Antimicrobial Preservatives for Protein and Peptide Formulations: An Overview
Abstract
:1. Introduction
2. Selection of an Antimicrobial Preservative
2.1. Antimicrobial Activity of Preservatives
2.1.1. Phenolic Derivatives
2.1.2. Alcohols
2.1.3. Quaternary Ammonium Compounds
2.1.4. Parabens
2.1.5. Benefits of Combining Preservatives
2.1.6. Effects of Excipients on the Antimicrobial Activity of Preservatives
2.2. Antimicrobial Efficacy Tests
2.2.1. Test for Efficacy of Antimicrobial Preservatives by Ph.Eur.
2.2.2. Antimicrobial Effectiveness Testing by USP
2.2.3. Preservatives-Effectiveness Tests by JP
2.3. Physico-Chemical Properties of Antimicrobial Preservatives
2.3.1. Concentration Range of Antimicrobial Preservatives
Preservative | Typically Used AP Conc. /% w∙v−1 | MIC/μg∙mL−1 | |
---|---|---|---|
Benzalkonium chloride | 0.3–0.6 | P. aeruginosa | 8.3 × 10−2 |
S. aureus | 3.5 × 10−3 | ||
E. coli | 4.4 × 10−2 | ||
Benzyl alcohol | 83.2–101.7 | P. aeruginosa | 18.5 |
S. aureus | 0.1 | ||
C. albicans | 23.1 | ||
A. niger | 46.2 | ||
E. coli | 1.5 | ||
Chlorobutanol | up to 28.2 | Gram-positive | 3.7 |
Gram-negative | 5.6 | ||
Yeast | 14.1 | ||
Fungi | 28.2 | ||
m-Cresol | 13.9–27.7 | P. aeruginosa | n/a |
S. aureus | n/a | ||
A. niger | n/a | ||
C. albicans | n/a | ||
Methylparaben | 5.9–11.8 | P. aeruginosa | 26.3 |
S. aureus | 13.1 | ||
C. albicans | 13.1 | ||
A. niger | 6.6 | ||
E. coli | 6.6 | ||
Phenol | 95.6–141.3 | P. aeruginosa | 19.1 |
S. aureus | 10.6 | ||
A. niger | 3.3 | ||
E. coli | 26.7 | ||
Phenoxyethanol | 36.2–72.4 | P. aeruginosa | 23.2 |
S. aureus | 61.5 | ||
C. albicans | 39.1 | ||
A. niger | 23.9 | ||
E. coli | 26.1 | ||
Propylparaben | 0.6–1.1 | P. aeruginosa | >5.5 |
S. aureus | 2.8 | ||
C. albicans | 1.4 | ||
A. niger (ATCC 9642) | 2.8 | ||
E. coli (ATCC 9637) | 2.8 |
2.3.2. pH
2.3.3. Solubility
2.3.4. Toxicity
Benzalkonium Chloride
m-Cresol
Parabens
Benzyl Alcohol
Phenoxyethanol
Summary
2.3.5. Allergenicity
2.4. Interactions of Preservatives with Excipients
2.5. Incompatibilities with Packaging Material and Consumables
2.5.1. Incompatibilities with Rubber Stoppers
2.5.2. Incompatibilities with Plastic Container
2.5.3. Incompatibilities with Consumables (Flexible Tubes)
2.5.4. Summary
2.6. Stability and the Fate of Storage Conditions of Antimicrobial Preservatives
2.6.1. Benzalkonium Chloride
2.6.2. Benzyl Alcohol
2.6.3. Chlorobutanol
2.6.4. m-Cresol
2.6.5. Parabens
2.6.6. Phenol
2.6.7. Phenoxyethanol
2.7. Antimicrobial Preservatives Depending on the Administration Route
2.8. Limitations for the Use of Antimicrobial Preservatives
3. Interactions between Antimicrobial Preservatives and Biological Compounds
3.1. Protein Stability in Biopharmaceuticals
3.2. Studies about Protein—Preservative Interactions and Peptide-Preservative Interactions
3.2.1. Peptide—Preservative Interactions
3.2.2. Protein–Preservative Interactions
3.2.3. Antibody—Preservative Interactions
3.3. Comparison of Liquid and Lyophilized Multi-Dose Biological Formulations Regarding the Biological Compound’s Stability and Microbial Protection
3.4. How to Avoid Preservative-Induced Protein Destabilization and Aggregation?
4. Outlook: Alternatives to Commonly Used Preservatives
5. Licensed Multi-Dose Protein and Peptide Therapeutics
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AG | Alkyl glycosides |
AP | Antimicrobial preservative |
API | Active pharmaceutical ingredient |
BA | Benzyl alcohol |
BAK | Benzalkonium chloride |
CB | Chlorobutanol |
CFU | Colony forming unit |
CMC | Critical micelle concentration |
CR | m-Cresol |
EMA | European Medicines Agency |
FDA | Food and Drug Administration |
JP | Japanese Pharmacopoeia |
MP | Methylparaben |
PH | Phenol |
Ph.Eur | European Pharmacopoeia |
PE | Phenoxyethanol |
PP | Propylparaben |
USP-NF | United States Pharmacopeia (USP) and the National Formulary (NF) |
References
- Gervasi, V.; Agnol, R.D.; Cullen, S.; McCoy, T.; Vucen, S.; Crean, A. Parenteral Protein Formulations: An Overview of Approved Products within the European Union. Eur. J. Pharm. Biopharm. 2018, 131, 8–24. [Google Scholar] [CrossRef] [PubMed]
- Transparency Market Research. Peptide Therapeutics Market—Global Industry Analysis, Size, Share, Growth, Trends and Forecast 2014–2020; Transparency Market Research: Pune, India, 2015. [Google Scholar]
- Meyer, B.K.; Ni, A.; Hu, B.; Shi, L. Antimicrobial Preservative Use in Parenteral Products: Past and Present. J. Pharm. Sci. 2007, 96, 3155–3167. [Google Scholar] [CrossRef] [PubMed]
- Pharmacircle. Available online: https://www.pharmacircle.com/ (accessed on 31 August 2021).
- Gupta, S.; Kaisheva, E. Development of a Multidose Formulation for a Humanized Monoclonal Antibody Using Experimental Design Techniques. AAPS PharmSci 2003, 5, 8. [Google Scholar] [CrossRef] [PubMed]
- Drain, P.K.; Nelson, C.M.; Lloyd, J.S. Single-Dose versus Multi-Dose Vaccine Vials for Immunization Programmes in Developing Countries. Bull. World Health Organ. 2003, 81, 726–731. [Google Scholar]
- Lee, B.Y.; Norman, B.A.; Assi, T.-M.; Chen, S.-I.; Bailey, R.R.; Rajgopal, J.; Brown, S.T.; Wiringa, A.E.; Burke, D.S. Single versus Multi-Dose Vaccine Vials: An Economic Computational Model. Vaccine 2010, 28, 5292–5300. [Google Scholar] [CrossRef]
- USP43-NF38; United States Pharmacopoeia and National Formulary—Chapter 51: Antimcirobial Effectiveness Testing. United States Pharmacopoeia and National Formulary: Rockville, MD, USA, 2018.
- Pharmaceuticals and Medical Devices Agency. J.P. Japanese Pharmacopoeia—Preservatives-Effectiveness Tests; Pharmaceuticals and Medical Devices Agency: Tokyo, Japan, 2016. [Google Scholar]
- Council of Europe. Ph.Eur. European Pharmacopoeia 10.0—Chapter 5.1.3 Efficacy of Antimicrobial Preservation; Council of Europe: Strasbourg, France, 2011; pp. 625–627. [Google Scholar]
- Favero, M.S.; Carson, L.A.; Bond, W.W.; Petersen, N.J. Pseudomonas Aeruginosa: Growth in Distilled Water from Hospitals. Science 1971, 173, 836–838. [Google Scholar] [CrossRef]
- Denyer, S.P.; Baird, R.M. Guide to Microbiological Control in Pharmaceuticals and Medical Devices, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2007; ISBN 978-0-7484-0615-9. [Google Scholar]
- Fraise, A.P.; Maillard, J.-Y.; Sattar, S.A. Russell, Hugo & Ayliffe’s Principles and Practice of Disinfection, Preservation and Sterilization; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2013; ISBN 978-1-4443-3325-1. [Google Scholar]
- Rowe, R.C.; Sheskey, P.J.; Owen, S.C. Handbook of Pharmaceutical Excipients, 5th ed.; Rowe, R.C., Sheskey, P.J., Owen, S.C., Eds.; Pharmaceutical Press: London, UK, 2006; ISBN 978-0-85369-618-6. [Google Scholar]
- Arora, J.; Joshi, S.B.; Middaugh, C.R.; Weis, D.D.; Volkin, D.B. Correlating the Effects of Antimicrobial Preservatives on Conformational Stability, Aggregation Propensity, and Backbone Flexibility of an IgG1 MAb. J. Pharm. Sci. 2017, 106, 1508–1518. [Google Scholar] [CrossRef]
- Zhang, Y.; Roy, S.; Jones, L.S.; Krishnan, S.; Kerwin, B.A.; Chang, B.S.; Manning, M.C.; Randolph, T.W.; Carpenter, J.F. Mechanism for Benzyl Alcohol-induced Aggregation of Recombinant Human Interleukin-1 Receptor Antagonist in Aqueous Solution. J. Pharm. Sci. 2004, 93, 3076–3089. [Google Scholar] [CrossRef]
- Bis, R.L.; Mallela, K.M.G. Antimicrobial Preservatives Induce Aggregation of Interferon Alpha-2a: The Order in Which Preservatives Induce Protein Aggregation Is Independent of the Protein. Int. J. Pharm. 2014, 472, 356–361. [Google Scholar] [CrossRef]
- Roy, S.; Jung, R.; Kerwin, B.A.; Randolph, T.W.; Carpenter, J.F. Effects of Benzyl Alcohol on Aggregation of Recombinant Human Interleukin-1-receptor Antagonist in Reconstituted Lyophilized Formulations. J. Pharm. Sci. 2005, 94, 382–396. [Google Scholar] [CrossRef]
- Heljo, P.; Ross, A.; Zarraga, I.E.; Pappenberger, A.; Mahler, H.-C. Interactions Between Peptide and Preservatives: Effects on Peptide Self-Interactions and Antimicrobial Efficiency In Aqueous Multi-Dose Formulations. Pharm. Res. 2015, 32, 3201–3212. [Google Scholar] [CrossRef]
- Evers, A.; Pfeiffer-Marek, S.; Bossart, M.; Heubel, C.; Stock, U.; Tiwari, G.; Gebauer, B.; Elshorst, B.; Pfenninger, A.; Lukasczyk, U.; et al. Peptide Optimization at the Drug Discovery-Development Interface: Tailoring of Physicochemical Properties Toward Specific Formulation Requirements. J. Pharm. Sci. 2019, 108, 1404–1414. [Google Scholar] [CrossRef]
- Torosantucci, R.; Furtmann, B.; Elshorst, B.; Pfeiffer-Marek, S.; Hartleb, T.; Andres, N.; Bussemer, T. Protein-Excipient Interactions Evaluated via Nuclear Magnetic Resonance Studies in Polysorbate-Based Multidose Protein Formulations: Influence on Antimicrobial Efficacy and Potential Study Approach. J. Pharm. Sci. 2018, 107, 2531–2537. [Google Scholar] [CrossRef]
- Hutchings, R.L.; Singh, S.M.; Cabello-Villegas, J.; Mallela, K.M.G. Effect of Antimicrobial Preservatives on Partial Protein Unfolding and Aggregation. J. Pharm. Sci. 2013, 102, 365–376. [Google Scholar] [CrossRef]
- Thirumangalathu, R.; Krishnan, S.; Brems, D.N.; Randolph, T.W.; Carpenter, J.F. Effects of PH, Temperature, and Sucrose on Benzyl Alcohol-induced Aggregation of Recombinant Human Granulocyte Colony Stimulating Factor. J. Pharm. Sci. 2006, 95, 1480–1497. [Google Scholar] [CrossRef]
- Schmidt, P.C.; Lang, S.; Pielenhofer, J. Pharmazeutische Hilfsstoffe: Eigenschaften, Anwendung und Handelsprodukte, 2nd ed.; Govi-Verlag: Eschborn, Germany, 2020; ISBN 9783774114517. [Google Scholar]
- Sasseville, D. Hypersensitivity to Preservatives. Dermatol. Ther. 2004, 17, 251–263. [Google Scholar] [CrossRef]
- Elder, D.P.; Crowley, P.J. Antimicrobial Preservatives Part One: Choosing a Preservative System. Am. Pharm. Rev. 2017. Available online: https://www.americanpharmaceuticalreview.com/Featured-Articles/341194-Antimicrobial-Preservatives-Part-One-Choosing-a-Preservative-System/ (accessed on 2 January 2021).
- Gołoś, A.; Lutyńska, A. Aluminium-Adjuvanted Vaccines—A Review of the Current State of Knowledge. Przeglad Epidemiol. 2015, 69, 731–734,871–874. [Google Scholar]
- McDonnell, G.; Russell, A.D. Antiseptics and Disinfectants: Activity, Action, and Resistance. Clin. Microbiol. Rev. 1999, 12, 147–179. [Google Scholar] [CrossRef]
- Driks, A. The Bacillus Anthracis Spore. Mol. Asp. Med. 2009, 30, 368–373. [Google Scholar] [CrossRef]
- Henriques, A.O.; Moran, C.P., Jr. Structure, Assembly, and Function of the Spore Surface Layers. Microbiology 2007, 61, 555–588. [Google Scholar] [CrossRef] [PubMed]
- Spaulding, E.H. Alcohol as a Surgical Disinfectant. Assoc. Oper. Room. Nurs. 1964, 2, 67–71. [Google Scholar] [CrossRef]
- Lide, D.R. CRC Handbook of Chemistry and Physics, Internet Version 2005; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Maa, Y.-F.; Hsu, C.C. Aggregation of Recombinant Human Growth Hormone Induced by Phenolic Compounds. Int. J. Pharm. 1996, 140, 155–168. [Google Scholar] [CrossRef]
- Maillard, J. Factors affecting the activities of microbicides. In Russell, Hugo & Ayliffe’s: Principles and Practice of Disinfection, Preservation and Sterilization, 5th ed.; Wiley: New York, NY, USA, 2013; pp. 71–86. [Google Scholar] [CrossRef]
- Hugo, W.B.; Russel, A.D. Pharmaceutical_Microbiology_by_W._B._Hugo,_A._D._R_557640_(z-Lib.Org).Pdf, 6th ed.; Blackwell Science Ltd.: Hoboken, NJ, USA, 1998; ISBN 0-632-04196-X. [Google Scholar]
- Dao, H.; Lakhani, P.; Police, A.; Kallakunta, V.; Ajjarapu, S.S.; Wu, K.-W.; Ponkshe, P.; Repka, M.A.; Murthy, S.N. Microbial Stability of Pharmaceutical and Cosmetic Products. AAPS PharmSciTech 2018, 19, 60–78. [Google Scholar] [CrossRef]
- Close, J.A.; Neilsen, P.A. Resistance of a Strain of Pseudomonas Cepacia to Esters of P-Hydroxybenzoic Acid. Appl. Environ. Microb. 1976, 31, 718–722. [Google Scholar] [CrossRef]
- Segura, A.; Molina, L.; Fillet, S.; Krell, T.; Bernal, P.; Muñoz-Rojas, J.; Ramos, J.-L. Solvent Tolerance in Gram-Negative Bacteria. Curr. Opin. Biotech. 2012, 23, 415–421. [Google Scholar] [CrossRef]
- Maris, P. Modes of Action of Disinfectants. Rev. Sci. Tech. 1995, 14, 47–55. [Google Scholar] [CrossRef]
- Lambert, P.A.; Hammond, S.M. Potassium Fluxes, First Indications of Membrane Damage in Micro-Organisms. Biochem. Biophys. Res. Commun. 1973, 54, 796–799. [Google Scholar] [CrossRef]
- Pulvertaft, R.J.V.; Lumb, G.D. Bacterial Lysis and Antiseptics. J. Hyg. 1948, 46, 62–64. [Google Scholar] [CrossRef]
- Srivastava, R.B.; Thompson, R.E.M. Influence of Bacterial Cell Age on Phenol Action. Nature 1965, 206, 216. [Google Scholar] [CrossRef]
- Kroll, R.G.; Anagnostopoulos, G.D. Potassium Fluxes on Hyperosmotic Shock and the Effect of Phenol and Bronopol (2-bromo-2-nitropropan-1,3-diol) on Deplasmolysis of Pseudomonas Aeruginosa. J. Appl. Microbiol. 1981, 51, 313–323. [Google Scholar] [CrossRef]
- Lambert, P.A. Mechanisms of Action of Biocides. In Russell, Hugo & Ayliffe’s Principles and Practice of Disinfection, Preservation & Sterilization, 4th ed.; Wiley: New York, NY, USA, 2008; pp. 139–153. [Google Scholar] [CrossRef]
- Dagley, S.; Dawes, E.A.; Morrison, G.A. Inhibition of growth of aerobacter aerogenes: The mode of action of phenols, alcohols, acetone, and ethyl acetate. J. Bacteriol. 1950, 60, 369–379. [Google Scholar] [CrossRef]
- Bertrand, R.L. Lag Phase Is a Dynamic, Organized, Adaptive, and Evolvable Period That Prepares Bacteria for Cell Division. J. Bacteriol. 2019, 201, e00697-18. [Google Scholar] [CrossRef]
- Yano, T.; Miyahara, Y.; Morii, N.; Okano, T.; Kubota, H. Pentanol and Benzyl Alcohol Attack Bacterial Surface Structures Differently. Appl. Environ. Microb. 2016, 82, 402–408. [Google Scholar] [CrossRef]
- Karabit, M.S.; Juneskans, O.T.; Lundgren, P. Studies on the evaluation of preservative efficacy—II. The determination of antimicrobial characteristics of benzylalcohol. J. Clin. Pharm. Ther. 1986, 11, 281–289. [Google Scholar] [CrossRef]
- Beveridge, E.G.; Boyd, I.; Jessen, G.W. The Action of 2-Phenoxyethanol upon Pseudomonas Aeruginosa NCTC 6749. J. Pharm. Pharmacol. 1980, 32, 17P. [Google Scholar] [CrossRef]
- Gilbert, P.; Beveridge, G.; Crone, P. The Action of Phenoxyethanol upon Respiration and Dehydrogenase Enzyme Systems in Escherichia coli. J. Pharm. Pharmacol. 1976, 28, 51. [Google Scholar]
- Richards, R.M.E.; Cavill, R.H. Electron Microscope Study of Effect of Benzalkonium Chloride and Edetate Disodium on Cell Envelope of Pseudomonas Aeruginosa. J. Pharm. Sci. 1976, 65, 76–80. [Google Scholar] [CrossRef]
- Valkova, N.; Lépine, F.; Valeanu, L.; Dupont, M.; Labrie, L.; Bisaillon, J.-G.; Beaudet, R.; Shareck, F.; Villemur, R. Hydrolysis of 4-Hydroxybenzoic Acid Esters (Parabens) and Their Aerobic Transformation into Phenol by the Resistant Enterobacter Cloacae Strain EM. Appl. Environ. Microb. 2001, 67, 2404–2409. [Google Scholar] [CrossRef]
- Parker, M.S. Some Effects of Preservatives on the Development of Bacterial Spores. J. Appl. Bacteriol. 1969, 32, 322–328. [Google Scholar] [CrossRef]
- Eklund, T. The Effect of Sorbic Acid and Esters of P-Hydroxybenzoic Acid on the Protonmotive Force in Escherichia coli Membrane Vesicles. J. Gen. Microbiol. 1985, 131, 73–76. [Google Scholar] [CrossRef] [PubMed]
- Denyer, S.P.; Hugo, W.B.; Harding, V.D. Synergy in Preservative Combinations. Int. J. Pharm. 1985, 25, 245–253. [Google Scholar] [CrossRef]
- Gilliland, D.; Po, A.L.W.; Scott, E. Kinetic Evaluation of Claimed Synergistic Paraben Combinations Using a Factorial Design. J. Appl. Bacteriol. 1992, 72, 173–265. [Google Scholar] [CrossRef]
- Whittingham, J.L.; Edwards, D.J.; Antson, A.A.; Clarkson, J.M.; Dodson, G.G. Interactions of Phenol and m -Cresol in the Insulin Hexamer, and Their Effect on the Association Properties of B28 Pro → Asp Insulin Analogues. Biochemistry 1998, 37, 11516–11523. [Google Scholar] [CrossRef]
- Amro, N.A.; Kotra, L.P.; Wadu-Mesthrige, K.; Bulychev, A.; Mobashery, S.; Liu, G. High-Resolution Atomic Force Microscopy Studies of the Escherichia coli Outer Membrane: Structural Basis for Permeability. Langmuir 2000, 16, 2789–2796. [Google Scholar] [CrossRef]
- Leive, L.; Shovlin, V.K.; Mergenhagen, S.E. Physical, Chemical, and Immunological Properties of Lipopolysaccharide Released from Escherichia coli by Ethylenediaminetetraacetate. JBC 1968, 243, 6384–6391. [Google Scholar] [CrossRef]
- Fukahori, M.; Takatsuji, Y.; Takahashi, H.; Sato, H.; Yotsuyanagi, T. Estimation of Distribution of P-Hydroxybenzoic Acid Esters between Non-Ionic Surfactant Micellar and Aqueous Phases. Chem. pharm. Bull. 1996, 44, 1068–1073. [Google Scholar] [CrossRef]
- Patel, N.K.; Kostenbauder, H.B. Interaction of Preservatives with Macromolecules I. Binding of Parahydroxybenzoic Acid Esters by Polyoxyethylene 20 Sorbitan Monooleate (Tween 80). J. Am. Pharm. Assoc. 1958, 47, 289–293. [Google Scholar] [CrossRef]
- Barr, M.; Tice, L.F. The Preservation of Aqueous Preparations Containing Nonionic Surfactants II. Preservative Studies in Solutions and Products Containing Nonionic Surfactants. J. Am. Pharm. Assoc. 1957, 46, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Moser, C.L.; Meyer, B.K. Comparison of Compendial Antimicrobial Effectiveness Tests: A Review. AAPS PharmSciTech 2011, 12, 222–226. [Google Scholar] [CrossRef]
- Rodríguez-Tudela, J.L.; Barchiesi, F.; Bille, J.; Chryssanthou, E.; Cuenca-Estrella, M.; Denning, D.; Donnelly, J.P.; Dupont, B.; Fegeler, W.; Moore, C.; et al. Method for the Determination of Minimum Inhibitory Concentration (MIC) by Broth Dilution of Fermentative Yeasts. Clin. Microbiol. Infec. 2003, 9, i–viii. [Google Scholar] [CrossRef]
- Subcommittee on Antifungal Susceptibility Testing of the ESCMID European Committee for Antimicrobial Susceptibility Testing. EUCAST Technical Note on the Method for the Determination of Broth Dilution Minimum Inhibitory Concentrations of Antifungal Agents for Conidia–Forming Moulds. Clin. Microbiol. Infec. 2008, 14, 982–984. [Google Scholar] [CrossRef]
- Lee, B.H.; Kim, S.-H. Benzalkonium Chloride Induced Bronchoconstriction in Patients with Stable Bronchial Asthma. Korean J. Intern. Med. 2007, 22, 244–248. [Google Scholar] [CrossRef] [PubMed]
- George, M.; Joshi, S.V.; Concepcion, E.; Lee, H. Paradoxical Bronchospasm from Benzalkonium Chloride (BAC) Preservative in Albuterol Nebulizer Solution in a Patient with Acute Severe Asthma. A case report and literature review of airway effects of BAC. Respir. Med. Case Rep. 2017, 21, 39–41. [Google Scholar] [CrossRef]
- Boucher, M.; Roy, M.T.; Henderson, J. Possible Association of Benzalkonium Chloride in Nebulizer Solutions with Respiratory Arrest. Ann. Pharmacother. 1992, 26, 772–774. [Google Scholar] [CrossRef]
- Agency, E.M. Reflection Paper on the Use of Methyl- and Propylparaben as Excipients in Human Medicinal Products for Oral Use; European Medicines Agency: London, UK, 2015; p. 13. [Google Scholar]
- Em Agency. Questions and Answers on Benzalkoniumchloride Used as an Excipient in Medicinal Products for Human Use; Em Agency: Winter Garden, FL, USA, 2017; p. 8. [Google Scholar]
- Oishi, S. Effects of Propyl Paraben on the Male Reproductive System. Food Chem. Toxicol. 2002, 40, 1807–1813. [Google Scholar] [CrossRef] [PubMed]
- Lucchini, J.J.; Corre, J.; Cremieux, A. Antibacterial Activity of Phenolic Compounds and Aromatic Alcohols. Res. Microbiol. 1990, 141, 499–510. [Google Scholar] [CrossRef]
- Abd-Elsalam, M.; Abdoon, N.; Al-Ahaidib, M. What Is the Optimum Concentration of M-Cresol in Antivenoms? J. Venom. Anim. Toxins 2011, 17, 12–22. [Google Scholar] [CrossRef]
- Williams, R.; Urquhart, N.; Roden, K. Preservatives Used in Personal Care Products. Available online: https://ascc.com.au/preservatives-used-in-personal-care-products-2/ (accessed on 16 December 2020).
- Aalto, T.R.; Firman, M.C.; Rigler, N.E. P-hydroxybenzoic Acid Esters as Preservatives. I. Uses, Antibacterial and Antifungal Studies, Properties and Determination. J. Am. Pharm. Assoc. 1953, 42, 449–457. [Google Scholar] [CrossRef]
- Patwa, N.V.; Huyck, C.L. Stability of Chlorobutanol in Aqueous Solutions. J. Am. Pharm. Assoc. 1966, 6, 372–373. [Google Scholar] [CrossRef]
- CHMP. Excipients in the Dossier for Application for Marketing Authorisation of a Medicinal Product; European Medicines Agency: London, UK, 2008; p. 12. [Google Scholar]
- Em Agency. Benzyl Alcohol and Benzoic Acid Group Used as Excipients; Em Agency: Winter Garden, FL, USA, 2017. [Google Scholar]
- LeBel, M.; Ferron, L.; Masson, M.; Pichette, J.; Carrier, C. Benzyl Alcohol Metabolism and Elimination in Neonates. Dev. Pharmacol. Ther. 1988, 11, 347–356. [Google Scholar] [CrossRef]
- Lovejoy, F.H. Fatal Benzyl Alcohol Poisoning in Neonatal Intensive Care Units: A New Concern for Pediatricians. Am. J. Dis. Child. 1982, 136, 974–975. [Google Scholar] [CrossRef]
- Smith, A.L.; Haider, K.; Schachtner, J.M.; Mathur, S.; VanOrden, R.; Gentile, T.C. Fatal Hemolysis After High-Dose Etoposide: Is Benzyl Alcohol to Blame? Pharmacother. J. Hum. Pharmacol. Drug Ther. 2001, 21, 764–766. [Google Scholar] [CrossRef]
- Jewell, C.; Prusakiewicz, J.J.; Ackermann, C.; Payne, N.A.; Fate, G.; Voorman, R.; Williams, F.M. Hydrolysis of a Series of Parabens by Skin Microsomes and Cytosol from Human and Minipigs and in Whole Skin in Short-Term Culture. Toxicol. Appl. Pharm. 2007, 225, 221–228. [Google Scholar] [CrossRef]
- Nowak, K.; Ratajczak–Wrona, W.; Górska, M.; Jabłońska, E. Parabens and Their Effects on the Endocrine System. Mol. Cell Endocrinol. 2018, 474, 238–251. [Google Scholar] [CrossRef]
- Aker, A.M.; Watkins, D.J.; Johns, L.E.; Ferguson, K.K.; Soldin, O.P.; Toro, L.V.A.D.; Alshawabkeh, A.N.; Cordero, J.F.; Meeker, J.D. Phenols and Parabens in Relation to Reproductive and Thyroid Hormones in Pregnant Women. Environ. Res. 2016, 151, 30–37. [Google Scholar] [CrossRef]
- Vo, T.T.B.; Yoo, Y.-M.; Choi, K.-C.; Jeung, E.-B. Potential Estrogenic Effect(s) of Parabens at the Prepubertal Stage of a Postnatal Female Rat Model. Reprod. Toxicol. 2010, 29, 306–316. [Google Scholar] [CrossRef]
- Organisation for Economic Co-Operation and Development (OECD). M/p-Cresol—SIDS Initial Assessment Report For SIAM 16; OECD: Paris, France, 2003; p. 377. [Google Scholar]
- Faassen, I.; Razenberg, P.P.A.; Simoons-Smit, A.M.; Veen, E.A. Carriage of Staphylococcus Aureus and Inflamed Infusion Sites With Insulin-Pump Therapy. Diabetes Care 1989, 12, 153–156. [Google Scholar] [CrossRef]
- van Faassen, I.; Vught, A.M.J.V.; Lomecky-Janousek, M.Z.; Razenberg, P.P.; van der Veen, E.A. Preservatives in Insulin Preparations Impair Leukocyte Function: In Vitro Study. Diabetes Care 1990, 13, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Paiva, T.O.; Bastos, A.E.P.; Marquês, J.T.; Viana, A.S.; Lima, P.A.; de Almeida, R.F.M. M -Cresol Affects the Lipid Bilayer in Membrane Models and Living Neurons. Rsc. Adv. 2016, 6, 105699–105712. [Google Scholar] [CrossRef]
- Bergman, Å.; Heindel, J.J.; Jobling, S.; Kidd, K.A.; Zoeller, R.T. State of the Science of Endocrine Disrupting Chemicals 2012; United Nations Environment Programme: Nairobi, Kenya; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Barr, L.; Metaxas, G.; Harbach, C.A.J.; Savoy, L.A.; Darbre, P.D. Measurement of Paraben Concentrations in Human Breast Tissue at Serial Locations across the Breast from Axilla to Sternum. J. Appl. Toxicol. 2012, 32, 219–232. [Google Scholar] [CrossRef] [PubMed]
- BAuA EC No 202-859-9, 2021.Pdf. Available online: https://echa.europa.eu/documents/10162/f5bb38d2-5514-2999-8ae3-eae557021f08 (accessed on 2 January 2023).
- Scognamiglio, J.; Jones, L.; Vitale, D.; Letizia, C.S.; Api, A.M. Fragrance Material Review on Benzyl Alcohol. Food Chem. Toxicol. 2012, 50, S140–S160. [Google Scholar] [CrossRef]
- Johnson, W.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G.; Shank, R.C.; Slaga, T.J.; Snyder, P.W.; et al. Safety Assessment of Benzyl Alcohol, Benzoic Acid and Its Salts, and Benzyl Benzoate. Int. J. Toxicol. 2017, 36, 5S–30S. [Google Scholar] [CrossRef] [PubMed]
- Gershanik, J.; Boecler, B.; Ensley, H.; McCloskey, S.; George, W. The Gasping Syndrome and Benzyl Alcohol Poisoning. N. Engl. J. Med. 1982, 307, 1384–1388. [Google Scholar] [CrossRef]
- Brown, W.; Buist, N.M.; Cory Gipson, H.T.; Huston, R.; Kennaway, N. Fatal benzyl alcohol poisoning in a neonatal intensive care unit. Lancet 1982, 319, 1250. [Google Scholar] [CrossRef]
- Reynolds, R.D. Nebulizer Bronchitis Induced by Bacteriostatic Saline. JAMA 1990, 264, 35. [Google Scholar] [CrossRef]
- Scientific Committee on Consumer Safety (SCCS). Opinion on Phenoxyethanol; Scientific Committee on Consumer Safety: Brussels, Belgium, 2016. [Google Scholar]
- Caballero, M.; Quirce, S. Immediate Hypersensitivity Reactions Caused by Drug Excipients: A Literature Review. J. Investig. Allerg. Clin. 2020, 30, 86–100. [Google Scholar] [CrossRef]
- Golightly, L.K.; Smolinske, S.S.; Bennett, M.L.; Sutherland, E.W.; Rumack, B.H. Pharmaceutical Excipients. Med. Toxicol. Adv. Drug 1988, 3, 128–165. [Google Scholar] [CrossRef]
- Barbaud, A. Place of Excipients in Systemic Drug Allergy. Immunol. Allergy Clin. 2014, 34, 671–679. [Google Scholar] [CrossRef]
- Díaz, M.V.; Oribe, I.V.; Torrence, D.D.; Alfonso, P.H.; Gallardo, E.A. New Challenges in Drug Allergy: The Resurgence of Excipients. Curr. Treat. Options Allergy 2022, 9, 273–291. [Google Scholar] [CrossRef]
- Ismail, S.T.; Ad-Dabbagh, B.M. Pharmaceutical Excipients as a Potential Cause for Hypersensitivity and Adverse Drug Reactions. J. Curr. Res. Health Sect. 2022, 12, 53–62. [Google Scholar] [CrossRef]
- Turvey, S.E.; Cronin, B.; Arnold, A.D.; Twarog, F.J.; Dioun, A.F. Adverse Reactions to Vitamin B12 Injections Due to Benzyl Alcohol Sensitivity: Successful Treatment with Intranasal Cyanocobalamin. Allergy 2004, 59, 1023–1024. [Google Scholar] [CrossRef]
- Grant, J.A.; Bilodeau, P.A.; Guernsey, B.G.; Gardner, F.H. Unsuspected Benzyl Alcohol Hypersensitivity. N. Engl. J. Med. 1982, 306, 108. [Google Scholar] [CrossRef]
- Strauss, J.; Greeff, O.B.W. Excipient-Related Adverse Drug Reactions: A Clinical Approach: Review Article. Curr. Allergy Clin. Immunol. 2015, 28, 24–27. [Google Scholar]
- Batuyios, N.H.; Brecht, E.A. An Investigation of the Incompatibilities of Quaternary Ammonium Germicides in Compressed Troches I. The Adsorption of Cetylpyridinium Chloride and Benzalkonium Chloride by Talc and Kaolin. J. Am. Pharm. Assoc. 1957, 46, 524–531. [Google Scholar] [CrossRef]
- Chin, Y.P.; Mohamad, S.; Abas, M.R.B. Removal of Parabens from Aqueous Solution Using β-Cyclodextrin Cross-Linked Polymer. Int. J. Mol. Sci. 2010, 11, 3459–3471. [Google Scholar] [CrossRef]
- Loftsson, T.; Stefánsdóttir, Ó.; Friôriksdóttir, H.; Guômundsson, Ö. Interactions between Preservatives and 2-Hydroxypropyl-β-Cyclodextrin. Drug Dev. Ind. Pharm. 1992, 18, 1477–1484. [Google Scholar] [CrossRef]
- Blanchard, J. Effect of Polyols on Interaction of Paraben Preservatives with Polysorbate 80. J. Pharm. Sci. 1980, 69, 169–173. [Google Scholar] [CrossRef]
- Blanchard, J.; Fink, W.T.; Duffy, J.P. Effect of Sorbitol on Interaction of Phenolic Preservatives with Polysorbate 80. J. Pharm. Sci. 1977, 66, 1470–1473. [Google Scholar] [CrossRef]
- Gilbert, P.H.; Zhang, Z.; Qian, K.K.; Allen, D.P.; Wagner, N.J.; Liu, Y. Preservative Induced Polysorbate 80 Micelle Aggregation. J. Pharm. Sci. 2021, 110, 2395–2404. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Chen, Z.; Rizzo, J.M.; Semple, A.; Mittal, S.; Cheung, J.K.; Richardson, D.; Shameem, V.A.M.; Shameem, M. A Highly Sensitive Method for the Quantitation of Polysorbate 20 and 80 to Study the Compatibility between Polysorbates and M-Cresol in the Peptide Formulation. J. Anal. Bioanal. Tech. 2015, 6, 2–8. [Google Scholar] [CrossRef]
- Dwivedi, M.; Blech, M.; Presser, I.; Garidel, P. Polysorbate Degradation in Biotherapeutic Formulations: Identification and Discussion of Current Root Causes. Int. J. Pharm. 2018, 552, 422–436. [Google Scholar] [CrossRef]
- WHO. Guidelines on Packaging for Pharmaceutical Products; WHO: Geneva, Switzerland, 2002; pp. 119–156. [Google Scholar]
- Amarji, B.; Kulkarni, A.; Deb, P.K.; Deepika; Maheshwari, R.; Tekade, R.K. Package Development of Pharmaceutical Products: Aspects of Packaging Materials Used for Pharmaceutical Products. In Dosage Form Design Parameters; Academic Press: Cambridge, MA, USA, 2018; pp. 521–552. [Google Scholar] [CrossRef]
- Saller, V.; Matilainen, J.; Rothkopf, C.; Serafin, D.; Peters, K.B.-; Mahler, H.-C.; Friess, W. Preservative Loss from Silicone Tubing during Filling Processes. Eur. J. Pharm. Biopharm. 2017, 112, 109–118. [Google Scholar] [CrossRef]
- Royce, A.; Sykes, G. Losses of Bacteriostats from Injections in Rubber-Closed Containers. J. Pharm. Pharmacol. 1957, 9, 814–823. [Google Scholar] [CrossRef] [PubMed]
- Roberts, M.S.; Polack, A.E.; Martin, G.; Blackburn, H.D. The Storage of Selected Substances in Aqueous Solution in Polyethylene Containers: The Effect of Some Physicochemical Factors on the Disappearance Kinetics of the Substances. Int. J. Pharm. 1979, 2, 295–306. [Google Scholar] [CrossRef]
- Held, H.R.; Landi, S. Loss of Preservative from a Tuberculin Solution in Rubber Stoppered Vials Fastened with Different Seals. J. Biol. Stand. 1985, 12, 211–219. [Google Scholar] [CrossRef]
- Landi, S.; Pivnick, H.; Held, H.R. Studies on Phenol and Chinosol Used as Preservatives in Tuberculin PPD Solutions. Bull. World Health Organ. 1968, 5, 809–820. [Google Scholar]
- Amin, A.; Dare, M.; Sangamwar, A.; Bansal, A.K. Interaction of Antimicrobial Preservatives with Blow-Fill-Seal Packs: Correlating Sorption with Solubility Parameters. Pharm. Dev. Technol. 2012, 17, 614–624. [Google Scholar] [CrossRef] [PubMed]
- Amin, A.; Chauhan, S.; Dare, M.; Bansal, A.K. Sorption of Antimicrobial Agents in Blow-Fill-Seal Packs. Pharm. Dev. Technol. 2010, 17, 84–93. [Google Scholar] [CrossRef]
- PubChem. PubChem Compound Database for CID 244, Benzyl Alcohol. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/244 (accessed on 27 July 2021).
- Pubchem. PubChem Compound Database for CID 342, m-Cresol. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/342 (accessed on 22 July 2021).
- PubChem. PubChem Compound Summary for CID 996, Phenol. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Phenol (accessed on 4 May 2021).
- Bahal, S.M.; Romansky, J.M. Sorption of Parabens by Flexible Tubings. Pharm. Dev. Technol. 2001, 6, 431–440. [Google Scholar] [CrossRef]
- Bahal, S.M.; Romansky, J.M. Sorption of Benzoic Acid, Sorbic Acid, Benzyl Alcohol, and Benzalkonium Chloride by Flexible Tubing. Pharm. Dev. Technol. 2002, 7, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Kakemi, K.; Sezaki, H.; Arakawa, E.; Kimura, K.; Ikeda, K. Interactions of Parabens and Other Pharmaceutical Adjuvants with Plastic Containers. Chem. Pharm. Bull. 1971, 12, 2523–2529. [Google Scholar] [CrossRef]
- Assem, R.; Fouda, A. Evaluation of Cationic Surfactant Benzalkonium Chloride as Inhibitor of Corrosion of Steel in Presence of Hydrochloric Acid Solution. Madr. J. Mol. Biol. 2019, 1, 14–22. [Google Scholar] [CrossRef]
- Bin, T.; Kulshreshtha, A.K.; Al-Shakhshir, R.; Hem, S.L. Adsorption of Benzalkonium Chloride by Filter Membranes: Mechanisms and Effect of Formulation and Processing Parameters. Pharm. Dev. Technol. 1999, 4, 151–165. [Google Scholar] [CrossRef] [PubMed]
- ECHA Chlorobutanol—Study Report; European Chemicals Agency: Helsinki, Finland, 2017.
- Nair, A.D.; Lach, J.L. The Kinetics of Degradation of Chlorobutanol. J. Am. Pharm. Assoc. (Sci. Ed.) 1959, 48, 390–395. [Google Scholar] [CrossRef]
- Lachman, L.; Weinstein, S.; Urbanyi, T.; Ebersold, E.; Cooper, J. Stability of Antibacterial Preservatives in Parenteral Solutions III. Relationship between Chemical Loss and Microbiological Activity in Multiple-dose Vials. J. Pharm. Sci. 1963, 52, 241–243. [Google Scholar] [CrossRef]
- Lachman, L.; Sheth, P.B.; Urbanyi, T. Lined and Unlined Rubber Stoppers for Multiple-dose Vial Solutions I. Sorption of Preservatives and Leaching of Extractives. J. Pharm. Sci. 1963, 53, 211–218. [Google Scholar] [CrossRef]
- Friesen, W.T.; Plein, E.M. The Antibacterial Stability of Chlorobutanol Stored in Polyethylene Bottles. Am. J. Hosp. Pharm. 1971, 28, 507–512. [Google Scholar] [CrossRef]
- ECHA M-Cresol—Registration Dossier—ECHA (Stability.Pdf). Available online: https://echa.europa.eu/de/registration-dossier/-/registered-dossier/14110/5/2/1# (accessed on 3 May 2021).
- Seraghni, N.; Belattar, S.; Mameri, Y.; Debbache, N.; Sehili, T. Fe(III)-Citrate-Complex-Induced Photooxidation of 3-Methylphenol in Aqueous Solution. Int. J. Photoenergy 2012, 2012, 630425. [Google Scholar] [CrossRef]
- Gmurek, M.; Rossi, A.F.; Martins, R.C.; Quinta-Ferreira, R.M.; Ledakowicz, S. Photodegradation of Single and Mixture of Parabens—Kinetic, by-Products Identification and Cost-Efficiency Analysis. Chem. Eng. J. 2015, 276, 303–314. [Google Scholar] [CrossRef]
- Devlin, H.R.; Harris, I.J. Mechanism of the oxidation of aqueous phenol of aqueous phenol with dissolved oxygen. Ind. Eng. Chem. Fundam. 1984, 23, 387–392. [Google Scholar] [CrossRef]
- Prasse, C.; Ford, B.; Nomura, D.K.; Sedlak, D.L. Unexpected transformation of dissolved phenols to toxic dicar-bonyls by hydroxyl radicals and UV light. Proc. Natl. Acad. Sci. USA 2018, 115, 201715821. [Google Scholar] [CrossRef]
- Lee, M.G. Phenoxyethanol absorption by polyvinyl chloride. J. Clin. Pharm. Ther. 1984, 9, 353–355. [Google Scholar] [CrossRef]
- European Directorate for the Quality of Medicines & HealthCare. Ph.Eur. European Pharmacopoeia 10.0—Monograph 0520: Parenteral Preparations; European Directorate for the Quality of Medicines & HealthCare: Strasbourg, Germany, 2015; Volume 10. [Google Scholar]
- Ph.Eur. European Pharmacopoeia 10.0—Monograph 0153: Vaccines for Human Use; European Directorate for the Quality of Medicines & HealthCare: Strasbourg, France, 2018. [Google Scholar]
- D’Addio, S.M.; Su, Y.; Yin, D.; Zhang, J.; Kemp, E.; Gindy, M.E. Antimicrobial Excipient-Induced Reversible Association of Therapeutic Peptides in Parenteral Formulations. J. Pharm. Sci. 2021, 110, 850–859. [Google Scholar] [CrossRef]
- den Engelsman, J.; Garidel, P.; Smulders, R.; Koll, H.; Smith, B.; Bassarab, S.; Seidl, A.; Hainzl, O.; Jiskoot, W. Strategies for the Assessment of Protein Aggregates in Pharmaceutical Biotech Product Development. Pharm. Res. 2011, 28, 920–933. [Google Scholar] [CrossRef]
- Manning, M.C.; Chou, D.K.; Murphy, B.M.; Payne, R.W.; Katayama, D.S. Stability of Protein Pharmaceuticals: An Update. Pharm. Res. 2010, 27, 544–575. [Google Scholar] [CrossRef]
- Maggio, E.T. Use of Excipients to Control Aggregation in Peptide and Protein Formulations. J. Excip. Food Chem. 2010, 1, 40–49. [Google Scholar]
- Garidel, P.; Eiperle, A.; Blech, M.; Seelig, J. Thermal and Chemical Unfolding of a Monoclonal IgG1 Antibody: Application of the Multistate Zimm-Bragg Theory. Biophys. J. 2020, 118, 1067–1075. [Google Scholar] [CrossRef]
- Moore, W.V.; Leppert, P. Role of Aggregated Human Growth Hormone (HGH) in Development of Antibodies to HGH*. J. Clin. Endocrinol. Metab. 1980, 51, 691–697. [Google Scholar] [CrossRef]
- Hermeling, S.; Crommelin, D.J.A.; Schellekens, H.; Jiskoot, W. Structure-Immunogenicity Relationships of Therapeutic Proteins. Pharm. Res. 2004, 21, 897–903. [Google Scholar] [CrossRef]
- Clodfelter, D.K.; Pekar, A.H.; Rebhun, D.M.; Destrampe, K.A.; Havel, H.A.; Myers, S.R.; Brader, M.L. Effects of Non-Covalent Self-Association on the Subcutaneous Absorption of a Therapeutic Peptide. Pharm. Res. 1998, 15, 254–262. [Google Scholar] [CrossRef]
- Timasheff, S.N. Protein-Solvent Preferential Interactions, Protein Hydration, and the Modulation of Biochemical Reactions by Solvent Components. Proc. Natl. Acad. Sci. USA 2002, 99, 9721–9726. [Google Scholar] [CrossRef]
- Rodrigues-Silva, R.; Antunes, G.F.C.; Velarde, D.T.; Santoro, M.M. Thermal Stability Studies of Hyperimmune Horse Antivenoms. Toxicon 1999, 37, 33–45. [Google Scholar] [CrossRef] [PubMed]
- Yoshizawa, S.; Oki, S.; Arakawa, T.; Shiraki, K. Trimethylamine N-Oxide (TMAO) Is a Counteracting Solute of Benzyl Alcohol for Multi-Dose Formulation of Immunoglobulin. Int. J. Biol. Macromol. 2018, 107, 984–989. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Sosnick, T.; Mayne, L.; Englander, S. Protein Folding Intermediates: Native-State Hydrogen Exchange. Science 1995, 269, 192–197. [Google Scholar] [CrossRef] [PubMed]
- Kaja, S.; Hilgenberg, J.D.; Everett, E.; Olitsky, S.E.; Gossage, J.; Koulen, P. Effects of Dilution and Prolonged Storage with Preservative in a Polyethylene Container on Bevacizumab (AvastinTM) for Topical Delivery as a Nasal Spray in Anti-Hereditary Hemorrhagic Telangiectasia and Related Therapies. Hum. Antibodies 2011, 20, 95–101. [Google Scholar] [CrossRef]
- Bilková, A.; Paulovičová, E.; Paulovičová, L.; Poláková, M. Antimicrobial Activity of Mannose-Derived Glycosides. Mon. Für Chem.—Chem. Mon. 2015, 146, 1707–1714. [Google Scholar] [CrossRef]
- Malik, H.; Boos, W.; Schmidt, R.R. Maltose and Maltotriose Derivatives as Potential Inhibitors of the Maltose-Binding Protein. Eur. J. Org. Chem. 2008, 2008, 2084–2099. [Google Scholar] [CrossRef]
- Marçon, F.; Moreau, V.; Helle, F.; Thiebault, N.; Djedaïni-Pilard, F.; Mullié, C. Β-Alkylated Oligomaltosides as New Alternative Preservatives: Antimicrobial Activity, Cytotoxicity and Preliminary Investigation of Their Mechanism of Action. J. Appl. Microbiol. 2013, 115, 977–986. [Google Scholar] [CrossRef]
- Perinelli, D.R.; Lucarini, S.; Fagioli, L.; Campana, R.; Vllasaliu, D.; Duranti, A.; Casettari, L. Lactose Oleate as New Biocompatible Surfactant for Pharmaceutical Applications. Eur. J. Pharm. Biopharm. 2018, 124, 55–62. [Google Scholar] [CrossRef]
- Maggio, E.T. Alkyl Mono- and Diglucosides Highly Effective, Nonionic Surfactant Replacements for Polysorbates in Biotherapeutics—A Review. BioProcess Int. 2016, 14, 30–37. [Google Scholar]
- Challener, C.A. Excipient Selection for Protein Stabilization. PharmTech 2015, 39, 35–39. [Google Scholar]
- Genetech Inc. Package Insert, Herceptin (Trastuzumab). Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2000/trasgen020900LB.htm (accessed on 14 April 2021).
- Abel, J.; Cui, L.; Goswami, D.; Huh, J.; Jagannathan, B.; Kanapuram, S.; Mcauley, A.; Schneider, M.; Sethuraman, A.G.; Treuheit, M.; et al. Method for Improved Storage and Administration, Pharmaceutical Compositions Comprising 2 Bispecific Antibody. Constructs 2018. World Patent Publication WO2018204907A1, 7 May 2018. [Google Scholar]
- Strickley, R.G.; Lambert, W.J. A Review of Formulations of Commercially Available Antibodies. J. Pharm. Sci. 2021, 110, 2590–2608. [Google Scholar] [CrossRef] [PubMed]
- EMEA Herceptin: EPAR—Scientific Discussion. Available online: https://www.ema.europa.eu/en/documents/scientific-discussion/herceptin-epar-scientific-discussion_en.pdf (accessed on 24 August 2021).
- Hoffmann-La Roche, A.G. Product Monograph: Herceptin. Available online: https://www.rochecanada.com/PMs/Herceptin/Herceptin_PM_E.pdf (accessed on 24 August 2021).
- Andya, J.; Cleland, J.L.; Hsu, C.; Lam, X.M.; Overcashier, D.E.; Shire, S.J.; Yang, J.Y.-F.; Wu, S.S.-Y. Protein Formulation. US Patent US6685940B2, 31 July 2001. [Google Scholar]
- Yunkai, G.; Lingyu, L.; Yan, Z.; Yunxia, Z.; Jianrong, L. Stable Solution Preparation of Anti-Human PD-1 Monoclonal Antibody. China Patent CN107334728A, 10 November 2017. [Google Scholar]
- Parshad, H.; Engelund, D.K. Stable Multi-Dose Compositions Comprising an Antibody and a Preservative. U.S. Patent US15/799,276, 31 October 2017. [Google Scholar]
- Yan, Z.; Yunxia, Z.; Weiting, D.; Xiaodan, Z.; Zheng, C. Stable anti-human IL-17A Monoclonal Antibody Liquid Preparation. China Patent CN107325179A, 7 November 2017. [Google Scholar]
Antimicrobial Preservative | Chemical Structure | Molecular Weight (MW)/g∙mol−1 | logP (Hydrophobicity) |
---|---|---|---|
Benzalkonium chloride | Average weight: 360.00 a | R = C12H25: 9.98 a R = C14H29: 32.9 a R = C16H33: 82.5 a | |
Benzyl alcohol | 108.14 a | 1.05 b | |
Chlorobutanol | 177.46 a | 2.03 c | |
m-Cresol | 108.14 a | 1.98 b | |
Methylparaben | 152.15 a | 1.96 d | |
Phenol | 94.11 a | 1.48 b | |
Phenoxyethanol | 138.16 a | 1.2 e | |
Propylparaben | 180.20 a | 3.04 f |
Group | Target | Preservative | Chemical Structure Affecting Antimicrobial Activity |
---|---|---|---|
1 | Cytoplasmic membrane | Alcohols | Bulky and hydrophobic structures, e.g., benzene rings, might increase the interference with the membrane |
Parabens | Increasing chain length positively affects antimicrobial activity | ||
Phenol | NI | ||
Quaternary ammonium compounds | Positive charge important for interaction with membrane; alkyl residues important for membrane penetration | ||
2 | Separation of daughter cells/cell wall | Phenol | NI |
3 | Amino acid metabolism | Phenol | NI |
4 | Protonmotive force | Phenoxyethanol | NI |
Parabens | Carbon chain length |
log10 Reduction | |||||||
---|---|---|---|---|---|---|---|
Administration Route | Micro- Organism | Criterion | Time criteria | ||||
6 h | 24 h | 7 d | 14 d | 28 d | |||
Category 1 Parenteral, eye, intrauterine, intramammary | Bacteria | A | 2 | 3 | - | - | NR |
B | - | 1 | 3 | - | NI | ||
Fungi | A | - | - | 2 | - | NI | |
B | - | - | - | 1 | NI | ||
Category 2 Ear, nasal, cutaneous, inhalation | 2 d | 7 d | 14 d | 28 d | |||
Bacteria | A | 2 | 3 | - | NI | ||
B | - | - | 3 | NI | |||
Fungi | A | - | - | 2 | NI | ||
B | - | - | 1 | NI | |||
Category 3 Oral, oromucosal, rectal | 14 d | 28 d | |||||
Bacteria | - | 3 | NI | ||||
Fungi | - | 1 | NI |
log10 Reduction | ||||
---|---|---|---|---|
Administration Route | Microorganism | Time Criteria | ||
7 d | 14 d | 28 d | ||
Category 1 | Bacteria | 1.0 | 3.0 | NI from 14 d count |
Yeast and molds | NI from initial count at 7 d, 14 d, and 28 d | |||
Category 2 | 14 d | 28 d | ||
Bacteria | 2.0 | NI from 14 d count | ||
Yeast and molds | NI from initial count at 14 d and 28 d | |||
Category 3 | 14 d | 28 d | ||
Bacteria | 1.0 | NI from 14 d count | ||
Fungi | NI from initial count at 14 d and 28 d | |||
Category 4 | Bacteria, Fungi, and Molds | NI from initial count at 14 d and 28 d |
Preservative | pH Range | pH Range in Licensed Protein Formulations |
---|---|---|
Benzalkonium chloride | 4–10 | 3.0–6.2 |
Benzyl alcohol | <8 | 6.0–8.0 |
Chlorobutanol | <5 almost inactive at pH > 5.5 | 3.0–5.0 |
m-Cresol | <9 | 3.8–7.8 |
Phenoxyethanol | 3–10 | NI |
Parabens | 4–8 | NI |
Phenol | < 9 | 4.2–7.8 |
Preservative | Solubility in Water | Solubility in Ethanol (95%) |
---|---|---|
Benzalkonium chloride | 1 in 1.5 | 1 in 2.5 |
Benzyl alcohol | 1 in 25 | Miscible in all proportions |
Chlorobutanol | 1 in 125 | 1 in 1 |
m-Cresol | 1 in 50 | 1 in (1–10) |
Methylparaben | 1 in 400 | 1 in 3 |
Phenoxyethanol | 1 in 43 | miscible |
Phenol | 1 in 15 | 1 in less than 1 |
Propylparaben | 1 in 2500 | 1 in 1.1 |
Preservative | Route | LD50 / mg·kg−1 Bodyweight |
---|---|---|
Benzalkonium chloride | - | - |
Benzyl alcohol | Inhalation (rats) | >4178 |
Oral (rats) | 1620 | |
Chlorobutanol | Oral (rats) | 510 |
m-Cresol | Oral (rats) | 242 |
Dermal (rabbits) | 2050 | |
Methylparaben | Oral (rats) | 2100 |
Phenol | Oral (rats) | 340–540 |
Oral (humans) | 140–290 | |
Dermal (female rats) | 660 | |
Phenoxyethanol | Oral (female rats) | 1840 |
Oral (male rats) | 4070 | |
Dermal (rabbits) | 2214 | |
Propylparaben | Oral (rats) | >5000 |
Preservative | Distribution in Water | Distribution in Rubber |
---|---|---|
Benzyl alcohol, 1% | 85% | 15% |
Phenol, 0.5% | 75% | 25% |
m-Cresol, 0.3% | 67% | 33% |
Chlorobutanol, 0.5% | 10–20% | 80–90% |
AP | k | ID/mm | AP Remaining after 5 min/% | AP Remaining after 6 h |
---|---|---|---|---|
m-Cresol | 0.83 | 1.6 | approx. 60 | 0 |
6.0 | 90 | 34 | ||
Phenol | 0.44 | 1.6 | approx. 80 | 0 |
6.0 | 97 | 53 | ||
Benzyl alcohol | 0.27 | 1.6 | approx. 80 | 0 |
6.0 | 97 | 63 |
Preservative | Reported Incompatibilities with | Recommended Container | |
---|---|---|---|
Container/Consumables | Rubber Stopper * | ||
Benzalkonium Chloride | Polyvinyl chloride [14] Adsorbed by polyethylene container in the presence of counter-ions, e.g., ammonium thiocyanate [122,123] | NI | Glass or polypropylene packing materials [14,122,123] Stored in an airtight container protected from light and contact with metals [14] |
Benzyl Alcohol | Methylcellulose Polyethylene [119,122,123] Silicone tubing [117] | Slowly adsorbed by natural rubber, neoprene rubber, and butyl rubber [14] | Metal and glass container [14] Polypropylene, polyvinyl chloride containers or inert containers coated with fluorinated polymers, e.g., Teflon [14,122,123] Protected from light and air [14] |
Chlorobutanol | Polyethylene [122,123] Polyhydroxyethyl-methacrylate (used in soft contact lenses) [14] | Rubber stoppers [14] | Glass or polypropylene container [14,122,123] Inert container [14] |
m-Cresol | Silicone tubing [117] | “Red rubber” * [118] “White rubber” * [118] | Well-closed container, protected from light and air [14] |
Parabens | Polyethylene: adsorption increases with increasing chain length [122,123] Polyvinyl chloride [129] Silicone tubing [127] | NI | Glass container [14] Polypropylene container [127] Well-closed container [14] Fluoropolymer-based tubes [127] |
Phenol | Silicone tubing [117] | “Red rubber” * [118] “White rubber” * [118] | Glass [14] Polyvinyl chloride or polypropylene container [14] Protected from light and air [14] |
Phenoxyethanol | Polyvinyl chloride [14] | NI | Well-closed container [14] |
AP | IV | SC | IM | Nasal |
---|---|---|---|---|
Phenol | 53.1 | 26.6–60.6 | 53.1 | - |
Benzyl alcohol | 83.2–101.7 | 83.2–101.7 | 83.2–92.5 | - |
Chlorobutanol | 28.2 | - | 28.2 | 28.2 |
m-Cresol | 2.8–29.6 | 2.8–29.6 | 13.9–27.7 | - |
Benzalkonium chloride | - | - | - | 0.28–0.568 |
Phenoxyethanol | - | - | 43.4 | - |
Protein/Peptide-Preservative Interactions Can Lead to | Effect Can Be Reduced by |
---|---|
Negative effect on preservatives
Negative effect on the API
|
|
API | Studied Protein/Peptide | Formulation Buffer | Aggregation Rate |
---|---|---|---|
Peptide | Palmitoylated model peptide (up to 10 mg·mL−1) | 20 mM His/His-HCl buffer with 150 mM NaCl, pH 7.0 | CR > PH > BA [19] |
Palmitoylated peptide (up to 0.17 mM) | Antioxidants, 50 mM histidine buffer, pH 7.0 | CR > PH > BA [145] | |
Protein | Recombinant human growth hormone (10 mg·mL−1) | 5 mM phosphate buffer, pH 7.4 | CR > PH > BA [33] |
Cytochrome c (up to 3 mM) | 0.1 M sodium phosphate, 0.15 M NaCl, pH 7.0 | CR > PH > BA > PE > CB [22] | |
Interferon α -2a (10 µM) | 0.01 M ammonium acetate, 0.12 M NaCl, pH 5.0 | CR > PH > BA > PE [17] | |
Antibody | Humanized monoclonal antibody (10 mg·mL−1) | Histidine buffer with PS80 and NaCl, pH 6.0 | CR > PH > CB > BA > PP > MP [5] |
IgG1 mAb (1 mg·mL−1) | 20 mM citrate—phosphate buffer, 100 mM NaCl, pH 6.0 | CR > PH > PE > BA [15] |
Nominal Content in the Vial | |
---|---|
Trastuzumab | 420 mg |
L-histidine HCl monohydrate | 9.5 mg |
L-histidine | 6.1 mg |
α, α-trehalose dihydrate | 381.1 mg |
Polysorbate 20 | 1.7 mg |
Bacteriostatic Water for Injection (BWFI) | |
Benzyl alcohol | 1.1% |
Reconstitution with 20 mL BWFI yields to a multi-dose solution containing | |
Trastuzumab | 21 mg·mL−1 |
pH | Approximately 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stroppel, L.; Schultz-Fademrecht, T.; Cebulla, M.; Blech, M.; Marhöfer, R.J.; Selzer, P.M.; Garidel, P. Antimicrobial Preservatives for Protein and Peptide Formulations: An Overview. Pharmaceutics 2023, 15, 563. https://doi.org/10.3390/pharmaceutics15020563
Stroppel L, Schultz-Fademrecht T, Cebulla M, Blech M, Marhöfer RJ, Selzer PM, Garidel P. Antimicrobial Preservatives for Protein and Peptide Formulations: An Overview. Pharmaceutics. 2023; 15(2):563. https://doi.org/10.3390/pharmaceutics15020563
Chicago/Turabian StyleStroppel, Luisa, Torsten Schultz-Fademrecht, Martin Cebulla, Michaela Blech, Richard J. Marhöfer, Paul M. Selzer, and Patrick Garidel. 2023. "Antimicrobial Preservatives for Protein and Peptide Formulations: An Overview" Pharmaceutics 15, no. 2: 563. https://doi.org/10.3390/pharmaceutics15020563
APA StyleStroppel, L., Schultz-Fademrecht, T., Cebulla, M., Blech, M., Marhöfer, R. J., Selzer, P. M., & Garidel, P. (2023). Antimicrobial Preservatives for Protein and Peptide Formulations: An Overview. Pharmaceutics, 15(2), 563. https://doi.org/10.3390/pharmaceutics15020563