K.; Kenemans, J.L.; de Vries, I.; Meulenbelt, J. Acute subjective effects after smoking joints containing up to 69 mg Δ9-tetrahydrocannabinol in recreational users: A randomized, crossover clinical trial. Psychopharmacology 2014, 231, 4723–4733. [Google Scholar] [CrossRef]
- Bertrand, K.A.; Hanan, N.J.; Honerkamp-Smith, G.; Best, B.M.; Chambers, C.D. Marijuana Use by Breastfeeding Mothers and Cannabinoid Concentrations in Breast Milk. Pediatrics 2018, 142, e20181076. [Google Scholar] [CrossRef] [PubMed]
- Wall, M.E.; Sadler, B.M.; Brine, D.; Taylor, H.; Perez-Reyes, M. Metabolism, disposition, and kinetics of delta-9-tetrahydrocannabinol in men and women. Clin. Pharmacol. Ther. 1983, 34, 352–363. [Google Scholar] [CrossRef] [PubMed]
- Hunt, C.A.; Jones, R.T. Tolerance and disposition of tetrahydrocannabinol in man. J. Pharmacol. Exp. Ther. 1980, 215, 35–44. [Google Scholar]
- Lemberger, L.; Tamarkin, N.R.; Axelrod, J.; Kopin, I.J. Delta-9-tetrahydrocannabinol: Metabolism and disposition in long-term marihuana smokers. Science 1971, 173, 72–74. [Google Scholar] [CrossRef]
- Huestis, M.A.; Smith, M.L. Cannabinoid Pharmacokinetics and Disposition in Alternative Matrices. In Handbook of Cannabis; Pertwee, R., Ed.; Oxford University Press: Oxford, UK, 2014; p. 303. ISBN 978-0-19-966268-5. [Google Scholar]
- Wall, M.E.; Perez-Reyes, M. The metabolism of delta 9-tetrahydrocannabinol and related cannabinoids in man. J. Clin. Pharmacol. 1981, 21, 178S–189S. [Google Scholar] [CrossRef] [PubMed]
- Boggs, D.L.; Nguyen, J.D.; Morgenson, D.; Taffe, M.A.; Ranganathan, M. Clinical and Preclinical Evidence for Functional Interactions of Cannabidiol and Δ9-Tetrahydrocannabinol. Neuropsychopharmacology 2018, 43, 142–154. [Google Scholar] [CrossRef] [PubMed]
- McClure, E.A.; Stitzer, M.L.; Vandrey, R. Characterizing smoking topography of cannabis in heavy users. Psychopharmacol 2012, 220, 309–318. [Google Scholar] [CrossRef]
- Zacny, J.P.; Stitzer, M.L. Human Smoking Pattern. In Smoking and Tobacco Control Monograph No. 7; US National Cancer Institute: Bethesda, MD, USA, 1996; pp. 151–155. [Google Scholar]
- Zitkute, V.; Snieckuviene, V.; Zakareviciene, J.; Pestenyte, A.; Jakaite, V.; Ramasauskaite, D. Reasons for Breastfeeding Cessation in the First Year after Childbirth in Lithuania: A Prospective Cohort Study. Medicina 2020, 56, 226. [Google Scholar] [CrossRef]
- Klumpers, L.E.; Beumer, T.L.; van Hasselt, J.G.C.; Lipplaa, A.; Karger, L.B.; Kleinloog, H.D.; Freijer, J.I.; de Kam, M.L.; van Gerven, J.M.A. Novel Δ9-tetrahydrocannabinol formulation Namisol® has beneficial pharmacokinetics and promising pharmacodynamic effects. Br. J. Clin. Pharmacol. 2012, 74, 42–53. [Google Scholar] [CrossRef]
- Calvier, E.A.M.; Krekels, E.H.J.; Välitalo, P.A.J.; Rostami-Hodjegan, A.; Tibboel, D.; Danhof, M.; Knibbe, C.A.J. Allometric Scaling of Clearance in Paediatric Patients: When Does the Magic of 0.75 Fade? Clin. Pharmacokinet. 2017, 56, 273–285. [Google Scholar] [CrossRef] [PubMed]
- Germovsek, E.; Barker, C.I.S.; Sharland, M.; Standing, J.F. Scaling clearance in paediatric pharmacokinetics: All models are wrong, which are useful? Br. J. Clin. Pharmacol. 2017, 83, 777–790. [Google Scholar] [CrossRef] [PubMed]
- Nauwelaerts, N.; Macente, J.; Deferm, N.; Bonan, R.H.; Huang, M.-C.; Van Neste, M.; Bibi, D.; Badee, J.; Martins, F.S.; Smits, A.; et al. Generic Workflow to Predict Medicine Concentrations in Human Milk Using Physiologically-Based Pharmacokinetic (PBPK) Modelling—A Contribution from the ConcePTION Project. Pharmaceutics 2023, 15, 1469. [Google Scholar] [CrossRef] [PubMed]
- Abduljalil, K.; Gardner, I.; Jamei, M. Application of a Physiologically Based Pharmacokinetic Approach to Predict Theophylline Pharmacokinetics Using Virtual Non-Pregnant, Pregnant, Fetal, Breast-Feeding, and Neonatal Populations. Front. Pediatr. 2022, 10, 840710. [Google Scholar] [CrossRef] [PubMed]
- Methaneethorn, J.; Poomsaidorn, C.; Naosang, K.; Kaewworasut, P.; Lohitnavy, M. A Δ9-Tetrahydrocannabinol Physiologically-Based Pharmacokinetic Model Development in Humans. Eur. J. Drug Metab. Pharmacokinet. 2020, 45, 495–511. [Google Scholar] [CrossRef]
- Zhu, L.; Pei, W.; DiCiano, P.; Brands, B.; Wickens, C.M.; Foll, B.L.; Kwong, B.; Parashar, M.; Sivananthan, A.; Mahadevan, R. Physiologically-based pharmacokinetic model for predicting blood and tissue tetrahydrocannabinol concentrations. Comput. Chem. Eng. 2021, 154, 107461. [Google Scholar] [CrossRef]
- Gray, T.R.; Eiden, R.D.; Leonard, K.E.; Connors, G.J.; Shisler, S.; Huestis, M.A. Identifying Prenatal Cannabis Exposure and Effects of Concurrent Tobacco Exposure on Neonatal Growth. Clin. Chem. 2010, 56, 1442–1450. [Google Scholar] [CrossRef]
- Jensen, T.L.; Wu, F.; McMillin, G.A. Detection of in utero Exposure to Cannabis in Paired Umbilical Cord Tissue and Meconium by Liquid Chromatography-Tandem Mass Spectrometry. Clin. Mass. Spectrom. 2019, 14 Pt B, 115–123. [Google Scholar] [CrossRef]
- Guidet, C.; Gregoire, M.; Le Dreau, A.; Vrignaud, B.; Deslandes, G.; Monteil-Ganière, C. Cannabis intoxication after accidental ingestion in infants: Urine and plasma concentrations of Δ-9-tetrahydrocannabinol (THC), THC-COOH and 11-OH-THC in 10 patients. Clin. Toxicol. 2020, 58, 421–423. [Google Scholar] [CrossRef]
- Molly, C.; Mory, O.; Basset, T.; Patural, H. [Acute cannabis poisoning in a 10-month-old infant]. Arch. Pediatr. 2012, 19, 729–732. [Google Scholar] [CrossRef]
- Schlienz, N.J.; Spindle, T.R.; Cone, E.J.; Herrmann, E.S.; Bigelow, G.E.; Mitchell, J.M.; Flegel, R.; LoDico, C.; Vandrey, R. Pharmacodynamic dose effects of oral cannabis ingestion in healthy adults who infrequently use cannabis. Drug Alcohol. Depend. 2020, 211, 107969. [Google Scholar] [CrossRef]
- Hartman, R.L.; Huestis, M.A. Cannabis Effects on Driving Skills. Clin. Chem. 2013, 59, 478–492. [Google Scholar] [CrossRef] [PubMed]
Organ | Weight (g) a | ρ | Q b | fVwt | fVnl | fVph | fVew | fViw | Reference |
---|---|---|---|---|---|---|---|---|---|
LBM | [25] | ||||||||
Adipose | 0.9196 | 0.085 | 0.286 | 0.609 | 0.005 | 0.135 | 0.017 | [26,27,28,29,30,31] | |
Bone | 1.176 | 0.05 | 0.45 | 0.074 | 0.0011 | 0.1 | 0.346 | [26,31,32] | |
Brain | 1.04 | 0.12 | 0.78 | 0.051 | 0.0565 | 0.162 | 0.62 | [26,31] | |
Gut | 1100 | 1.045 | 0.17 | 0.76 | 0.0487 | 0.0163 | 0.282 | 0.475 | [26,31] |
Muscle | 1.06 | 0.12 | 0.71 | 0.022 | 0.0072 | 0.118 | 0.63 | [26,27,31] | |
Heart | 1.055 | 0.05 | 0.78 | 0.0115 | 0.0166 | 0.32 | 0.456 | [26,31] | |
Spleen | 1.06 | 0.03 | 0.79 | 0.0201 | 0.0198 | 0.207 | 0.579 | [26,31] | |
Kidney | 1.035 | 0.17 | 0.76 | 0.0207 | 0.0162 | 0.273 | 0.483 | [26,31] | |
Lungs | 1.05 | 1.0 | 0.78 | 0.003 | 0.009 | 0.336 | 0.446 | [26,31] | |
Liver | 1.054 | 0.27 | 0.73 | 0.0348 | 0.0252 | 0.161 | 0.573 | [26,31] | |
Rest | 0.065 | 0.70 ca | 0.02 c | 0.01 c | 0.652 | 1.581 | [31] | ||
Blood | [33,34] | ||||||||
Plasma | 0.95 | 0.0032 | 0.0021 | [34] | |||||
Venous | [35] | ||||||||
Artery |
Parameter | Definition | Value | Reference |
---|---|---|---|
Dose (mg) | Standard joint weighing 0.32 g containing 14.14% THC | 45.2 | [37,38] |
MW (g) | Molecular weight (C21H30O2) | 314.5 | [39] |
Log P | Octanol-water partition coefficient | 6.97 | [40] |
BP | Blood-to-plasma ratio | 0.667 | [41] |
pKa | Dissociation constant | 10.6 | [42] |
fup | Unbound fraction in plasma | 0.0022 | [43] |
fumic | Unbound fraction in liver microsomes | 0.04 | [44] |
VmaxCYP2C9 (pmol/min/mg) | CYP2C9 maximum reaction rate | 624 | [44] |
KmCYP2C9 (μmol/L) | CYP2C9 concentration at half maximum reaction rate | 0.07 | [44] |
VmaxCYP3A4 (pmol/min/mg) | CYP3A4 maximum reaction rate | 4905 | [44] |
KmCYP3A4 (μmol/L) | CYP3A4 concentration at half maximum reaction rate | 5.48 | [44] |
VmaxPGP,BR (μmol/h) | PGP brain maximum reaction rate | 0.0123 | [45] |
KmPGP,BR (μmol/L) | PGP brain concentration at half maximum reaction rate | 49.1 | [45] |
STHC (mg/L) | THC Solubility | 2.8 | [39] |
PSA (Å2) | THC Polar Surface Area | 29.5 | [39] |
HBD | THC Hydrogen Bond Donor | 1 | [39] |
dae (μm) | Aerodynamic diameter of THC smoke particle | 0.39 | [46] |
ρ (g/cm3) | Density of THC smoke particle | 3 | [26] |
χ | Dynamic shape factor of smoke particle | 1.5 | [26] |
fhyg | Hygroscopic growth rate factor | 1.5 a | [47] |
Dose | Study Description | Subjects | Age (year) | Weight (kg) | Purpose | Reference |
---|---|---|---|---|---|---|
Intravenous | ||||||
5 mg/2 min | RD, XO | 11 (100% male) | 18–35 | - | Verification | [85] |
5 mg/2 min | PC, XO | 9 (89% male) | 29.2 (5.2) | 73.7 (10.3) | Verification | [86] |
5 mg/2 min | PC, XO | 9 (89% male) | 25.3 (4.9) | 68.3 (9.6) | Verification | [86] |
5 mg/2 min | - | 8 (100% male) | 24–45 | 64–87 | Verification | [87] |
0.053 mg/kg/2 min | RD, DB, XO | 8 (50% male) | 26–35 | 60 (8)–80 (5) | Training | [88] |
2.5 mg/5 min | DB, PC | 22 (100% male) | 28 (6) | - | Training | [89] |
2.5 mg/5 min | RD, DB, PC | 11 (100% male) | 26.3 (4.2) | - | Training | [90] |
1.6 mg/5 min | P1, SC, OL, 2-periods | 11 (55% male) | 18–40 | 74 | Verification | [91] |
Inhalation (Smoking) * | ||||||
13 mg/6 min | RD, XO | 11 (100% male) | 18–35 | - | Verification | [85] |
12.7 mg/3 min | PC, XO | 9 (89% male) | 29.2 (5.2) | 73.7 (10.3) | Verification | [86] |
13.4 mg/3 min | PC, XO | 9 (89% male) | 25.3 (4.9) | 68.3 (9.6) | Verification | [86] |
15.8 mg, 33.8 mg/11.2 min | RD, DB, LS | 6 (100% male) | 31.3 (29–36) | 77.6 (65–93) | Verification | [92] |
15.3 mg, 30.6 mg, 61.2 mg/6 puffs | RD, CT, PS | 18 (83% male) | 21–45 | - | Verification | [93] |
33 mg/10 min | Two-way, DB, PC | 12 (67% male) | 22 (20–31) | 66 (55–84) | Verification | [94] |
29.3 mg, 49.1 mg, 69.4 mg/22 min | Four-way, RD, DB, PC, XO | 24 (100% male) | 24 (4) | 74 (5) | Training | [95] |
25.6 mg/15 min | DB, XO, PC | 19 (74% male) | 23 (19–38) | 61.5 | Training | [96] |
29.3 mg, 49.1 mg, 69.4 mg/22 min | RD, DB, PC, XO | 24 (100% male) | 24 (4) | - | Training | [97] |
Smoking and lactation * | ||||||
23.18 mg/15 min | Pilot 2–5 mo Postpartum PK study | 8 (100% female) | 18–45 | - | Training and verification | [13] |
45.25 mg/8.7 min | Mommy’s milk study | 50 (100% female) | 22–41 | - | verification | [98] |
Median (Range) | ||||
---|---|---|---|---|
Parameter (Units) | Observed | Predicted | Ratio | AAFE |
AUC (ngh/mL) | 110.5 (33.9–744.4) | 194 (99.2–301.8) | 1.76 | 1.67 |
Cavg (ng/mL) | 27.6 (8.4–186.1) | 48.5 (24.8–75.5) | 1.76 | 1.67 |
Cmax (ng/mL) | 44.7 (12.2–420.3) | 88.7 (55.6–121.1) | 1.98 | 1.93 |
Tmax (h) | 1 (1–2) | 0.8 | 0.8 | |
Infant dose (mcg/kg/d) | 4.1 (1.3–27.9) | 7.3 (3.7–11.3) | 1.78 | 1.68 |
RID (%) | 1.3 (0.4–8.7) | 2.2 (1.1–3.4) | 0.59 | 1.61 |
Breastmilk | Plasma | Infant AUC(0–24 h) (RID) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Joints | Cmax | AUC(0–24 h) | Cavg | Cmax | AUC(0–24 h) | MP Ratio | 1 mo | 2 mo | 6 mo | 12 mo |
/day | ng/mL | ng·hr/mL | ng/mL | ng/mL | ng·hr/mL | ng·hr/mL (%) | ng·hr/mL (%) | ng·hr/mL (%) | ng·hr/mL (%) | |
1 | 155 | 924.9 | 38.5 | 69.9 | 273.4 | 3.4 | 0.59 (0.74) | 0.49 (0.88) | 0.49 (0.74) | 0.26 (0.48) |
2 | 184 | 1554 | 64.8 | 78.6 | 444.6 | 3.5 | 0.98 (0.63) | 0.81 (0.74) | 0.80 (0.63) | 0.48 (0.41) |
3 | 212 | 2144 | 89.3 | 89.1 | 636.4 | 3.4 | 1.02 (0.57) | 0.84 (0.68) | 0.84 (0.57) | 0.54 (0.37) |
4 | 253 | 2876 | 119.8 | 97.5 | 806.5 | 3.6 | 1.75 (0.58) | 1.49 (0.67) | 1.49 (0.58) | 0.77 (0.38) |
5 | 268 | 3223 | 134.3 | 110 | 968.5 | 3.3 | 1.57 (0.52) | 1.26 (0.62) | 1.32 (0.52) | 0.74 (0.34) |
6 | 309 | 3996 | 166.5 | 120 | 1181 | 3.4 | 1.85 (0.54) | 1.50 (0.64) | 1.41 (0.54) | 0.92 (0.35) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shenkoya, B.; Yellepeddi, V.; Mark, K.; Gopalakrishnan, M. Predicting Maternal and Infant Tetrahydrocannabinol Exposure in Lactating Cannabis Users: A Physiologically Based Pharmacokinetic Modeling Approach. Pharmaceutics 2023, 15, 2467. https://doi.org/10.3390/pharmaceutics15102467
Shenkoya B, Yellepeddi V, Mark K, Gopalakrishnan M. Predicting Maternal and Infant Tetrahydrocannabinol Exposure in Lactating Cannabis Users: A Physiologically Based Pharmacokinetic Modeling Approach. Pharmaceutics. 2023; 15(10):2467. https://doi.org/10.3390/pharmaceutics15102467
Chicago/Turabian StyleShenkoya, Babajide, Venkata Yellepeddi, Katrina Mark, and Mathangi Gopalakrishnan. 2023. "Predicting Maternal and Infant Tetrahydrocannabinol Exposure in Lactating Cannabis Users: A Physiologically Based Pharmacokinetic Modeling Approach" Pharmaceutics 15, no. 10: 2467. https://doi.org/10.3390/pharmaceutics15102467
APA StyleShenkoya, B., Yellepeddi, V., Mark, K., & Gopalakrishnan, M. (2023). Predicting Maternal and Infant Tetrahydrocannabinol Exposure in Lactating Cannabis Users: A Physiologically Based Pharmacokinetic Modeling Approach. Pharmaceutics, 15(10), 2467. https://doi.org/10.3390/pharmaceutics15102467