Caco-2 Cell Line Standardization with Pharmaceutical Requirements and In Vitro Model Suitability for Permeability Assays
Abstract
:1. Introduction
2. General Caco-2 Validation Requirements in the Pharmaceutical Industry
3. Cytotoxicity Analysis of Model Compounds
4. Cultivation and Maintenance of the Caco-2 Cell Line
4.1. Characteristics and Origin of the Caco-2 Cell Line
Organization Name | Caco-2 Cell Line Catalog Number | Growth Medium [Original Protocol] | Incubation Conditions | Subject of Scientific Research |
---|---|---|---|---|
American Type Culture Collection (ATCC) | HTB-37™ | Eagle’s Minimum Essential Medium with fetal bovine serum (20% final concentration) | 95% Air, 5% CO2; 37 °C | |
European Collection of Authenticated Cell Cultures (ECACC) | 86010202 | EMEM (EBSS) with 2 mM glutamine, 1% non-essential amino acids (NEAAs), and 10% fetal bovine serum (FBS) | 95% Air, 5% CO2; 37 °C | |
Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ) | ACC 169 | 80% MEM (with Earle’s salts) with 20% heat-inactivated FBS and 1× NEAA | 95% Air, 5% CO2; 37 °C |
4.2. General Conditions for the Cultivation of the Caco-2 Cell Line
4.3. Number of Passages of the Caco-2 Cell Line
5. Caco-2 Monolayer Suitability
5.1. Polarization of Caco-2 Cells on Tissue Culture Inserts
5.2. Permeability Tests across the Caco-2 Monolayer
6. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ATCC | American Type Culture Collection |
A-B | Apical-t-o-basolateral |
B-A | Basolateral-to-apical |
BA | Bioavailability |
BCS | Biopharmaceutics Classification System |
DMEM | Dulbecco’s Modified Eagle Medium |
DSMZ | Deutsche Sammlung von Mikroorganismen und Zellkulturen |
EBSS | Earle’s Balanced Salt Solution |
ECACC | European Collection of Authenticated Cell Cultures |
EMA | European Medicines Agency |
EMEM | Eagle’s minimum essential medium |
fa | % fraction dose absorbed in humans [%] |
FBS | Fetal bovine serum |
FDA | Food and Drug Administration |
HEPES | 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid |
HP-IS | High-permeability internal standard |
LP-IS | Low-permeability internal standard |
MES | 2-(N-morpholino)ethanesulfonic acid |
MTT test | 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide test |
NEAA | Non-essential amino acids |
Papp | The apparent permeability coefficients [cm/s] |
PBS | Phosphate Buffered Saline |
TEER | Transepithelial electrical resistance |
References
- Alqahtani, M.S.; Kazi, M.; Alsenaidy, M.A.; Ahmad, M.Z. Advances in Oral Drug Delivery. Front. Pharmacol. 2021, 12, 618411. [Google Scholar] [CrossRef] [PubMed]
- Hua, S. Advances in Oral Drug Delivery for Regional Targeting in the Gastrointestinal Tract—Influence of Physiological, Pathophysiological and Pharmaceutical Factors. Front. Pharmacol. 2020, 11, 524. [Google Scholar] [CrossRef] [PubMed]
- Lou, J.; Duan, H.; Qin, Q.; Teng, Z.; Gan, F.; Zhou, X.; Zhou, X. Advances in Oral Drug Delivery Systems: Challenges and Opportunities. Pharmaceutics 2023, 15, 484. [Google Scholar] [CrossRef]
- Pond, S.M.; Tozer, T.N. First-pass elimination. Basic concepts and clinical consequences. Clin. Pharmacokinet. 1984, 9, 1–25. [Google Scholar] [CrossRef]
- Doherty, M.M.; Pang, K.S. First-pass effect: Significance of the intestine for absorption and metabolism. Drug Chem. Toxicol. 1997, 20, 329–344. [Google Scholar] [CrossRef] [PubMed]
- Murakami, T. Absorption sites of orally administered drugs in the small intestine. Expert Opin. Drug Discov. 2017, 12, 1219–1232. [Google Scholar] [CrossRef]
- Dahan, A.; Miller, J.M. The solubility-permeability interplay and its implications in formulation design and development for poorly soluble drugs. AAPS J. 2012, 14, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Lennernas, H. Modeling gastrointestinal drug absorption requires more in vivo biopharmaceutical data: Experience from in vivo dissolution and permeability studies in humans. Curr. Drug Metab. 2007, 8, 645–657. [Google Scholar] [CrossRef]
- Amidon, G.L.; Lennernäs, H.; Shah, V.P.; Crison, J.R. A Theoretical Basis for a Biopharmaceutic Drug Classification: The Correlation of in Vitro Drug Product Dissolution and in Vivo Bioavailability. Pharm. Res. 1995, 12, 413–420. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency (EMA). ICH M9 Guideline on Biopharmaceutics Classification System-Based Biowaivers. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/ich-m9-biopharmaceutics-classification-system-based-biowaivers-step-5_en.pdf (accessed on 10 February 2020).
- U.S. Food and Drug Administration (FDA). Waiver of In Vivo Bioavailability and Bioequivalence Studies for Immediate-Release Solid Oral Dosage Forms Based on a Biopharmaceutics Classification System Guidance for Industry. Available online: https://www.fda.gov/media/148472/download (accessed on 12 May 2021).
- Fogh, J.; Fogh, J.M.; Orfeo, T. One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice. J. Natl. Cancer Inst. 1977, 59, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, I.; Raub, T.; Borchardt, R. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 1989, 96, 736–749. [Google Scholar] [CrossRef]
- Engle, M.J.; Goetz, G.S.; Alpers, D.H. Caco-2 cells express a combination of colonocyte and enterocyte phenotypes. J. Cell. Physiol. 1998, 174, 362–369. [Google Scholar] [CrossRef]
- Walter, E.; Kissel, T. Heterogeneity in the human intestinal cell line Caco-2 leads to differences in transepithelial transport. Eur. J. Pharm. Sci. 1995, 3, 215–230. [Google Scholar] [CrossRef]
- Lechanteur, A.; Almeida, A.; Sarmento, B. Elucidation of the impact of cell culture conditions of Caco-2 cell monolayer on barrier integrity and intestinal permeability. Eur. J. Pharm. Biopharm. 2017, 119, 137–141. [Google Scholar] [CrossRef]
- Tavelin, S.; Gråsjö, J.; Taipalensuu, J.; Ocklind, G.; Artursson, P.; Wise, C. Applications of Epithelial Cell Culture in Studies of Drug Transport. In Methods in Molecular Medicine; Humana Press: Totowa, NJ, USA, 2002; Volume 188, pp. 233–272. [Google Scholar]
- Hubatsch, I.; E Ragnarsson, E.G.; Artursson, P. Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nat. Protoc. 2007, 2, 2111–2119. [Google Scholar] [CrossRef] [PubMed]
- Volpe, D.A.; Faustino, P.J.; Ciavarella, A.B.; Asafu-Adjaye, E.B.; Ellison, C.D.; Yu, L.X.; Hussain, A.S. Classification of Drug Permeability with a Caco-2 Cell Monolayer Assay. Clin. Res. Regul. Aff. 2007, 24, 39–47. [Google Scholar] [CrossRef]
- Yamashita, S.; Furubayashi, T.; Kataoka, M.; Sakane, T.; Sezaki, H.; Tokuda, H. Optimized conditions for prediction of intestinal drug permeability using Caco-2 cells. Eur. J. Pharm. Sci. 2000, 10, 195–204. [Google Scholar] [CrossRef]
- Bonati, M.; Latini, R.; Galletti, F.; Young, J.F.; Tognoni, G.; Garattini, S. Caffeine disposition after oral doses. Clin. Pharmacol. Ther. 1982, 32, 98–106. [Google Scholar] [CrossRef]
- Jamali, F.; Brocks, D.R. Clinical Pharmacokinetics of Ketoprofen and Its Enantiomers. Clin. Pharmacokinet. 1990, 19, 197–217. [Google Scholar] [CrossRef]
- Davies, N.M.; Anderson, K.E. Clinical Pharmacokinetics of Naproxen. Clin. Pharmacokinet. 1997, 32, 268–293. [Google Scholar] [CrossRef]
- Palm, K.; Stenberg, P.; Luthman, K.; Artursson, P. Polar Molecular Surface Properties Predict the Intestinal Absorption of Drugs in Humans. Pharm. Res. 1997, 14, 568–571. [Google Scholar] [CrossRef]
- George, C.F.; Castleden, M. Propranolol absorption. Br. Med. J. 1977, 1, 47. [Google Scholar] [CrossRef]
- Skolnik, S.; Lin, X.; Wang, J.; Chen, X.-H.; He, T.; Zhang, B. Towards prediction of in vivo intestinal absorption using a 96-well Caco-2 assay. J. Pharm. Sci. 2010, 99, 3246–3265. [Google Scholar] [CrossRef] [PubMed]
- Gérardin, A.; Dubois, J.P.; Moppert, J.; Geller, L. Absolute bioavailability of carbamazepine after oral administration of a 2% syrup. Epilepsia 1990, 31, 334–338. [Google Scholar] [CrossRef]
- Iorga, A.; Horowitz, B.Z. Phenytoin Toxicity. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK482444/ (accessed on 23 September 2023).
- Kamiya, Y.; Omura, A.; Hayasaka, R.; Saito, R.; Sano, I.; Handa, K.; Ohori, J.; Kitajima, M.; Shono, F.; Funatsu, K.; et al. Prediction of permeability across intestinal cell monolayers for 219 disparate chemicals using in vitro experimental coefficients in a pH gradient system and in silico analyses by trivariate linear regressions and machine learning. Biochem. Pharmacol. 2021, 192, 114749. [Google Scholar] [CrossRef] [PubMed]
- Siddoway, L.A.; Woosley, R.L. Clinical Pharmacokinetics of Disopyramide. Clin. Pharmacokinet. 1986, 11, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Ozawa, M.; Tsume, Y.; Zur, M.; Dahan, A.; Amidon, G.L. Intestinal permeability study of minoxidil: Assessment of minoxidil as a high permeability reference drug for biopharmaceutics classification. Mol. Pharm. 2014, 12, 204–211. [Google Scholar] [CrossRef]
- Gupta, A.K.; Talukder, M.; Venkataraman, M.; Bamimore, M.A. Minoxidil: A comprehensive review. J. Dermatol. Treat. 2021, 33, 1896–1906. [Google Scholar] [CrossRef]
- Shawahna, R.; Rahman, N. Evaluation of the use of partition coefficients and molecular surface properties as predictors of drug absorption: A provisional biopharmaceutical classification of the list of national essential medicines of Pakistan. Daru 2011, 19, 83–99. [Google Scholar] [PubMed]
- Rumore, M.M. Clinical pharmacokinetics of chlorpheniramine. Drug Intell. Clin. Pharm. 1984, 18, 701–707. [Google Scholar] [CrossRef]
- Karlsson, J.; Ungell, A.-L.; Gråsjö, J.; Artursson, P. Paracellular drug transport across intestinal epithelia: Influence of charge and induced water flux. Eur. J. Pharm. Sci. 1999, 9, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Wyss, M.; Kaddurah-Daouk, R.; Chihanga, T.; Ruby, H.N.; Ma, Q.; Bashir, S.; Devarajan, P.; Kennedy, M.A.; Nicholson, J.D.; Edelmann, R.E.; et al. Creatine and creatinine metabolism. Physiol. Rev. 2000, 80, 1107–1213. [Google Scholar] [CrossRef]
- Fagerholm, U.; Borgström, L.; Ahrenstedt, O.; Lennernäs, H. The lack of effect of induced net fluid absorption on the in vivo permeability of terbutaline in the human jejunum. J. Drug Target. 1995, 3, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Morrison, R.A.; Chong, S.; Marino, A.M.; Wasserman, M.A.; Timmins, P.; Moore, V.A.; Irwin, W.J. Suitability of enalapril as a probe of the dipeptide transporter system: In vitro and in vivo studies. Pharm. Res. 1996, 13, 1078–1082. [Google Scholar] [CrossRef] [PubMed]
- Scheen, A.J. Clinical pharmacokinetics of metformin. Clin. Pharmacokinet. 1996, 30, 359–371. [Google Scholar] [CrossRef]
- Sun, Q.; Sever, P. Amiloride: A review. J. Renin Angiotensin Aldosterone Syst. 2020, 21, 1470320320975893. [Google Scholar] [CrossRef]
- Roberts, C.J.C. Clinical pharmacokinetics of ranitidine. Clin. Pharmacokinet. 1984, 9, 211–221. [Google Scholar] [CrossRef]
- Jarc, T.; Novak, M.; Hevir, N.; Rižner, T.L.; Kreft, M.E.; Kristan, K. Demonstrating suitability of the Caco-2 cell model for BCS-based biowaiver according to the recent FDA and ICH harmonised guidelines. J. Pharm. Pharmacol. 2019, 71, 1231–1242. [Google Scholar] [CrossRef]
- Stenberg, P.; Norinder, U.; Luthman, K.; Artursson, P. Experimental and computational screening models for the prediction of intestinal drug absorption. J. Med. Chem. 2001, 44, 1927–1937. [Google Scholar] [CrossRef]
- Tamimi, J.J.I.; Salem, I.I.; Alam, S.M.; Zaman, Q.; Dham, R. Bioequivalence evaluation of two brands of lisinopril tablets (Lisotec and Zestril) in healthy human volunteers. Biopharm. Drug Dispos. 2005, 26, 335–339. [Google Scholar] [CrossRef]
- Adebayo, G.; Mabadeje, A. Chlorothiazide absorption in humans—Possible example of Michaelis-Menten kinetics. Pharmacology 1985, 31, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Tabacova, S.A.; Kimmel, C.A. Enalapril: Pharmacokinetic/dynamic inferences for comparative developmental toxicity: A review. Reprod. Toxicol. 2001, 15, 467–478. [Google Scholar] [CrossRef]
- Ungell, A.-L.B. Caco-2 replace or refine? Drug Discov. Today Technol. 2004, 1, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Ujhelyi, Z.; Fenyvesi, F.; Váradi, J.; Fehér, P.; Kiss, T.; Veszelka, S.; Deli, M.; Vecsernyés, M.; Bácskay, I. Evaluation of cytotoxicity of surfactants used in self-micro emulsifying drug delivery systems and their effects on paracellular transport in Caco-2 cell monolayer. Eur. J. Pharm. Sci. 2012, 47, 564–573. [Google Scholar] [CrossRef] [PubMed]
- Kulthong, K.; Duivenvoorde, L.; Sun, H.; Confederat, S.; Wu, J.; Spenkelink, B.; de Haan, L.; Marin, V.; van der Zande, M.; Bouwmeester, H. Microfluidic chip for culturing intestinal epithelial cell layers: Characterization and comparison of drug transport between dynamic and static models. Toxicol. Vitr. 2020, 65, 104815. [Google Scholar] [CrossRef] [PubMed]
- Krüger, J.; Groß, R.; Conzelmann, C.; Müller, J.A.; Koepke, L.; Sparrer, K.M.; Weil, T.; Schütz, D.; Seufferlein, T.; Barth, T.F.; et al. Drug Inhibition of SARS-CoV-2 Replication in Human Pluripotent Stem Cell-Derived Intestinal Organoids. Cell. Mol. Gastroenterol. Hepatol. 2020, 11, 935–948. [Google Scholar] [CrossRef]
- Al-Sadi, R.M.; Ma, T.Y. IL-1beta causes an increase in intestinal epithelial tight junction permeability. J. Immunol. 2007, 178, 4641–4649. [Google Scholar] [CrossRef] [PubMed]
- Souren, N.Y.; Fusenig, N.E.; Heck, S.; Dirks, W.G.; Capes-Davis, A.; Bianchini, F.; Plass, C. Cell line authentication: A necessity for reproducible biomedical research. EMBO J. 2022, 41, e111307. [Google Scholar] [CrossRef]
- Smetanova, L.; Stetinova, V.; Kholova, D.; Kvetina, J.; Smetana, J.; Svoboda, Z. Caco-2 cells and Biopharmaceutics Classification System (BCS) for prediction of transepithelial transport of xenobiotics (model drug: Caffeine). Neuroendocrinol. Lett. 2009, 30, 101–105. [Google Scholar]
- Yang, Y.; Faustino, P.J.; Volpe, D.A.; Ellison, C.D.; Lyon, R.C.; Yu, L.X. Biopharmaceutics classification of selected beta-blockers: Solubility and permeability class membership. Mol. Pharm. 2007, 4, 608–614. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Sánchez, A.; Borrás-Linares, I.; Barrajón-Catalán, E.; Arráez-Román, D.; González-Álvarez, I.; Ibáñez, E.; Segura-Carretero, A.; Bermejo, M.; Micol, V. Evaluation of the intestinal permeability of rosemary (Rosmarinus officinalis L.) extract polyphenols and terpenoids in Caco-2 cell monolayers. PLoS ONE 2017, 12, e0172063. [Google Scholar] [CrossRef]
- Zheng, Y.; Yang, X.-W. Absorption and transport of pachymic acid in the human intestinal cell line Caco-2 monolayers. Zhong Xi Yi Jie He Xue Bao 2008, 6, 704–710. [Google Scholar] [CrossRef]
- Ma, L.; Yang, X.-W. Absorption of coptisine chloride and berberrubine across human intestinal epithelial by using human Caco-2 cell monolayers. Zhong Xi Yi Jie He Xue Bao 2007, 32, 2523–2527. (In Chinese) [Google Scholar]
- Gonçalves, J.; Castilho, M.; Rosado, T.; Luís, Â.; Restolho, J.; Fernández, N.; Gallardo, E.; Duarte, A.P. In Vitro Study of the Bioavailability and Bioaccessibility of the Main Compounds Present in Ayahuasca Beverage. Molecules 2021, 26, 5555. [Google Scholar] [CrossRef]
- Fang, Y.; Cao, W.; Xia, M.; Pan, S.; Xu, X. Study of Structure and Permeability Relationship of Flavonoids in Caco-2 Cells. Nutrients 2017, 9, 1301. [Google Scholar] [CrossRef]
- Cebadero-Domínguez, O.; Ferrández-Gómez, B.; Sánchez-Ballester, S.; Moreno, J.; Jos, A.; Cameán, A. In vitro toxicity evaluation of graphene oxide and reduced graphene oxide on Caco-2 cells. Toxicol. Rep. 2022, 9, 1130–1138. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Blanco, C.; Juan-García, A.; Juan, C.; Font, G.; Ruiz, M.-J. Alternariol induce toxicity via cell death and mitochondrial damage on Caco-2 cells. Food Chem. Toxicol. 2016, 88, 32–39. [Google Scholar] [CrossRef]
- Ressaissi, A.; Serralheiro, M.L.M. Hydroxycinnamic acid derivatives effect on hypercholesterolemia, comparison with ezetimibe: Permeability assays and FTIR spectroscopy on Caco-2 cell line. Curr. Res. Pharmacol. Drug Discov. 2022, 3, 100105. [Google Scholar] [CrossRef]
- Pires, C.L.; Praça, C.; Martins, P.A.T.; Batista de Carvalho, A.L.M.; Ferreira, L.; Marques, M.P.M.; Moreno, M.J. Re-Use of Caco-2 Monolayers in Permeability Assays-Validation Regarding Cell Monolayer Integrity. Pharmaceutics 2021, 13, 1563. [Google Scholar] [CrossRef]
- Calatayud, M.; Devesa, V.; Vélez, D. Differential toxicity and gene expression in Caco-2 cells exposed to arsenic species. Toxicol. Lett. 2013, 218, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Steffansen, B.; Pedersen, M.D.; Laghmoch, A.M.; Nielsen, C.U. SGLT1-Mediated Transport in Caco-2 Cells Is Highly Dependent on Cell Bank Origin. J. Pharm. Sci. 2017, 106, 2664–2670. [Google Scholar] [CrossRef] [PubMed]
- Dempe, J.S.; Scheerle, R.K.; Pfeiffer, E.; Metzler, M. Metabolism and permeability of curcumin in cultured Caco-2 cells. Mol. Nutr. Food Res. 2012, 57, 1543–1549. [Google Scholar] [CrossRef] [PubMed]
- Popović, B.M.; Gligorijević, N.; Aranđelović, S.; Macedo, A.C.; Jurić, T.; Uka, D.; Mocko-Blažek, K.; Serra, A.T. Cytotoxicity profiling of choline chloride-based natural deep eutectic solvents. RSC Adv. 2023, 13, 3520–3527. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, G.; Kobayashi, M.; Kubota, A.; Narumi, K.; Furugen, A.; Saito, Y.; Satoh, T.; Suzuki, N.; Iseki, K. Analysis of α-Defensin 5 Secretion in Differentiated Caco-2 Cells: Comparison of Cell Bank Origin. Biol. Pharm. Bull. 2021, 44, 275–278, Erratum in Biol. Pharm. Bull. 2022, 45, 552. [Google Scholar] [CrossRef] [PubMed]
- Natoli, M.; Leoni, B.D.; D’agnano, I.; Zucco, F.; Felsani, A. Good Caco-2 cell culture practices. Toxicol. Vitr. 2012, 26, 1243–1246. [Google Scholar] [CrossRef]
- Wu, X.W.; Wang, R.F.; Yuan, M.; Xu, W.; Yang, X.W. Dulbecco’s modified eagle’s medium and minimum essential medium—Which one is more preferred for establishment of Caco-2 cell monolayer model used in evaluation of drug absorption? Pharm. Int. J. Pharm. Sci. 2013, 68, 805–810. [Google Scholar]
- Li, N.; Lewis, P.; Samuelson, D.; Liboni, K.; Neu, J. Glutamine regulates Caco-2 cell tight junction proteins. Am. J. Physiol. Liver Physiol. 2004, 287, G726–G733. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Chen, J.-K.; Kuo, W.-T. Glutamine induces remodeling of tight junctions in Caco-2 colorectal cancer cell. Med. Oncol. 2022, 40, 32. [Google Scholar] [CrossRef]
- Costa, C.; Huneau, J.-F.; Tomé, D. Characteristics of L-glutamine transport during Caco-2 cell differentiation. Biochim. Biophys. Acta 2000, 1509, 95–102. [Google Scholar] [CrossRef]
- DeMarco, V.G.; Li, N.; Thomas, J.; West, C.M.; Neu, J. Research Communication: Glutamine and barrier function in cultured Caco-2 epithelial cell monolayers. J. Nutr. 2003, 133, 2176–2179. [Google Scholar] [CrossRef] [PubMed]
- Press, B. Optimization of the Caco-2 permeability assay to screen drug compounds for intestinal absorption and efflux. Methods Mol. Biol. 2011, 763, 139–154. [Google Scholar] [CrossRef] [PubMed]
- Pohl, C.; Szczepankiewicz, G.; Liebert, U.G. Analysis and optimization of a Caco-2 cell culture model for infection with human norovirus. Arch. Virol. 2022, 167, 1421–1431. [Google Scholar] [CrossRef] [PubMed]
- Laska, D.A.; Houchins, J.O.; Pratt, S.E.; Horn, J.; Xia, X.; Hanssen, B.R.; Williams, D.C.; Dantzig, A.H.; Lindstrom, T. Characterization and application of a vinblastine-selected CACO-2 cell line for evaluation of p-glycoprotein. Vitr. Cell. Dev. Biol. Anim. 2002, 38, 401–410. [Google Scholar] [CrossRef]
- European Medicines Agency (EMA). ICH Guideline M10 on Bioanalytical Method Validation and Study Sample Analysis. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/ich-guideline-m10-bioanalytical-method-validation-step-5_en.pdf (accessed on 25 July 2022).
- Briske-Anderson, M.J.; Finley, J.W.; Newman, S.M. The influence of culture time and passage number on the morphological and physiological development of Caco-2 cells. Proc. Soc. Exp. Biol. Med. 1997, 214, 248–257. [Google Scholar] [CrossRef]
- Siissalo, S.; Laitinen, L.; Koljonen, M.; Vellonen, K.-S.; Kortejärvi, H.; Urtti, A.; Hirvonen, J.; Kaukonen, A.M. Effect of cell differentiation and passage number on the expression of efflux proteins in wild type and vinblastine-induced Caco-2 cell lines. Eur. J. Pharm. Biopharm. 2007, 67, 548–554. [Google Scholar] [CrossRef]
- Farsani, T.M.; Motevaseli, E.; Neyazi, N.; Khorramizadeh, M.R.; Zafarvahedian, E.; Ghahremani, M.H. Effect of Passage Number and Culture Time on the Expression and Activity of Insulin-Degrading Enzyme in Caco-2 Cells. Iran. Biomed. J. 2018, 22, 70–75. [Google Scholar]
- Yu, H.; Cook, T.J.; Sinko, P.J. Evidence for diminished functional expression of intestinal transporters in Caco-2 cell monolayers at high passages. Pharm. Res. 1997, 14, 757–762. [Google Scholar] [CrossRef]
- Lee, J.B.; Zgair, A.; Taha, D.A.; Zang, X.; Kagan, L.; Kim, T.H.; Kim, M.G.; Yun, H.-Y.; Fischer, P.M.; Gershkovich, P. Quantitative analysis of lab-to-lab variability in Caco-2 permeability assays. Eur. J. Pharm. Biopharm. 2017, 114, 38–42. [Google Scholar] [CrossRef]
- Senarathna, S.M.; Crowe, A. The influence of passage number for Caco2 cell models when evaluating P-gp mediated drug transport. Pharm. Int. J. Pharm. Sci. 2015, 70, 798–803. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Li, X.; Gong, W.; Xie, X.; Yang, Y.; Zhong, W.; Zheng, A. In Vitro Evaluation of Absorption Characteristics of Peramivir for Oral Delivery. Eur. J. Drug Metab. Pharmacokinet. 2016, 42, 757–765. [Google Scholar] [CrossRef]
- Verhoeckx, K.; Cotter, P.; Lopez-Exposito, I.; Kleiveland, C.; Tor, L.; Mackie, A.; Requena, T.; Swiatecka, D.; Wichers, H. The Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Hiebl, V.; Schachner, D.; Ladurner, A.; Heiss, E.H.; Stangl, H.; Dirsch, V.M. Caco-2 Cells for Measuring Intestinal Cholesterol Transport—Possibilities and Limitations. Biol. Proced. Online 2020, 22, 7. [Google Scholar] [CrossRef] [PubMed]
- Uchida, M.; Fukazawa, T.; Yamazaki, Y.; Hashimoto, H.; Miyamoto, Y. A modified fast (4 day) 96-well plate Caco-2 permeability assay. J. Pharmacol. Toxicol. Methods 2009, 59, 39–43. [Google Scholar] [CrossRef]
- Marino, A.M.; Yarde, M.; Patel, H.; Chong, S.; Balimane, P.V. Validation of the 96 well Caco-2 cell culture model for high throughput permeability assessment of discovery compounds. Int. J. Pharm. 2005, 297, 235–241. [Google Scholar] [CrossRef]
- Ferruzza, S.; Rossi, C.; Scarino, M.L.; Sambuy, Y. A protocol for differentiation of human intestinal Caco-2 cells in asymmetric serum-containing medium. Toxicol. Vitr. 2012, 26, 1252–1255. [Google Scholar] [CrossRef] [PubMed]
- Marziano, M.; Tonello, S.; Cantù, E.; Abate, G.; Vezzoli, M.; Rungratanawanich, W.; Serpelloni, M.; Lopomo, N.; Memo, M.; Sardini, E.; et al. Monitoring Caco-2 to enterocyte-like cells differentiation by means of electric impedance analysis on printed sensors. Biochim. Biophys. Acta 2019, 1863, 893–902. [Google Scholar] [CrossRef]
- Chen, S.; Einspanier, R.; Schoen, J. Transepithelial electrical resistance (TEER): A functional parameter to monitor the quality of oviduct epithelial cells cultured on filter supports. Histochem. Cell Biol. 2015, 144, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Karaküçük, A.; Taşhan, E.; Öztürk, N.; Çelebi, N. In Vitro Caco-2 Cell Permeability Studies of Ziprasidone Hydrochloride Monohydrate Nanocrystals. Turk. J. Pharm. Sci. 2021, 18, 223–227. [Google Scholar] [CrossRef]
- Galkin, A.; Pakkanen, J.; Vuorela, P. Development of an automated 7-day 96-well Caco-2 cell culture model. Pharm. Int. J. Pharm. Sci. 2008, 63, 464–469. [Google Scholar] [CrossRef]
- Challinor, V.L.; Stuthe, J.M.U.; Parsons, P.G.; Lambert, L.K.; Lehmann, R.P.; Kitching, W.; de Voss, J.J. Structure and bioactivity of steroidal saponins isolated from the roots of Chamaelirium luteum (false unicorn). J. Nat. Prod. 2012, 75, 1469–1479. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, B.; Kolli, A.R.; Esch, M.B.; Abaci, H.E.; Shuler, M.L.; Hickman, J.J. TEER measurement techniques for in vitro barrier model systems. J. Assoc. Lab. Autom. 2015, 20, 107–126. [Google Scholar] [CrossRef]
- Nekkanti, V.; Venkatesan, N.; Wang, Z.; Betageri, G.V. Improved oral bioavailability of valsartan using proliposomes: Design, characterization andin vivopharmacokinetics. Drug Dev. Ind. Pharm. 2015, 41, 2077–2088. [Google Scholar] [CrossRef] [PubMed]
- Waaler, P.; Graffner, C.; Müller, B. Biopharmaceutical studies of naftidrofuryl in hydrocolloid matrix tablets. Int. J. Pharm. 1992, 87, 229–237. [Google Scholar] [CrossRef]
- Lee, K.-J.; Johnson, N.; Castelo, J.; Sinko, P.J.; Grass, G.; Holme, K.; Lee, Y.-H. Effect of experimental pH on the in vitro permeability in intact rabbit intestines and Caco-2 monolayer. Eur. J. Pharm. Sci. 2005, 25, 193–200. [Google Scholar] [CrossRef]
- Volpe, D.A. Method Suitability of Caco-2 Cell Models for Drug Permeability Classification. Food and Drug Administration. Available online: https://cersi.umd.edu/sites/cersi.umd.edu/files/6-VOLPE_Method_Suitability.pdf (accessed on 6 December 2021).
- Vuletić, L.; Khan, M.Z.I.; Špoljarić, D.; Radić, M.; Cetina-Čižmek, B.; Filipović-Grčić, J. Development of a Clinically Relevant Dissolution Method for Metaxalone Immediate Release Formulations Based on an IVIVC Model. Pharm. Res. 2018, 35, 163. [Google Scholar] [CrossRef] [PubMed]
- Borkar, N.; Chen, Z.; Saaby, L.; Müllertz, A.; Håkansson, A.E.; Schönbeck, C.; Yang, M.; Holm, R.; Mu, H. Apomorphine and its esters: Differences in Caco-2 cell permeability and chylomicron affinity. Int. J. Pharm. 2016, 509, 499–506. [Google Scholar] [CrossRef] [PubMed]
Permeability Group | BCS Model Drug | Papp 1 [×10−6 cm/s] | fa 2 [%] | Reference |
---|---|---|---|---|
High-Permeability (fa ≥ 85%) | Antipyrine | 76.71 ± 3.59 | 100 | [19] 3, [20] 4 |
Caffeine | 44.29 ± 5.12 | 99 | [19] 3, [21] 4 | |
Ketoprofen | 26.47 ± 4.61 | 95 | [19] 3, [22] 4 | |
Naproxen | 60.06 ± 2.12 | 99 | [19] 3, [23] 4 | |
Theophylline | 50.90 ± 3.61 | 100 | [19] 3, [20] 4 | |
Metoprolol | 37.33 ± 3.82 | 102 | [19] 3, [24] 4 | |
Propranolol | 30.76 ± 1.91 | 100 | [19] 3, [25] 4 | |
Carbamazepine | 41.75 | 98 | [26] 3, [27] 4 | |
Phenytoin | 32.7 | 90 | [26] 3, [28] 4 | |
Disopyramide | 14.4 ± 2.6 | 90 | [29] 3, [30] 4 | |
Minoxidil | 13.0 ± 2 | 95 | [31] 3, [32] 4 | |
Moderate-Permeability (fa = 50–84%) | Chlorpheniramine | 16.0 | 50 | [33] 3, [34] 4 |
Creatinine | 7.70 ± 0.34 | 80 | [35] 3, [36] 4 | |
Terbutaline | 2.38 | 60 | [26] 3, [37] 4 | |
Hydrochlorothiazide | 1.81 | 70 | [26] 3, [20] 4 | |
Enalapril | 3.5 ± 0.5 | 60 | [38] 3,4 | |
Furosemide | 1.29 | 60 | [26] 3, [20] 4 | |
Metformin | 7.74 | 60 | [26] 3, [39] 4 | |
Amiloride | 4.29 | 50 | [26] 3, [40] 4 | |
Atenolol | 1.64 | 50 | [26] 3, [20] 4 | |
Ranitidine | 2.51 | 50 | [26] 3, [41] 4 | |
Low-Permeability (fa < 50%) | Famotidine | 0.61 ± 0.11 | 45 | [42] 3,4 |
Nadolol | 0.62 ± 0.18 | 35 | [19] 3, [20] 4 | |
Sulpride | 0.39 ± 0.054 | 36 | [43] 3, [24] 4 | |
Lisinopril | 0.66 | 29 | [26] 3, [44] 4 | |
Acyclovir | 0.74 ± 0.13 | 23 | [42] 3,4 | |
Foscarnet | 0.35 ± 0.11 | 17 | [35] 3, [24] 4 | |
Mannitol | 0.19 ± 0.014 | 26 | [43] 3, [24] 4 | |
Chlorothiazide | 0.71 ± 0.05 | 20 | [42] 3, [45] 4 | |
Polyethylene glycol 400 | no data | 0 | - | |
Enalaprilat | 0.27 ± 0.05 | 10 | [42] 3, [46] 4 | |
Zero-Permeability | FITC-Dextran | n/a | ||
Polyethylene glycol 400 | n/a | |||
Lucifer yellow | n/a | |||
Inulin | n/a | |||
Lactulose | n/a | |||
Efflux Substrates | Digoxin | n/a | ||
Paclitaxel | n/a | |||
Quinidine | n/a | |||
Vinblastine | n/a |
BCS Model Drug | Time Exposed [h] | Concentration [µM] | Caco-2 Cell Viability [%] | Reference |
---|---|---|---|---|
Antipyrine | 24 | 25–500 | ≥100 | [49] |
Ketoprofen | 24 | 25–300 | ≥100 | |
Digoxin | 24 | 5 | ≥100 | |
50 or high | ≤75 | |||
Famotidine | Not available | 80–1250 | ≥90% | [50] |
5000 or high | ≤60 |
Purpose of the Study | Number of Passage | Reference |
---|---|---|
Validation of 96-well Caco-2 screening assay for predicting in vivo intestinal absorption in the drug discovery stage | 19 | [26] |
Intestinal permeability study of Minoxidil | 39–40 | [31] |
In vitro evaluation of absorption characteristics of Peramivir for oral delivery | 33–35 | [85] |
Variety of experimental systems to evaluate the suitability of enalapril as a model compound | 25–35 | [38] |
Demonstrating experimental suitability of the Caco-2 cell model for BCS-based biowaiver | 47 | [42] |
Purpose of the Study | Cell Culture Plates | Seeding Density [cm/s] | Time Differentiation [days] | TEER [Ohm × cm2] | Reference |
---|---|---|---|---|---|
Evaluation of the cytotoxic effect and permeability of ziprasidone hydrochloride monohydrate | 6-well plate | 7 × 10−5 | 21 | >300 | [93] |
Permeability tests in a 12-well plate as a reference for a new rapid 96-well protocol | 12-well plate | 0.75 × 10−5 | 21 | 600 ± 70 | [94] |
Assessment of permeability of Chamaelirium luteum (false unicorn) open-chain steroidal saponins | 24-well plate | 7 × 10−5 | 21 | >300 | [95] |
Validation of Transwell-96 plates for high-permeability screening | 96-well plate | 8 × 10−5 | 21 | >400 | [89] |
Purpose of the Study | Culture Plate | Transport Buffer | Volume of Apical Compartment [mL] | Volume of Receiver Compartment [mL] | Time Transport [h] | Time Point [min] | Sample Volume [mL] | Reference |
---|---|---|---|---|---|---|---|---|
Demonstrating suitability of the Caco-2 cell model for BCS-based biowaiver (R) | no data | HBSS pH = 7.4 | 0.4 | 0.8 | 3 | 30, 60, 90, 180 | 0.07 | [42] |
Classification of metaxalone into BCS group (R) | 12-well plate | HEPES pH = 7.4 | 0.5 | 1.5 | 2 | 20, 40, 60 or 60, 40, 80 | 0.2 | [101] |
Permeability across Caco-2 of apomorphine (S) | 48-well plate | HBSS pH = 6.5 (aplical) HBSS pH = 7.5 (receiver) | 0.5 | 1.0 | 3 | 5, 10, 15, 30, 45, 60, 90, 120, 180 | 0.1 | [102] |
Intestinal permeability study of Minoxidil (S) | 12-well plate | HBSS, HEPES, MES | 0.5 | 1.5 | 2 | 15, 30, 45, 60, 90, 120 | 0.1 | [31] |
Experimental Stage | Pharmaceutical Requirements | Main Points |
---|---|---|
| Proof of cell origin required |
|
| The test substance concentrations should be determined (highest non-cytotoxic concentration) |
|
| Internal procedures for cultivation and maintenance of the Caco-2 cell line |
|
| The Caco-2 culture conditions should be determined (number of passages) |
|
| Integrity of Caco-2 monolayer should be confirmed using TEER measures |
|
| Correlation between Papp and fa for selected model drugs |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kus, M.; Ibragimow, I.; Piotrowska-Kempisty, H. Caco-2 Cell Line Standardization with Pharmaceutical Requirements and In Vitro Model Suitability for Permeability Assays. Pharmaceutics 2023, 15, 2523. https://doi.org/10.3390/pharmaceutics15112523
Kus M, Ibragimow I, Piotrowska-Kempisty H. Caco-2 Cell Line Standardization with Pharmaceutical Requirements and In Vitro Model Suitability for Permeability Assays. Pharmaceutics. 2023; 15(11):2523. https://doi.org/10.3390/pharmaceutics15112523
Chicago/Turabian StyleKus, Marta, Izabela Ibragimow, and Hanna Piotrowska-Kempisty. 2023. "Caco-2 Cell Line Standardization with Pharmaceutical Requirements and In Vitro Model Suitability for Permeability Assays" Pharmaceutics 15, no. 11: 2523. https://doi.org/10.3390/pharmaceutics15112523
APA StyleKus, M., Ibragimow, I., & Piotrowska-Kempisty, H. (2023). Caco-2 Cell Line Standardization with Pharmaceutical Requirements and In Vitro Model Suitability for Permeability Assays. Pharmaceutics, 15(11), 2523. https://doi.org/10.3390/pharmaceutics15112523