Experimental and Computational Study for the Design of Sulfathiazole Dosage Form with Clay Mineral
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Methods
2.2.1. Preparation of Sulfathiazole/Clay Mineral Interaction Products
2.2.2. X-ray Diffraction
2.2.3. Thermal Analysis
2.2.4. Scanning Electron Microscopy (SEM)
2.2.5. Fourier Transformed Infrared (FTIR) Spectroscopy
2.2.6. Elemental Analysis
2.2.7. Solubility Studies
2.3. Models
2.4. Computational Methods
3. Results and Discussion
3.1. Solid Characterization
3.1.1. X-ray Diffraction
3.1.2. Thermal Analysis
3.1.3. Fourier Transformed Infrared Spectroscopy
3.1.4. Scanning Electron Microscopy
3.1.5. Elemental Analysis
3.1.6. Solubility Studies
3.2. Atomistic Computational Analysis
3.2.1. Crystal Structure of Sulfathiazole
3.2.2. Adsorption Modeling in Montmorillonite
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murray, H.H. Traditional and new applications for kaolin, smectite, and palygorskite: A general overview. Appl. Clay Sci. 2000, 17, 207–221. [Google Scholar] [CrossRef]
- Bergaya, F.; Lagaly, G.; Vayer, M. Cation and anion exchange. In Handbook of Clay Science; Bergaya, F., Theng, B.K.G., Lagaly, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; pp. 979–1001. [Google Scholar]
- Bleam, W.F. Chapter 3—Clay mineralogy and Clay Chemistry. In Soil and Environmental Chemistry; Bleam, W.F., Ed.; Academic Press: New York, NY, USA, 2012; pp. 85–115. [Google Scholar] [CrossRef]
- Aguzzi, C.; Viseras, C.; Caramella, C. Use of clays as drug delivery systems: Possibilities and limitations. Appl. Clay Sci. 2007, 36, 22–36. [Google Scholar] [CrossRef]
- Viseras, C.; Cerezo, P.; Sánchez, R.; Salcedo, I.; Aguzzi, C. Current challenges in clay minerals for drug delivery. Appl. Clay Sci. 2010, 48, 291–295. [Google Scholar] [CrossRef]
- Borrego-Sánchez, A.; Sainz-Díaz, C.I. Chapter 17—Clay minerals as filters of drug compounds for green chemistry applications. In Green Chemistry and Computational Chemistry; Mammino, L., Ed.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 403–423. [Google Scholar] [CrossRef]
- Park, J.H.; Shin, H.J.; Kim, M.H.; Kim, J.S.; Kang, N.; Lee, J.Y.; Kim, K.T.; Lee, J.I.; Kim, D.D. Application of montmorillonite in bentonite as a pharmaceutical excipient in drug delivery systems. J. Pharm. Investig. 2016, 46, 363–375. [Google Scholar] [CrossRef]
- De Melo Barbosa, R.; Ferreira, M.A.; Araújo Meirelles, L.M.; Zorato, N.; Raffin, F.N. Chapter 8—Nanoclays in drug delivery systems. In Clay Nanoparticles Properties and Applications Micro and Nano Technologies; Cavallaro, G., Fakhrullin, R., Pasbakhsh, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 185–202. [Google Scholar] [CrossRef]
- Kahle, M.; Stamm, C. Time and pH-dependent sorption of the veterinary antimicrobial sulfathiazole to clay minerals and ferrihydrite. Chemosphere 2007, 68, 1224–1231. [Google Scholar] [CrossRef]
- Joshi, G.V.; Kevadiya, B.D.; Patel, H.A.; Bajaj, H.C.; Jasra, R.V. Montmorillonite as a drug delivery system: Intercalation and in vitro release of timolol maleate. Int. J. Pharm. 2009, 374, 53–57. [Google Scholar] [CrossRef]
- Madurai, S.L.; Joseph, S.W.; Mandal, A.B.; Tsibouklis, J.; Reddy, B.S. Intestine-specific, oral delivery of captopril/montmorillonite: Formulation and release kinetics. Nanoscale Res. Lett. 2011, 6, 15. [Google Scholar] [CrossRef] [Green Version]
- Koleman, H.; van Zyl, R.; Steyn, N.; Boneschans, B.; Steyn, H.S. Influence of montmorillonite on the dissolution and bioavailablity of phenyton. Drug Dev. Ind. Pharm. 2008, 16, 791–805. [Google Scholar] [CrossRef]
- Baek, M.; Choy, J.H.; Choi, S.J. Montmorillonite intercalated with glutathione for antioxidant delivery: Synthesis, characterization, and bioavailability evaluation. Int. J. Pharm. 2012, 425, 29–34. [Google Scholar] [CrossRef]
- Dening, T.J.; Thomas, N.; Rao, S.; Looveren, C.V.; Cuyckens, F.; Holm, R.; Prestidge, C.A. Montmorillonite and Laponite Clay Materials for the Solidification of Lipid-Based Formulations for the Basic Drug Blonanserin: In Vitro and in Vivo Investigations. Mol. Pharm. 2018, 15, 4148–4160. [Google Scholar] [CrossRef]
- Borrego-Sanchez, A.; Carazo, E.; Aguzzi, C.; Viseras, C.; Sainz-Diaz, C.I. Biopharmaceutical improvement of praziquantel by interaction with montmorillonite and sepiolite. Appl. Clay Sci. 2018, 160, 173–179. [Google Scholar] [CrossRef]
- Borrego-Sánchez, A.; Sánchez-Espejo, R.; García-Villén, F.; Viseras, C.; Sainz-Díaz, C.I. Praziquantel–Clays as Accelerated Release Systems to Enhance the Low Solubility of the Drug. Pharmaceutics 2020, 12, 914. [Google Scholar] [CrossRef] [PubMed]
- Borrego-Sánchez, A.; Viseras, C.; Saínz-Díaz, C.I. Molecular interactions of praziquantel drug with nanosurfaces of sepiolite and montmorillonite. Appl. Clay Sci. 2020, 197, 105774. [Google Scholar] [CrossRef]
- Nangia, A.K.; Desiraju, G.R. Heterosynthons, Solid Form Design and Enhanced Drug Bioavailability. Angew. Chem. 2022, 134, e202207484. [Google Scholar] [CrossRef]
- Dave, R.H.; Patel, H.H.; Donahue, E.; Patel, A.D. To evaluate the change in release from solid dispersion using sodium lauryl sulfate and model drug sulfathiazole. Ind. Health 2013, 39, 1562–1572. [Google Scholar] [CrossRef]
- Craig, D.Q.M. The mechanisms of drug release from solid dispersions in water-soluble polymers. Int. J. Pharm. 2002, 231, 131–144. [Google Scholar] [CrossRef]
- Bianco, S.; Caron, V.; Tajber, L.; Corrigan, O.I.; Nolan, L.; Hu, Y. Modification of the Solid-State Nature of Sulfathiazole and Sulfathiazole Sodium by Spray Drying. AAPS PharmSciTech 2012, 13, 647–660. [Google Scholar] [CrossRef] [Green Version]
- Gopi, S.P.; Ganguly, S.; Desiraju, G.R. A Drug–Drug Salt Hydrate of Norfloxacin and Sulfathiazole: Enhancement of in Vitro Biological Properties via Improved Physicochemical Properties. Mol. Pharm. 2016, 13, 3590–3594. [Google Scholar] [CrossRef]
- Wang, L.-Y.; Bu, F.-Z.; Li, Y.-T.; Wu, Z.-Y.; Yan, C.-W. A Sulfathiazole–Amantadine Hydrochloride Co-crystal: The First Codrug Simultaneously Comprising Antiviral and Antibacterial Components. Cryst. Growth Des. 2020, 20, 3236–3246. [Google Scholar] [CrossRef]
- Abu Bakar, M.; Nagy, Z.; Rielly, C.; Dann, S. Investigation of the riddle of sulfathiazole polymorphism. Int. J. Pharm. 2011, 414, 86–103. [Google Scholar] [CrossRef] [PubMed]
- Zeitler, J.A.; Newman, D.A.; Taday, P.F.; Threlfall, T.L.; Lancaster, R.W.; Berg, R.W. Characterization of Temperature-Induced Phase Transitions in Five Polymorphic Forms of Sulfathiazole by Terahertz Pulsed Spectroscopy and Differential Scanning Calorimetry. J. Pharm. Sci. 2006, 95, 2486–2498. [Google Scholar] [CrossRef] [PubMed]
- Sovago, I.; Gutmann, M.J.; Grant, J.; Martin, H.; Thomas, L.H.; Wilson, C.C. Experimental Electron Density and Neutron Diffraction Studies on the Polymorphs of Sulfathiazole. Cryst. Growth Des. 2014, 14, 1227–1239. [Google Scholar] [CrossRef] [PubMed]
- Yohannan, S.M. DFT Analysis and Molecular Docking Studies of the Cocrystals of Sulfathiazole-Theophylline and Sulfathiazole-Sulfanilamide. Polycycl. Aromat. Compd. 2022, 42, 3809–3820. [Google Scholar]
- Martín-Ramos, J.D. X-Powder, a Software Package for Powder X-ray Diffraction Analysis. 2004. Available online: http://www.xpowder.com (accessed on 15 December 2022).
- Kruger, G.J.; Gafner, G. The Crystal Structure of Sulphathiazole II. Acta Crystallogr. 1971, 27, 326–333. [Google Scholar] [CrossRef]
- Biovia. Materials Studio; Acceryls Inc.: San Diego, CA, USA, 2018. [Google Scholar]
- Sun, H. COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase Applications-Overview with Details on Alkane and Benzene Compounds. J. Phys. Chem. 1998, 102, 7338–7364. [Google Scholar] [CrossRef]
- Rappe, A.K.; Goddard, W.A. Charge equilibration for molecular dynamics simulations. J. Phys. Chem. 1991, 95, 3358–3363. [Google Scholar] [CrossRef]
- Heinz, H.; Vaia, R.A.; Farmer, L. Interaction energy and surface reconstruction between sheets of layered silicates. J. Chem. Phys. 2006, 124, 224713. [Google Scholar] [CrossRef]
- Heinz, H.; Suter, U.W. Atomic charges for classical simulations of polar systems. J. Phys. Chem. B 2004, 108, 18341–18352. [Google Scholar] [CrossRef]
- Segall, M.D.; Lindan, P.J.D.; Probert, M.J.; Pickard, C.J.; Hasnip, P.J.; Clark, S.J. First-principles simulation: Ideas, ilustrations and the CASTEP code. J. Phys. Condens. Matter 2002, 14, 2717–2744. [Google Scholar] [CrossRef]
- Hammer, B.; Hansen, L.B.; Norskov, J.K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Enzerhof functionals. Phys. Rev. 1999, 59, 7413. [Google Scholar] [CrossRef]
- Delley, B. Hardness conserving semilocal pseudopotentials. Phys. Rev. B 2002, 66, 1551251–1551259. [Google Scholar] [CrossRef]
- Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990, 92, 508–517. [Google Scholar] [CrossRef]
- Tkatchenko, A.; Scheffler, M. Accurate Molecular Van Der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data. Phys. Rev. Lett. 2009, 102, 073005. [Google Scholar] [CrossRef] [PubMed]
- Besler, B.H.; Merz, K.M., Jr.; Kollman, P.A. Atomic charges derived from semiempirical methods. J. Comput. Chem. 1990, 11, 431–439. [Google Scholar] [CrossRef]
- Yeo, S.-D.; Kim, M.-S.; Lee, J.-C. Recrystallization of sulfathiazole and chlorpropamide using the supercritical fluid antisolvent process. J. Supercrit. Fluids 2003, 25, 143–154. [Google Scholar] [CrossRef]
- Pontoriero, A.; Mosconi, N.; Monti, L.; Bellú, S.; Williams, P.; Raimondi, M. Synthesis, characterization and biological studies of a cobalt(III) complex of sulfathiazole. Chem. Biol. Interact. 2017, 278, 152–161. [Google Scholar] [CrossRef]
- Molina-Montes, E.; Timón, V.; Hernández-Laguna, A.; Sainz-Díaz, C.I. Dehydroxylation mechanisms in Al3+/Fe3+ dioctahedral phyllosilicates by quantum mechanical methods with cluster models. Geochim. Cosmochim. Acta 2008, 72, 3929–3938. [Google Scholar] [CrossRef]
- Patel, V.I.; Dave, R.H. Evaluation of Colloidal Solid Dispersions: Physiochemical Considerations and In Vitro Release Profile. AAPS PharmSciTech 2013, 14, 620–628. [Google Scholar] [CrossRef] [Green Version]
- Yeh, K.L.; Lee, T. Intensified Crystallization Processes for 1:1 Drug−Drug Cocrystals of Sulfathiazole−Theophylline, and Sulfathiazole−Sulfanilamide. Cryst. Growth Des. 2018, 18, 1339–1349. [Google Scholar] [CrossRef]
- Frost, R.L.; Locos, O.B.; Ruan, H.; Kloprogge, J.T. Near-infrared and mid-infrared spectroscopic study of sepiolites and palygorskites. Vib. Spectrosc. 2001, 27, 1–13. [Google Scholar] [CrossRef]
- Ortega-Castro, J.; Hernández-Haro, N.; Muñoz-Santiburcio, D.; Hernández-Laguna, A.; Sainz-Díaz, C.I. Crystal structure and hydroxyl group vibrational frequencies of phyllosilicates by DFT methods. Theochem. J. Mol. Struct. 2009, 912, 82–87. [Google Scholar] [CrossRef]
Sample | % N | % S |
---|---|---|
STZ | 17.13 | 21.61 |
STZ-MMT | 2.66 | 3.31 |
Sample | Solubility (mg/mL) | Increase (%) |
---|---|---|
STZ | 0.49 | |
STZ-MMT | 1.57 | 220 |
Measures | EXP a | UF b | CF c | INTERFACE d | DMol3 e |
---|---|---|---|---|---|
d(H2N-C) | 1.401 | 1.425 | 1.391 | 1.398 | 1.371 |
d(S-C)1 | 1.758 | 1.812 | 1.775 | 1.734 | 1.744 |
d(S=O)1 | 1.435 | 1.545 | 1.424 | 1.431 | 1.482 |
d(S=O)2 | 1.444 | 1.546 | 1.426 | 1.430 | 1.486 |
d(S-N) | 1.588 | 1.780 | 1.654 | 1.595 | 1.638 |
d(N=C) | 1.314 | 1.295 | 1.288 | 1.259 | 1.321 |
d(S-CN)2 | 1.741 | 1.800 | 1.729 | 1.772 | 1.768 |
d(S-CC)3 | 1.721 | 1.812 | 1.731 | 1.771 | 1.747 |
d(N-C) | 1.374 | 1.418 | 1.367 | 1.419 | 1.380 |
Complexes | d(001) (Å) | Adsorption Energy (Kcal/mol) |
---|---|---|
(1 STZ)-MMT | 13.68 | 16.74 |
(2 STZ)-MMT | 14.58 | 1.06 |
(3 STZ)-MMT | 14.78 | −38.63 |
(4 STZ)-MMT | 15.65 | −58.49 |
Experimental (Figure 1) | 14.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno-Domínguez, E.; Borrego-Sánchez, A.; Sánchez-Espejo, R.; Viseras, C.; Sainz-Díaz, C.I. Experimental and Computational Study for the Design of Sulfathiazole Dosage Form with Clay Mineral. Pharmaceutics 2023, 15, 575. https://doi.org/10.3390/pharmaceutics15020575
Moreno-Domínguez E, Borrego-Sánchez A, Sánchez-Espejo R, Viseras C, Sainz-Díaz CI. Experimental and Computational Study for the Design of Sulfathiazole Dosage Form with Clay Mineral. Pharmaceutics. 2023; 15(2):575. https://doi.org/10.3390/pharmaceutics15020575
Chicago/Turabian StyleMoreno-Domínguez, Eugenia, Ana Borrego-Sánchez, Rita Sánchez-Espejo, César Viseras, and Claro Ignacio Sainz-Díaz. 2023. "Experimental and Computational Study for the Design of Sulfathiazole Dosage Form with Clay Mineral" Pharmaceutics 15, no. 2: 575. https://doi.org/10.3390/pharmaceutics15020575
APA StyleMoreno-Domínguez, E., Borrego-Sánchez, A., Sánchez-Espejo, R., Viseras, C., & Sainz-Díaz, C. I. (2023). Experimental and Computational Study for the Design of Sulfathiazole Dosage Form with Clay Mineral. Pharmaceutics, 15(2), 575. https://doi.org/10.3390/pharmaceutics15020575