A Review of Protein- and Peptide-Based Chemical Conjugates: Past, Present, and Future
Abstract
:1. Introduction
2. Therapeutics That are Enhanced by Protein Conjugation
2.1. Antibody–Drug Conjugates
2.1.1. Antibody
2.1.2. Payload
2.1.3. Linker Chemistry and Conjugation Methods
2.1.4. Future Direction
2.2. Antibody–Oligonucleotide Conjugates
2.2.1. Payload
2.2.2. Linker
Name | Oligo Type | Indication | Ab Properties | Tissue Target | Current Phase | Sponsor | Reference |
---|---|---|---|---|---|---|---|
AOC 1001 | siRNA | DM1* | TfR1-targeting mAb | Muscle | Phase 1/2 | Avidity | [68,69] |
DYNE-101 | ASO | TfR1-targeting Fab | Phase 1 | DYNE | [70] | ||
AOC 1044 | PMO | DMD | TfR1-targeting mAb | Phase 1/2 announced | Avidity | [71] | |
DYNE-251 | PMO | TfR1-targeting Fab | Phase 1 | DYNE | [72] | ||
AOC 1020 | siRNA | FSHD | TfR1-targeting mAb | Phase 1/2 announced | Avidity | [73] | |
DYNE-301 | ASO | TfR1-targeting Fab | IND | DYNE | [58] | ||
anti-CD71 siMST | siRNA | PAD | TfR1-targeting mAb | preclinical | Takeda | [62] | |
anti-CD71 siHPR | N/A | ||||||
N/A | siRNA | MG | BAFF-targeted mAb | preclinical | University of Texas | [74] | |
TAC-001 | CpG | Cancer | CD22-targeting mAb | B cells | Phase 1 | Tallac | [59] |
ALTA-002 | CpG | SIRPα-targeting mAb | Dendritic cells | IND | Tallac/ALX Oncology | [60] | |
N/A | 3p-hpRNA | Cell-penetrating mAb | Tumor cells | preclinical | Gennao Bio | [75] | |
ExomiR-Tracker | anti-miR | Exosome-targeting mAb | Tumor cells | preclinical | Nagasaki University | [76] | |
KRAS-siRNA–anti-EGFR | siRNA |
EGFR-targeting mAb (cetuximab) | Tumor cells | preclinical | University of Muenster | [63,64] | |
F5-P/ PLK1-siRNA | siRNA | Her2 targeting ScFv-protamine fusion | Her2+ tumor cells | preclinical | Sun Yat-sen University/University of Science and Technology of China | [77] | |
IgG-P-TRIM24 siRNA | siRNA | PSMA-targeting mAb | Prostate tumor | preclinical | Fourth Military Medical University/Xi’an Jiaotong University | [78] | |
N/A | siRNA |
EGFR-targeting mAb (cetuximab) | Tumor cells | preclinical | Tianjin Medical University | [65] | |
DVD-ARC | siRNA | BCMA-targeting DVD | MMC | preclinical | Scripps/Alnylam | [66] | |
ASO-OTV | ASO | N/A | TfR1-targeting mAb | Brain | preclinical | Denali/Secarna | [79] |
N/A | PMO | SMA | TfR1-targeting mAb | preclinical | University of Oxford/AstraZeneca | [61] | |
N/A | dsASO | Glioblastoma | CD44-, EphA2-, EGFR-targeting mAbs | in vitro | University of Toronto | [67] |
2.2.3. Antibody
2.3. Peptide–Oligonucleotide Conjugates
2.4. Protein Conjugate Vaccines
2.4.1. Selection of Protein Carriers
2.4.2. Next-Generation Approaches for Improved Conjugate Vaccines
Site-Specific Conjugation of Polysaccharides to Protein Carriers
Noncovalent Conjugation for Modular Vaccine Generation
Bioconjugation
Nanoconjugate Vaccines in Virus-like Particles (VLPs)
3. Protein/Peptide Therapeutics That Are Enhanced through Chemical Modification
3.1. Introduction to Polymer–Protein Conjugates
3.2. Polymer Selection
3.2.1. PEG
3.2.2. Next-Generation PEG Derivatives
3.2.3. Poly(2-oxazoline)s
3.2.4. Zwitterionic Polymers
3.2.5. Amino-Acid-Based Polymers
3.2.6. Dendrimers
3.2.7. Biodegradable Polymers
3.2.8. Trehalose-Based Glycopolymers
3.3. Advances in Conjugation Chemistries
3.3.1. Grafting To
3.3.2. Grafting From
3.4. Emerging Applications
3.4.1. Ocular Delivery
3.4.2. Altered Binding Selectivity
3.4.3. Prodrug–Polymer Conjugates
3.4.4. Multivalent Display
3.4.5. Next-Generation Antibody–Drug Conjugates
3.5. Summary and Remaining Challenges for Polymer Conjugates
Name | Polymer | API | Route of Administration | Phase | Proposed Mechanism | References |
---|---|---|---|---|---|---|
Pegcetacoplan | PEG | Peptide-based C3 inhibitor (compstatin derivative) | ITV | NDA | PEGylation extends vitreous half-life | [320,321,322] |
Pegunigalsidase alfa | PEG | α-galactosidase-A | IV | BLA | Dimerization of the enzyme with a homobifunctional PEG and additional surface PEGylation improves systemic half-life and reduces immunogenicity | [323,324] |
Daprolizumab pegol | PEG | Anti-CD40L Fab | IV | 3 | PEGylation improves systemic half-life and mitigates potential for Fc-mediated platelet crosslinking | [323,324,325] |
BIVV001 | XTEN | Factor VIII | IV | 3 | Steric shielding from XTEN, in combination with FcRn recycling from Fc fusion, improves FVIII half-life | [326] |
KSI-301 | Phosphoryl- choline | aVEGF | ITV | 3 | Polymer conjugation extends vitreous half-life | [275] |
Transcon PTH | PEG | Parathyroid hormone (1-34) | SC | 3 | Cleavable PEG masks activity and maintains PTH concentrations within normal physiological levels | [290] |
Upifitamab Rilsodotin | Polyacetal | NaPi2b conjugated to auristatin derivative | IV | 3 | DAR10-15 ADC using Mersana Dolaflexin platform | [36,290] |
Pegargiminase | PEG | Arginine deiminase | IM | 3 | PEGylation improves systemic half-life and reduces immunogenicity | [327] |
Transcon CNP | PEG | C-type natriuretic peptide | SC | 2 | Cleavable PEGylation extends the dosing frequency from daily to weekly and may reduce Cmax-driven adverse events | [328,329] |
Sanguinate | PEG | Bovine hemoglobin | IV | 2 | PEGylation reduces extravasation and immunogenicity | [330] |
NKTR-358 | PEG | IL-2 | IV | 2 | Permanent PEG conjugation biases IL-2 towards Treg activation for treatment of autoimmune disease | [286,331] |
NKTR-255 | PEG | IL-15 | IV | 2 | PEGylation improves systemic half-life | [332] |
SAR444245 | PEG | IL-2 | IV | 1/2 | Permanent PEG conjugation in the IL-2Rα binding site suppresses Treg activation | [287,333] |
Pegozafermin | PEG | FGF21 | SC | 2 | PEGylation improves systemic half-life | [334] |
TransCon IL-2 β/γ | PEG | IL-2 | IV | 1 | Permanent PEG conjugation in the IL-2Rα binding site suppresses Treg activation; transient conjugation to a second 40 kDa PEG extends half-life and reduces Cmax | [285] |
SAR446309 | XTEN | aHER2/CD3 bispecific | IV | 1 | Protease-cleavable XTEN masks activity and improves TI | [292] |
ASN004 | Polyacetal | 5T4 | IV | 1 | DAR10-12 ScFv-Fc ADC using Mersana Dolaflexin platform | [316] |
AZD8205 | PEG8 | B7-H4 | IV | 1 | Inclusion of PEG in the ADC linker improves serum stability and increases the therapeutic window | [335] |
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
3p-hpRNA | 5′ Triphosphate hairpin RNA |
ABC | Accelerated blood clearance |
AD | Adenosine deaminase |
ADA | Antidrug antibodies |
ADC | Antibody–drug conjugate |
ADCC | Antibody-dependent cell-mediated cytotoxicity |
ADCP | Antibody-dependent cell-mediated phagocytosis |
AOC | Antibody–oligonucleotide conjugate |
APA | Anti-PEG antibodies |
ASO | Antisense oligonucleotide |
ATRP | Atom-transfer radical polymerization |
AUC | Area under the curve |
BBB | Blood–brain barrier |
BCMA | B-cell maturation antigen |
bis-MPA | Poly-2,2-bis(hydroxymethyl)propionic acid |
BLA | Biologics license application |
B-peptide | Arginine-rich cell-penetrating peptide |
BSA | Bovine serum albumin |
CDC | Complement dependent cytotoxicity |
CMC | Chemistry, manufacturing, and controls |
CMV | Cytomegalovirus |
CNS | Central nervous system |
CpG | Cytosine–phosphate–guanine dinucleotide |
CPP | Cell-penetrating peptide |
CRM197 | Attenuated form of C. diphtheriae toxin |
DAR | Drug to antibody ratio |
DBCO | Dibenzocyclooctyne |
DP | Drug product |
DM1* | Myotonic dystrophy type 1 |
DS | Drug substance |
DT | Diphtheria toxoid |
DVD | Dual variable domain antibody |
dsASO | Double-stranded ASO |
EGFR | Epidermal growth factor receptor |
ELP | Elastin-like polypeptides |
Fab | Antibody fragment |
Fc | Antibody constant fragment |
FcRn | Neonatal Fc receptor |
FDA | Food and Drug Administration |
FSHD | Facioscapulohumeral muscular dystrophy |
GA | Geographic atrophy |
GAC | Streptococcus pyrogen group A carbohydrate |
GalNac | N-Acetylgalactosamine |
G-CSF | Human granulocyte colony-stimulating factor |
GFP | Green Fluorescent Protein |
GMAB | Modified lupus autoantibody |
HA | Hyaluronic acid |
hGH | Human growth hormone |
HiB | Haemophilus influenzae serotype b |
HIV-1 | Human immunodeficiency virus type I |
HPMA | (2-hydroxylpropyl)methacrylamide |
HTS | High-throughput screening |
IM | Intramuscular |
IND | Investigational new drug |
IP | Intraperitoneal |
IT | Intrathecal |
ITV | Intravitreal |
IV | Intravenous |
LMWP | Low molecular weight protamine |
LNP | Lipid nanoparticle |
mAb | Monoclonal antibody |
MG | Myasthenia gravis |
miR | MicroRNA |
MMAE | Monomethyl auristatin E |
MMAF | Monomethyl auristatin F |
MMC | Multiple myeloma cells |
MSP | Muscle targeting heptapeptide |
nAMD | Neovascular age-related macular degeneration |
N/A | Not available |
NDA | New drug application |
NHS | N-hydroxysuccinimide |
nnAA | Non-native amino acid |
NTHi | Haemophilus influenzae |
OPS | O antigen polysaccharides |
OMPC | Outer membrane protein complex of serogroup B meningococcus |
PABC | Para-amino benzyloxycarbonyl |
PAD | Peripheral artery disease |
pAMF | P-azidomethyl phenylalanine |
PAMAM | Poly(amidoamine) |
PAS | Proline/alanine-rich sequences |
PBD | Pyrrolobenzodiazepine |
pCB | Poly(carboxybetaine) |
PCV | Pneumococcal conjugate vaccine |
PD | Haemophilus influenzae protein D |
PEG | Polyethylene glycol |
PK | Pharmacokinetics |
PMO | Phosphorodiamidate morpholino oligonucleotide |
PNA | Peptide nucleic acid |
PNAG | Poly-N-acetylglucosamine |
POEGMA | Poly(oligo(ethylene glycol) methyl ether methacrylate |
POZ | Poly(2-oxazoline) |
PPC | Polysaccharide-based vaccine |
pPC | Poly(phosphorylcholine) |
PROTAC | Proteolysis targeting chimera |
PRP | Polyribosyl ribitol phosphate |
PSA | Polysialic acid |
pSar | Polysarcosine |
pSB | Poly(sulfobetaine) |
PTH | Parathyroid hormone |
pTMAO | Poly(trimethylamine N-oxide |
RAFT | Reversible addition-fragmentation chain transfer polymerization |
rEPA | Pseudomonas aeruginosa protein exotoxin A |
RNAi | RNA inhibition |
RVO | Retinal vein occlusion |
SC | Subcutaneous |
ScFv | Single-chain variable fragment |
sDC | Synthetic dendritic cell |
siRNA | Small interfering RNA |
SLO | Streptolysin O |
SMA | Spinal muscular atrophy |
SSO | Splice-switching oligonucleotide |
TAT | Transactivator of transcription from HIV-1 |
TDB | T-cell-dependent bispecific antibody |
TFF | Tangential flow filtration |
TfR1 | Transferrin receptor |
TI | Therapeutic index |
TLR | Toll-like receptor |
Tm | Melting temperature |
TNF | Tumor necrosis factor |
TT | Tetanus toxoid |
Un-dPP | undecaprenyl pyrophosphate |
Val-Cit | Valine-citrulline |
VEGF | Vascular endothelial growth factor |
VLP | Virus-like particle/nanoparticle |
WHO | World Health Organization |
References
- Abuchowski, A.; McCoy, J.R.; Palczuk, N.C.; van Es, T.; Davis, F.F. Effect of Covalent Attachment of Polyethylene Glycol on Immunogenicity and Circulating Life of Bovine Liver Catalase. J. Biol. Chem. 1977, 252, 3582–3586. [Google Scholar] [CrossRef] [PubMed]
- Abuchowski, A.; van Es, T.; Palczuk, N.C.; Davis, F.F. Alteration of Immunological Properties of Bovine Serum Albumin by Covalent Attachment of Polyethylene Glycol. J. Biol. Chem. 1977, 252, 3578–3581. [Google Scholar] [CrossRef] [PubMed]
- Savoca, M.P.; Tonoli, E.; Atobatele, A.G.; Verderio, E.A.M. Biocatalysis by Transglutaminases: A Review of Biotechnological Applications. Micromachines 2018, 9, 562. [Google Scholar] [CrossRef] [PubMed]
- Davis, F.F. The Origin of Pegnology. Adv. Drug Deliv. Rev. 2002, 54, 457–458. [Google Scholar] [CrossRef] [PubMed]
- FDA Approved PEGylated Drugs Up To 2022. Available online: https://www.biochempeg.com/article/58.html (accessed on 12 December 2022).
- Mathe, G.; Ba, L.O.C.T.; Bernard, J. Effect on Mouse Leukemia 1210 of a Combination by Diazo-Reaction of Amethopterin and Gamma-Globulins from Hamsters Inoculated with Such Leukemia by Heterografts. Comptes Rendus Hebd. Des Seances De L’academie Des. Sci. 1958, 246, 1626–1628. [Google Scholar]
- Berinstein, N.L.; Spaner, D. Therapeutic Cancer Vaccines. In Vaccines (Fifth Edition); Plotkin, S.A., Orenstein, W.A., Offit, P.A., Eds.; Saunders Elsevier: Philadelphia, Pennsylvania, 2008; pp. 1135–1145. ISBN 9781416036111. [Google Scholar]
- Damelin, M.; Zhong, W.; Myers, J.; Sapra, P. Evolving Strategies for Target Selection for Antibody-Drug Conjugates. Pharm. Res 2015, 32, 3494–3507. [Google Scholar] [CrossRef]
- Polson, A.G.; Ho, W.Y.; Ramakrishnan, V. Investigational Antibody-Drug Conjugates for Hematological Malignancies. Expert Opin. Inv. Drug 2011, 20, 75–85. [Google Scholar] [CrossRef]
- Bargh, J.D.; Isidro-Llobet, A.; Parker, J.S.; Spring, D.R. Cleavable Linkers in Antibody–Drug Conjugates. Chem. Soc. Rev. 2019, 48, 4361–4374. [Google Scholar] [CrossRef]
- Zhang, Y.; Xie, X.; Yeganeh, P.N.; Lee, D.-J.; Valle-Garcia, D.; Meza-Sosa, K.F.; Junqueira, C.; Su, J.; Luo, H.R.; Hide, W.; et al. Immunotherapy for Breast Cancer Using EpCAM Aptamer Tumor-Targeted Gene Knockdown. Proc. Natl. Acad. Sci. USA 2021, 118, e2022830118. [Google Scholar] [CrossRef]
- Hoffmann, R.M.; Coumbe, B.G.T.; Josephs, D.H.; Mele, S.; Ilieva, K.M.; Cheung, A.; Tutt, A.N.; Spicer, J.F.; Thurston, D.E.; Crescioli, S.; et al. Antibody Structure and Engineering Considerations for the Design and Function of Antibody Drug Conjugates (ADCs). Oncoimmunology 2018, 7, e1395127. [Google Scholar] [CrossRef]
- Tong, J.T.W.; Harris, P.W.R.; Brimble, M.A.; Kavianinia, I. An Insight into FDA Approved Antibody-Drug Conjugates for Cancer Therapy. Molecules 2021, 26, 5847. [Google Scholar] [CrossRef] [PubMed]
- Arnould, L.; Gelly, M.; Penault-Llorca, F.; Benoit, L.; Bonnetain, F.; Migeon, C.; Cabaret, V.; Fermeaux, V.; Bertheau, P.; Garnier, J.; et al. Trastuzumab-Based Treatment of HER2-Positive Breast Cancer: An Antibody-Dependent Cellular Cytotoxicity Mechanism? Brit. J. Cancer 2006, 94, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Varchetta, S.; Gibelli, N.; Oliviero, B.; Nardini, E.; Gennari, R.; Gatti, G.; Silva, L.S.; Villani, L.; Tagliabue, E.; Ménard, S.; et al. Elements Related to Heterogeneity of Antibody-Dependent Cell Cytotoxicity in Patients Under Trastuzumab Therapy for Primary Operable Breast Cancer Overexpressing Her2. Cancer Res. 2007, 67, 11991–11999. [Google Scholar] [CrossRef] [PubMed]
- Junttila, T.T.; Li, G.; Parsons, K.; Phillips, G.L.; Sliwkowski, M.X. Trastuzumab-DM1 (T-DM1) Retains All the Mechanisms of Action of Trastuzumab and Efficiently Inhibits Growth of Lapatinib Insensitive Breast Cancer. Breast Cancer Res. Treat. 2011, 128, 347–356. [Google Scholar] [CrossRef] [PubMed]
- Lo, M.; Kim, H.S.; Tong, R.K.; Bainbridge, T.W.; Vernes, J.-M.; Zhang, Y.; Lin, Y.L.; Chung, S.; Dennis, M.S.; Zuchero, Y.J.Y.; et al. Effector-Attenuating Substitutions That Maintain Antibody Stability and Reduce Toxicity in Mice*. J. Biol. Chem. 2017, 292, 3900–3908. [Google Scholar] [CrossRef] [PubMed]
- Wahab, A.; Rafae, A.; Mushtaq, K.; Masood, A.; Ehsan, H.; Khakwani, M.; Khan, A. Ocular Toxicity of Belantamab Mafodotin, an Oncological Perspective of Management in Relapsed and Refractory Multiple Myeloma. Front. Oncol. 2021, 11, 678634. [Google Scholar] [CrossRef]
- Carter, P.J.; Senter, P.D. Antibody-Drug Conjugates for Cancer Therapy. Cancer J. 2008, 14, 154–169. [Google Scholar] [CrossRef]
- Senter, P.D. Potent Antibody Drug Conjugates for Cancer Therapy. Curr. Opin. Chem. Biol. 2009, 13, 235–244. [Google Scholar] [CrossRef]
- Chari, R.V.J. Targeted Delivery of Chemotherapeutics: Tumor-Activated Prodrug Therapy. Adv. Drug Deliv. Rev. 1998, 31, 89–104. [Google Scholar] [CrossRef]
- Saleh, M.N.; Sugarman, S.; Murray, J.; Ostroff, J.B.; Healey, D.; Jones, D.; Daniel, C.R.; LeBherz, D.; Brewer, H.; Onetto, N.; et al. Phase I Trial of the Anti–Lewis Y Drug Immunoconjugate BR96-Doxorubicin in Patients with Lewis Y–Expressing Epithelial Tumors. J. Clin. Oncol. 2000, 18, 2282–2292. [Google Scholar] [CrossRef]
- Elias, D.J.; Hirschowitz, L.; Kline, L.E.; Kroener, J.F.; Dillman, R.O.; Walker, L.E.; Robb, J.A.; Timms, R.M. Phase I Clinical Comparative Study of Monoclonal Antibody KS1/4 and KS1/4-Methotrexate Immunconjugate in Patients with Non-Small Cell Lung Carcinoma. Cancer Res. 1990, 50, 4154–4159. [Google Scholar] [PubMed]
- Teicher, B.A.; Chari, R.V.J. Antibody Conjugate Therapeutics: Challenges and Potential. Clin. Cancer Res. 2011, 17, 6389–6397. [Google Scholar] [CrossRef]
- Baah, S.; Laws, M.; Rahman, K.M. Antibody–Drug Conjugates—A Tutorial Review. Molecules 2021, 26, 2943. [Google Scholar] [CrossRef] [PubMed]
- Dean, A.Q.; Luo, S.; Twomey, J.D.; Zhang, B. Targeting Cancer with Antibody-Drug Conjugates: Promises and Challenges. Mabs 2021, 13, 1951427. [Google Scholar] [CrossRef]
- Dragovich, P.S. Degrader-Antibody Conjugates. Chem. Soc. Rev. 2022, 51, 3886–3897. [Google Scholar] [CrossRef] [PubMed]
- Panowski, S.; Bhakta, S.; Raab, H.; Polakis, P.; Junutula, J.R. Site-Specific Antibody Drug Conjugates for Cancer Therapy. Mabs 2014, 6, 34–45. [Google Scholar] [CrossRef]
- Adhikari, P.; Zacharias, N.; Ohri, R.; Sadowsky, J. Antibody-Drug Conjugates, Methods and Protocols. Methods Mol. Biol. 2019, 2078, 51–69. [Google Scholar] [CrossRef]
- Hamblett, K.J.; Senter, P.D.; Chace, D.F.; Sun, M.M.C.; Lenox, J.; Cerveny, C.G.; Kissler, K.M.; Bernhardt, S.X.; Kopcha, A.K.; Zabinski, R.F.; et al. Effects of Drug Loading on the Antitumor Activity of a Monoclonal Antibody Drug Conjugate. Clin. Cancer Res. 2004, 10, 7063–7070. [Google Scholar] [CrossRef]
- Sun, X.; Ponte, J.F.; Yoder, N.C.; Laleau, R.; Coccia, J.; Lanieri, L.; Qiu, Q.; Wu, R.; Hong, E.; Bogalhas, M.; et al. Effects of Drug–Antibody Ratio on Pharmacokinetics, Biodistribution, Efficacy, and Tolerability of Antibody–Maytansinoid Conjugates. Bioconjugate Chem. 2017, 28, 1371–1381. [Google Scholar] [CrossRef]
- Goldenberg, D.M.; Cardillo, T.M.; Govindan, S.V.; Rossi, E.A.; Sharkey, R.M. Trop-2 Is a Novel Target for Solid Cancer Therapy with Sacituzumab Govitecan (IMMU-132), an Antibody-Drug Conjugate (ADC)*. Oncotarget 2015, 6, 22496–22512. [Google Scholar] [CrossRef]
- Dragovich, P.S.; Pillow, T.H.; Blake, R.A.; Sadowsky, J.D.; Adaligil, E.; Adhikari, P.; Bhakta, S.; Blaquiere, N.; Chen, J.; Cruz-Chuh, J.D.; et al. Antibody-Mediated Delivery of Chimeric BRD4 Degraders. Part 1: Exploration of Antibody Linker, Payload Loading, and Payload Molecular Properties. J. Med. Chem. 2021, 64, 2534–2575. [Google Scholar] [CrossRef] [PubMed]
- Junutula, J.R.; Raab, H.; Clark, S.; Bhakta, S.; Leipold, D.D.; Weir, S.; Chen, Y.; Simpson, M.; Tsai, S.P.; Dennis, M.S.; et al. Site-Specific Conjugation of a Cytotoxic Drug to an Antibody Improves the Therapeutic Index. Nat. Biotechnol. 2008, 26, 925–932. [Google Scholar] [CrossRef] [PubMed]
- Walsh, S.J.; Bargh, J.D.; Dannheim, F.M.; Hanby, A.R.; Seki, H.; Counsell, A.J.; Ou, X.; Fowler, E.; Ashman, N.; Takada, Y.; et al. Site-Selective Modification Strategies in Antibody–Drug Conjugates. Chem. Soc. Rev. 2020, 50, 1305–1353. [Google Scholar] [CrossRef]
- Yurkovetskiy, A.V.; Bodyak, N.D.; Yin, M.; Thomas, J.D.; Clardy, S.M.; Conlon, P.R.; Stevenson, C.A.; Uttard, A.; Qin, L.; Gumerov, D.R.; et al. Dolaflexin: A Novel Antibody–Drug Conjugate Platform Featuring High Drug Loading and a Controlled Bystander Effect. Mol. Cancer 2021, 20, 885–895. [Google Scholar] [CrossRef]
- Shen, B.-Q.; Xu, K.; Liu, L.; Raab, H.; Bhakta, S.; Kenrick, M.; Parsons-Reponte, K.L.; Tien, J.; Yu, S.-F.; Mai, E.; et al. Conjugation Site Modulates the in Vivo Stability and Therapeutic Activity of Antibody-Drug Conjugates. Nat. Biotechnol. 2012, 30, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Szijj, P.A.; Bahou, C.; Chudasama, V. Minireview: Addressing the Retro-Michael Instability of Maleimide Bioconjugates. Drug Discov. Today Technol. 2018, 30, 27–34. [Google Scholar] [CrossRef]
- Ohri, R.; Bhakta, S.; Fourie-O’Donohue, A.; dela Cruz-Chuh, J.; Tsai, S.P.; Cook, R.; Wei, B.; Ng, C.; Wong, A.W.; Bos, A.B.; et al. High-Throughput Cysteine Scanning to Identify Stable Antibody Conjugation Sites for Maleimide- and Disulfide-Based Linkers. Bioconjugate Chem. 2018, 29, 473–485. [Google Scholar] [CrossRef]
- Vollmar, B.S.; Wei, B.; Ohri, R.; Zhou, J.; He, J.; Yu, S.-F.; Leipold, D.; Cosino, E.; Yee, S.; Fourie-O’Donohue, A.; et al. Attachment Site Cysteine Thiol PK a Is a Key Driver for Site-Dependent Stability of THIOMAB Antibody–Drug Conjugates. Bioconjugate Chem. 2017, 28, 2538–2548. [Google Scholar] [CrossRef]
- Matikonda, S.S.; McLaughlin, R.; Shrestha, P.; Lipshultz, C.; Schnermann, M.J. Structure–Activity Relationships of Antibody-Drug Conjugates: A Systematic Review of Chemistry on the Trastuzumab Scaffold. Bioconjugate Chem. 2022, 33, 1241–1253. [Google Scholar] [CrossRef]
- McPherson, M.J.; Hobson, A.D. Antibody-Drug Conjugates, Methods and Protocols. Methods Mol. Biol. 2019, 2078, 23–36. [Google Scholar] [CrossRef]
- Dugal-Tessier, J.; Thirumalairajan, S.; Jain, N. Antibody-Oligonucleotide Conjugates: A Twist to Antibody-Drug Conjugates. J. Clin. Med. 2021, 10, 838. [Google Scholar] [CrossRef] [PubMed]
- Roberts, T.C.; Langer, R.; Wood, M.J.A. Advances in Oligonucleotide Drug Delivery. Nat. Rev. Drug Discov. 2020, 19, 673–694. [Google Scholar] [CrossRef] [PubMed]
- Xiong, H.; Veedu, R.N.; Diermeier, S.D. Recent Advances in Oligonucleotide Therapeutics in Oncology. Int. J. Mol. Sci. 2021, 22, 3295. [Google Scholar] [CrossRef] [PubMed]
- Nan, Y.; Zhang, Y.-J. Antisense Phosphorodiamidate Morpholino Oligomers as Novel Antiviral Compounds. Front Microbiol. 2018, 9, 750. [Google Scholar] [CrossRef]
- Rinaldi, C.; Wood, M.J.A. Antisense Oligonucleotides: The next Frontier for Treatment of Neurological Disorders. Nat. Rev. Neurol. 2018, 14, 9–21. [Google Scholar] [CrossRef]
- Juliano, R.L. The Delivery of Therapeutic Oligonucleotides. Nucleic. Acids Res. 2016, 44, 6518–6548. [Google Scholar] [CrossRef]
- Agrawal, S. The Evolution of Antisense Oligonucleotide Chemistry—A Personal Journey. Biomedicines 2021, 9, 503. [Google Scholar] [CrossRef]
- Bost, J.P.; Barriga, H.; Holme, M.N.; Gallud, A.; Maugeri, M.; Gupta, D.; Lehto, T.; Valadi, H.; Esbjorner, E.K.; Stevens, M.M.; et al. Delivery of Oligonucleotide Therapeutics: Chemical Modifications, Lipid Nanoparticles, and Extracellular Vesicles. ACS Nano 2021, 15, 13993–14021. [Google Scholar] [CrossRef]
- Padda, I.S.; Mahtani, A.U.; Parmar, M. Small Interfering RNA (SiRNA) Based Therapy. In NCBI Bookshelf. A Service of the National Library of Medicine, National Institutes of Health; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Chandela, A.; Ueno, Y. Systemic Delivery of Small Interfering RNA Therapeutics: Obstacles and Advances. Rev. Agric. Sci. 2019, 7, 10–28. [Google Scholar] [CrossRef]
- Crooke, S.T.; Liang, X.; Baker, B.F.; Crooke, R.M. Antisense Technology: A Review. J. Biol. Chem. 2021, 296, 100416. [Google Scholar] [CrossRef]
- Juliano, R.L.; Ming, X.; Nakagawa, O. The Chemistry and Biology of Oligonucleotide Conjugates. Acc. Chem. Res. 2012, 45, 1067–1076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varkouhi, A.K.; Scholte, M.; Storm, G.; Haisma, H.J. Endosomal Escape Pathways for Delivery of Biologicals. J. Control. Release 2011, 151, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Juliano, R.L.; Carver, K. Cellular Uptake and Intracellular Trafficking of Oligonucleotides. Adv. Drug Deliver. Rev. 2015, 87, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Mullard, A. Antibody–Oligonucleotide Conjugates Enter the Clinic. Nat. Rev. Drug Discov. 2022, 21, 6–8. [Google Scholar] [CrossRef]
- Desjardins, C.A.; Yao, M.; Hall, J.; O’Donnell, E.; Venkatesan, R.; Spring, S.; Wen, A.; Hsia, N.; Shen, P.; Russo, R.; et al. Enhanced Exon Skipping and Prolonged Dystrophin Restoration Achieved by TfR1-Targeted Delivery of Antisense Oligonucleotide Using FORCE Conjugation in Mdx Mice. Nucleic Acids Res. 2022. [Google Scholar] [CrossRef] [PubMed]
- Kuo, T.C.; Harrabi, O.; Chen, A.; Sangalang, E.R.; Doyle, L.; Fontaine, D.; Li, M.; Han, B.; Pons, J.; Sim, J.; et al. Abstract 1721: TAC-001, a Toll-like Receptor 9 (TLR9) Agonist Antibody Conjugate Targeting B Cells, Promotes Anti-Tumor Immunity and Favorable Safety Profile Following Systemic Administration in Preclinical Models. Cancer Res. 2021, 81, 1721. [Google Scholar] [CrossRef]
- Harrabi, O.; Chen, A.; Sangalang, E.; Fontaine, D.; Li, M.; Pons, J.; Wan, H.; Sim, J.; Kuo, T. ALTA-002, a SIRPα-Directed TLR9 Agonist Antibody Conjugate Activates Myeloid Cells and Promotes Anti-Tumor Immunity. J. Immunother. Cancer 2021, 9, A815. [Google Scholar] [CrossRef]
- Hammond, S.M.; Abendroth, F.; Goli, L.; Burrell, M.; Thom, G.; Gurrell, I.; Stoodley, J.; Ahlskog, N.; Gait, M.J.; Wood, M.J.A.; et al. Systemic Antibody-Oligonucleotide Delivery to the Central Nervous System Ameliorates Mouse Models of Spinal Muscular Atrophy. Biorxiv 2021. [Google Scholar] [CrossRef]
- Sugo, T.; Terada, M.; Oikawa, T.; Miyata, K.; Nishimura, S.; Kenjo, E.; Ogasawara-Shimizu, M.; Makita, Y.; Imaichi, S.; Murata, S.; et al. Development of Antibody-SiRNA Conjugate Targeted to Cardiac and Skeletal Muscles. J. Control. Release 2016, 237, 1–13. [Google Scholar] [CrossRef]
- Bäumer, S.; Bäumer, N.; Appel, N.; Terheyden, L.; Fremerey, J.; Schelhaas, S.; Wardelmann, E.; Buchholz, F.; Berdel, W.E.; Müller-Tidow, C. Antibody-Mediated Delivery of Anti–KRAS-SiRNA In Vivo Overcomes Therapy Resistance in Colon Cancer. Clin. Cancer Res. 2015, 21, 1383–1394. [Google Scholar] [CrossRef]
- Bäumer, N.; Appel, N.; Terheyden, L.; Buchholz, F.; Rossig, C.; Müller-Tidow, C.; Berdel, W.E.; Bäumer, S. Antibody-Coupled SiRNA as an Efficient Method for in Vivo MRNA Knockdown. Nat. Protoc. 2016, 11, 22–36. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Zhang, X.; Pei, X.; Cao, W.; Ye, J.; Wang, J.; Sun, L.; Yu, F.; Wang, J.; Li, N.; et al. Antibody-SiRNA Conjugates (ARCs) Using Multifunctional Peptide as a Tumor Enzyme Cleavable Linker Mediated Effective Intracellular Delivery of SiRNA. Int. J. Pharm. 2021, 606, 120940. [Google Scholar] [CrossRef] [PubMed]
- Nanna, A.R.; Kel’in, A.V.; Theile, C.; Pierson, J.M.; Voo, Z.X.; Garg, A.; Nair, J.K.; Maier, M.A.; Fitzgerald, K.; Rader, C. Generation and Validation of Structurally Defined Antibody–SiRNA Conjugates. Nucleic. Acids Res. 2020, 48, 5281–5293. [Google Scholar] [CrossRef] [PubMed]
- Arnold, A.E.; Malek-Adamian, E.; Le, P.U.; Meng, A.; Martínez-Montero, S.; Petrecca, K.; Damha, M.J.; Shoichet, M.S. Antibody-Antisense Oligonucleotide Conjugate Downregulates a Key Gene in Glioblastoma Stem Cells. Mol. Nucleic Acids 2018, 11, 518–527. [Google Scholar] [CrossRef] [PubMed]
- Johnson, N.; Day, J.; Hamel, J.; Statland, J.; Subramony, S.H.; Arnold, W.D.; Thornton, C.; Wicklund, M.; Soltanzadeh, P.; Knisley, B.; et al. Study Design of AOC 1001-CS1, a Phase 1/2 Clinical Trial Evaluating the Safety, Tolerability, Pharmacokinetics and Pharmacodynamics of AOC 1001 Administered Intravenously to Adult Patients with Myotonic Dystrophy Type 1 (DM1) (MARINA) (S23.006). Neurology 2021, 98, 2711. [Google Scholar]
- Avidity Announces Positive AOC 1001 Phase 1/2 MARINATM Data Demonstrating First-Ever Successful Targeted Delivery of RNA to Muscle-Revolutionary Advancement for the Field of RNA Therapeutics. Available online: https://www.cnn.com/business/newsfeeds/prnewswire/202212140700PR_NEWS_USPR_____CL65043.html (accessed on 15 December 2022).
- Dyne Therapeutics Announces Initiation of Phase 1/2 ACHIEVE Clinical Trial of DYNE-101 for the Treatment of Myotonic Dystrophy Type 1. Available online: https://investors.dyne-tx.com/news-releases/news-release-details/dyne-therapeutics-announces-initiation-phase-12-achieve-clinical (accessed on 12 December 2022).
- Avidity Biosciences Announces Phase 1/2 EXPLORE44TM Trial of AOC 1044 for Duchenne Muscular Dystrophy Mutations Amenable to Exon 44 Skipping. Available online: https://www.prnewswire.com/news-releases/avidity-biosciences-announces-phase-12-explore44-trial-of-aoc-1044-for-duchenne-muscular-dystrophy-mutations-amenable-to-exon-44-skipping-301646531.html#:~:text=AOC%201044%20is%20currently%20in,exon%2045%20and%20exon%2051 (accessed on 12 December 2022).
- Dyne Therapeutics Receives FDA Fast Track Designation for DYNE-251 for the Treatment of Duchenne Muscular Dystrophy. Available online: https://www.globenewswire.com/news-release/2022/10/31/2544474/0/en/Dyne-Therapeutics-Receives-FDA-Fast-Track-Designation-for-DYNE-251-for-the-Treatment-of-Duchenne-Muscular-Dystrophy.html (accessed on 12 December 2022).
- Avidity Biosciences Announces the Phase 1/2 FORTITUDETM Trial of AOC 1020 in Adults with Facioscapulohumeral Muscular Dystrophy. Available online: https://www.prnewswire.com/news-releases/avidity-biosciences-announces-the-phase-12-fortitude-trial-of-aoc-1020-in-adults-with-facioscapulohumeral-muscular-dystrophy-301636385.html (accessed on 12 December 2022).
- Ibtehaj, N.; Huda, R. High-Dose BAFF Receptor Specific MAb-SiRNA Conjugate Generates Fas-Expressing B Cells in Lymph Nodes and High-Affinity Serum Autoantibody in a Myasthenia Mouse Model. Clin. Immunol. 2017, 176, 122–130. [Google Scholar] [CrossRef]
- Quijano, E.; Saucedo, D.M.; Khang, M.; Liu, Y.; Ludwig, D.; Turner, B.C.; Squinto, S.; Bindra, R.; Saltzman, W.M.; Escobar-Hoyos, L.; et al. Systemic Targeting of Therapeutic RNA to Cancer via a Novel, Cell-Penetrating and Nucleic Acid Binding, Monoclonal Antibody. Cancer Res. 2022, 82, 663. [Google Scholar] [CrossRef]
- Yamayoshi, A.; Oyama, S.; Kishimoto, Y.; Konishi, R.; Yamamoto, T.; Kobori, A.; Harada, H.; Ashihara, E.; Sugiyama, H.; Murakami, A. Development of Antibody–Oligonucleotide Complexes for Targeting Exosomal MicroRNA. Pharmaceutics 2020, 12, 545. [Google Scholar] [CrossRef]
- Yao, Y.; Sun, T.; Huang, S.; Dou, S.; Lin, L.; Chen, J.; Ruan, J.; Mao, C.; Yu, F.; Zeng, M.; et al. Targeted Delivery of PLK1-SiRNA by ScFv Suppresses Her2+ Breast Cancer Growth and Metastasis. Sci. Transl. Med. 2012, 4, 130ra48. [Google Scholar] [CrossRef]
- Shi, S.-J.; Wang, L.-J.; Han, D.-H.; Wu, J.-H.; Jiao, D.; Zhang, K.-L.; Chen, J.-W.; Li, Y.; Yang, F.; Zhang, J.-L.; et al. Therapeutic Effects of Human Monoclonal PSMA Antibody-Mediated TRIM24 SiRNA Delivery in PSMA-Positive Castration-Resistant Prostate Cancer. Theranostics 2019, 9, 1247–1263. [Google Scholar] [CrossRef]
- Secarna Pharmaceuticals and Denali Therapeutics Expand Strategic Partnership for the Discovery and Development of Novel ASO Therapeutics in the Field of CNS Diseases. Available online: https://www.secarna.com/?view=article&id=167&catid=8 (accessed on 12 December 2022).
- Khan, A.I.; Liu, J.; Dutta, P. Iron Transport Kinetics through Blood-Brain Barrier Endothelial Cells. Biochim. Et Biophys. Acta Bba Gen. Subj 2018, 1862, 1168–1179. [Google Scholar] [CrossRef]
- Hammond, S.M.; Hazell, G.; Shabanpoor, F.; Saleh, A.F.; Bowerman, M.; Sleigh, J.N.; Meijboom, K.E.; Zhou, H.; Muntoni, F.; Talbot, K.; et al. Systemic Peptide-Mediated Oligonucleotide Therapy Improves Long-Term Survival in Spinal Muscular Atrophy. Proc. Natl. Acad. Sci. USA 2016, 113, 10962–10967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Y.J.; Zhang, Y.; Kenrick, M.; Hoyte, K.; Luk, W.; Lu, Y.; Atwal, J.; Elliott, J.M.; Prabhu, S.; Watts, R.J.; et al. Boosting Brain Uptake of a Therapeutic Antibody by Reducing Its Affinity for a Transcytosis Target. Sci. Transl. Med. 2011, 3, 84ra44. [Google Scholar] [CrossRef] [PubMed]
- Lesley, J.; Schulte, R.; Woods, J. Modulation of Transferrin Receptor Expression and Function by Anti-Transferrin Receptor Antibodies and Antibody Fragments. Exp Cell Res. 1989, 182, 215–233. [Google Scholar] [CrossRef] [PubMed]
- Kariolis, M.S.; Wells, R.C.; Getz, J.A.; Kwan, W.; Mahon, C.S.; Tong, R.; Kim, D.J.; Srivastava, A.; Bedard, C.; Henne, K.R.; et al. Brain Delivery of Therapeutic Proteins Using an Fc Fragment Blood-Brain Barrier Transport Vehicle in Mice and Monkeys. Sci. Transl. Med. 2020, 12, eaay1359. [Google Scholar] [CrossRef] [PubMed]
- Ullman, J.C.; Arguello, A.; Getz, J.A.; Bhalla, A.; Mahon, C.S.; Wang, J.; Giese, T.; Bedard, C.; Kim, D.J.; Blumenfeld, J.R.; et al. Brain Delivery and Activity of a Lysosomal Enzyme Using a Blood-Brain Barrier Transport Vehicle in Mice. Sci. Transl. Med. 2020, 12, eaay1163. [Google Scholar] [CrossRef]
- Lucana, M.C.; Arruga, Y.; Petrachi, E.; Roig, A.; Lucchi, R.; Oller-Salvia, B. Protease-Resistant Peptides for Targeting and Intracellular Delivery of Therapeutics. Pharmaceutics 2021, 13, 2065. [Google Scholar] [CrossRef]
- Nakase, I.; Akita, H.; Kogure, K.; Graslund, A.; Langel, U.; Harashima, H.; Futaki, S. Efficient Intracellular Delivery of Nucleic Acid Pharmaceuticals Using Cell-Penetrating Peptides. Accounts Chem. Res. 2012, 45, 1132–1139. [Google Scholar] [CrossRef]
- Junghans, M.; Kreuter, J.; Zimmer, A. Antisense Delivery Using Protamine–Oligonucleotide Particles. Nucleic Acids Res. 2000, 28, e45. [Google Scholar] [CrossRef]
- Dinauer, N.; Lochmann, D.; Demirhan, I.; Bouazzaoui, A.; Zimmer, A.; Chandra, A.; Kreuter, J.; Briesen, H. von Intracellular Tracking of Protamine/Antisense Oligonucleotide Nanoparticles and Their Inhibitory Effect on HIV-1 Transactivation. J. Control. Release 2004, 96, 497–507. [Google Scholar] [CrossRef]
- Amantana, A.; Moulton, H.M.; Cate, M.L.; Reddy, M.T.; Whitehead, T.; Hassinger, J.N.; Youngblood, D.S.; Iversen, P.L. Pharmacokinetics, Biodistribution, Stability and Toxicity of a Cell-Penetrating Peptide−Morpholino Oligomer Conjugate. Bioconjugate Chem. 2007, 18, 1325–1331. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, J.M.; Fadzen, C.M.; Holden, R.L.; Yao, M.; Hanson, G.J.; Pentelute, B.L. Perfluoroaryl Bicyclic Cell-Penetrating Peptides for Delivery of Antisense Oligonucleotides. Angew. Chem.-Ger. Ed. 2018, 130, 4846–4849. [Google Scholar] [CrossRef] [Green Version]
- Youngblood, D.S.; Hatlevig, S.A.; Hassinger, J.N.; Iversen, P.L.; Moulton, H.M. Stability of Cell-Penetrating Peptide−Morpholino Oligomer Conjugates in Human Serum and in Cells. Bioconjugate Chem. 2007, 18, 50–60. [Google Scholar] [CrossRef]
- Yin, H.; Moulton, H.M.; Betts, C.; Seow, Y.; Boutilier, J.; Iverson, P.L.; Wood, M.J.A. A Fusion Peptide Directs Enhanced Systemic Dystrophin Exon Skipping and Functional Restoration in Dystrophin-Deficient Mdx Mice. Hum. Mol. Genet 2009, 18, 4405–4414. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Moulton, H.M.; Iversen, P.L.; Jiang, J.; Li, J.; Li, J.; Spurney, C.F.; Sali, A.; Guerron, A.D.; Nagaraju, K.; et al. Effective Rescue of Dystrophin Improves Cardiac Function in Dystrophin-Deficient Mice by a Modified Morpholino Oligomer. Proc. Natl. Acad. Sci. USA 2008, 105, 14814–14819. [Google Scholar] [CrossRef] [PubMed]
- Turner, J.J.; Ivanova, G.D.; Verbeure, B.; Williams, D.; Arzumanov, A.A.; Abes, S.; Lebleu, B.; Gait, M.J. Cell-Penetrating Peptide Conjugates of Peptide Nucleic Acids (PNA) as Inhibitors of HIV-1 Tat-Dependent Trans-Activation in Cells. Nucleic Acids Res. 2005, 33, 6837–6849. [Google Scholar] [CrossRef]
- Song, E.; Zhu, P.; Lee, S.-K.; Chowdhury, D.; Kussman, S.; Dykxhoorn, D.M.; Feng, Y.; Palliser, D.; Weiner, D.B.; Shankar, P.; et al. Antibody Mediated in Vivo Delivery of Small Interfering RNAs via Cell-Surface Receptors. Nat. Biotechnol. 2005, 23, 709–717. [Google Scholar] [CrossRef]
- Davidson, T.J.; Harel, S.; Arboleda, V.A.; Prunell, G.F.; Shelanski, M.L.; Greene, L.A.; Troy, C.M. Highly Efficient Small Interfering RNA Delivery to Primary Mammalian Neurons Induces MicroRNA-Like Effects before MRNA Degradation. J. Neurosci. 2004, 24, 10040–10046. [Google Scholar] [CrossRef]
- Yu, Z.; Ye, J.; Pei, X.; Sun, L.; Liu, E.; Wang, J.; Huang, Y.; Lee, S.J.; He, H. Improved Method for Synthesis of Low Molecular Weight Protamine–SiRNA Conjugate. Acta Pharm. Sin. B 2018, 8, 116–126. [Google Scholar] [CrossRef]
- Peer, D.; Zhu, P.; Carman, C.V.; Lieberman, J.; Shimaoka, M. Selective Gene Silencing in Activated Leukocytes by Targeting SiRNAs to the Integrin Lymphocyte Function-Associated Antigen-1. Proc. Natl. Acad. Sci. USA 2007, 104, 4095–4100. [Google Scholar] [CrossRef]
- Bäumer, N.; Berdel, W.E.; Bäumer, S. Immunoprotein-Mediated SiRNA Delivery. Mol. Pharm. 2017, 14, 1339–1351. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Ye, J.; Liu, E.; Liang, Q.; Liu, Q.; Yang, V.C. Low Molecular Weight Protamine (LMWP): A Nontoxic Protamine Substitute and an Effective Cell-Penetrating Peptide. J. Control. Release 2014, 193, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Pollard, A.J.; Bijker, E.M. A Guide to Vaccinology: From Basic Principles to New Developments. Nat. Rev. Immunol. 2021, 21, 83–100. [Google Scholar] [CrossRef] [PubMed]
- Slack, M.; Esposito, S.; Haas, H.; Mihalyi, A.; Nissen, M.; Mukherjee, P.; Harrington, L. Haemophilus Influenzae Type b Disease in the Era of Conjugate Vaccines: Critical Factors for Successful Eradication. Expert. Rev. Vaccines 2020, 19, 903–917. [Google Scholar] [CrossRef] [PubMed]
- Slack, M.P.E. Long Term Impact of Conjugate Vaccines on Haemophilus Influenzae Meningitis: Narrative Review. Microorganisms 2021, 9, 886. [Google Scholar] [CrossRef]
- Slack, M.P.E.; Cripps, A.W.; Grimwood, K.; Mackenzie, G.A.; Ulanova, M. Invasive Haemophilus Influenzae Infections after 3 Decades of Hib Protein Conjugate Vaccine Use. Clin. Microbiol. Rev. 2021, 34, e00028-21. [Google Scholar] [CrossRef]
- Kayhty, R.; Peltola, H.; Karanko, V.; Makela, P.H. The Protective Level of Serum Antibodies to the Capsular Polysaccharide of Haemophilus Influenzae Type b. J. Infect. Dis. 1983, 147, 1100. [Google Scholar] [CrossRef]
- O’Brien, K.L.; Steinhoff, M.C.; Edwards, K.; Keyserling, H.; Thoms, M.L.; Madore, D. Immunologic Priming of Young Children by Pneumococcal Glycoprotein Conjugate, but Not Polysaccharide, Vaccines. Pediatr. Infect. Dis. J. 1996, 15, 425–430. [Google Scholar] [CrossRef]
- Pittman, M. Variation and type specificity in the bacterial species hemophilus influenzae. J. Exp. Med. 1931, 53, 471–492. [Google Scholar] [CrossRef]
- Eskola, J.; Peltola, H.; Takala, A.K.; Käyhty, H.; Hakulinen, M.; Karanko, V.; Kela, E.; Rekola, P.; Rönnberg, P.-R.; Samuelson, J.S.; et al. Efficacy of Haemophilus Iinfluenzae Type b Polysaccharide–Diphtheria Toxoid Conjugate Vaccine in Infancy. N. Engl. J. Med. 1987, 317, 717–722. [Google Scholar] [CrossRef]
- Anderson, P.; Pichichero, M.E.; Insel, R.A. Immunization of 2-Month-Old Infants with Protein-Coupled Oligosaccharides Derived from the Capsule of Haemophilus Influenzae Type b. J. Pediatr. 1985, 107, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Ladhani, S.N. Two Decades of Experience with the Haemophilus Influenzae Serotype b Conjugate Vaccine in the United Kingdom. Clin. Ther. 2012, 34, 385–399. [Google Scholar] [CrossRef] [PubMed]
- Schneerson, R.; Barrera, O.; Sutton, A.; Robbins, J.B. Preparation, Characterization, and Immunogenicity of Haemophilus Influenzae Type b Polysaccharide-Protein Conjugates. J. Exp. Med. 1980, 152, 361–376. [Google Scholar] [CrossRef]
- Micoli, F.; Adamo, R.; Costantino, P. Protein Carriers for Glycoconjugate Vaccines: History, Selection Criteria, Characterization and New Trends. Molecules 2018, 23, 1451. [Google Scholar] [CrossRef] [PubMed]
- Giannini, G.; Rappuoli, R.; Ratti, G. The Amino-Acid Sequence of Two Non-Toxic Mutants of Diphtheria Toxin: CRM45 and CRM197. Nucleic. Acids Res. 1984, 12, 4063–4069. [Google Scholar] [CrossRef]
- Forsgren, A.; Riesbeck, K.; Janson, H. Protein D of Haemophilus Influenzae: A Protective Nontypeable H. Influenzae Antigen and a Carrier for Pneumococcal Conjugate Vaccines. Clin. Infect. Dis. 2008, 46, 726–731. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, J.J.; Deck, R.R.; Liu, M.A. Immunogenicity of a Haemophilus Influenzae Polysaccharide-Neisseria Meningitidis Outer Membrane Protein Complex Conjugate Vaccine. J. Immunol. Baltim. Md. 1990, 145, 3071–3079. [Google Scholar] [CrossRef]
- Kilpi, T.; Ahman, H.; Jokinen, J.; Lankinen, K.S.; Palmu, A.; Savolainen, H.; Grönholm, M.; Leinonen, M.; Hovi, T.; Eskola, J.; et al. Protective Efficacy of a Second Pneumococcal Conjugate Vaccine against Pneumococcal Acute Otitis Media in Infants and Children: Randomized, Controlled Trial of a 7-Valent Pneumococcal Polysaccharide-Meningococcal Outer Membrane Protein Complex Conjugate Vaccine in 1666 Children. Clin. Infect. Dis. 2003, 37, 1155–1164. [Google Scholar] [CrossRef]
- Scelfo, C.; Menzella, F.; Fontana, M.; Ghidoni, G.; Galeone, C.; Facciolongo, N.C. Pneumonia and Invasive Pneumococcal Diseases: The Role of Pneumococcal Conjugate Vaccine in the Era of Multi-Drug Resistance. Vaccines 2021, 9, 420. [Google Scholar] [CrossRef]
- Principi, N.; Esposito, S. Development of Pneumococcal Vaccines over the Last 10 Years. Expert Opin. Biol. Ther. 2018, 18, 7–17. [Google Scholar] [CrossRef]
- World Health Organization. Pneumococcal Conjugate Vaccines in Infants and Children under 5 Years of Age: WHO Position Paper–February 2019. Wkly. Epidemiol. Rec. 2019, 8, 85–104. [Google Scholar]
- Bröker, M.; Berti, F.; Schneider, J.; Vojtek, I. Polysaccharide Conjugate Vaccine Protein Carriers as a “Neglected Valency”–Potential and Limitations. Vaccine 2017, 35, 3286–3294. [Google Scholar] [CrossRef]
- Michon, F.; Fusco, P.C.; Minetti, C.A.S.A.; Laude-Sharp, M.; Uitz, C.; Huang, C.-H.; D’Ambra, A.J.; Moore, S.; Remeta, D.P.; Heron, I.; et al. Multivalent Pneumococcal Capsular Polysaccharide Conjugate Vaccines Employing Genetically Detoxified Pneumolysin as a Carrier Protein. Vaccine 1998, 16, 1732–1741. [Google Scholar] [CrossRef] [PubMed]
- Pozzi, C.; Wilk, K.; Lee, J.C.; Gening, M.; Nifantiev, N.; Pier, G.B. Opsonic and Protective Properties of Antibodies Raised to Conjugate Vaccines Targeting Six Staphylococcus Aureus Antigens. PLoS ONE 2012, 7, e46648. [Google Scholar] [CrossRef] [PubMed]
- Wacker, M.; Wang, L.; Kowarik, M.; Dowd, M.; Lipowsky, G.; Faridmoayer, A.; Shields, K.; Park, S.; Alaimo, C.; Kelley, K.A.; et al. Prevention of Staphylococcus Aureus Infections by Glycoprotein Vaccines Synthesized in Escherichia Coli. J. Infect. Dis. 2014, 209, 1551–1561. [Google Scholar] [CrossRef]
- Fattom, A.; Schneerson, R.; Watson, D.C.; Karakawa, W.W.; Fitzgerald, D.; Pastan, I.; Li, X.; Shiloach, J.; Bryla, D.A.; Robbins, J.B. Laboratory and Clinical Evaluation of Conjugate Vaccines Composed of Staphylococcus Aureus Type 5 and Type 8 Capsular Polysaccharides Bound to Pseudomonas Aeruginosa Recombinant Exoprotein A. Infect. Immun. 1993, 61, 1023–1032. [Google Scholar] [CrossRef]
- Kossaczka, Z.; Lin, F.Y.; Ho, V.A.; Thuy, N.T.; Bay, P.V.; Thanh, T.C.; Khiem, H.B.; Trach, D.D.; Karpas, A.; Hunt, S.; et al. Safety and Immunogenicity of Vi Conjugate Vaccines for Typhoid Fever in Adults, Teenagers, and 2- to 4-Year-Old Children in Vietnam. Infect. Immun. 1999, 67, 5806–5810. [Google Scholar] [CrossRef]
- Szu, S.C.; Stone, A.L.; Robbins, J.D.; Schneerson, R.; Robbins, J.B. Vi Capsular Polysaccharide-Protein Conjugates for Prevention of Typhoid Fever. Preparation, Characterization, and Immunogenicity in Laboratory Animals. J. Exp. Med. 1987, 166, 1510–1524. [Google Scholar] [CrossRef]
- Berti, F.; Adamo, R. Antimicrobial Glycoconjugate Vaccines: An Overview of Classic and Modern Approaches for Protein Modification. Chem. Soc. Rev. 2018, 47, 9015–9025. [Google Scholar] [CrossRef]
- Pulendran, B.; Arunachalam, P.S.; O’Hagan, D.T. Emerging Concepts in the Science of Vaccine Adjuvants. Nat. Rev. Drug Discov. 2021, 20, 454–475. [Google Scholar] [CrossRef]
- Lang, S.; Huang, X. Carbohydrate Conjugates in Vaccine Developments. Front. Chem. 2020, 8, 284. [Google Scholar] [CrossRef] [PubMed]
- Rappuoli, R. Glycoconjugate Vaccines: Principles and Mechanisms. Sci. Transl. Med. 2018, 10, eaat4615. [Google Scholar] [CrossRef]
- Trattnig, N.; Li, Z.; Bosman, G.P.; Kosma, P.; Boons, G. Site-Specific Multi-Functionalization of the Carrier Protein CRM197 by Disulfide Rebridging for Conjugate Vaccine Development. Chembiochem 2022, 23, e202200408. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wu, C. Site-Specific Conjugation of Polymers to Proteins. Biomacromolecules 2018, 19, 1804–1825. [Google Scholar] [CrossRef] [PubMed]
- Ochtrop, P.; Hackenberger, C.P.R. Recent Advances of Thiol-Selective Bioconjugation Reactions. Curr. Opin. Chem. Biol. 2020, 58, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Chudasama, V.; Smith, M.E.B.; Schumacher, F.F.; Papaioannou, D.; Waksman, G.; Baker, J.R.; Caddick, S. Bromopyridazinedione-Mediated Protein and Peptide Bioconjugation† †Electronic Supplementary Information (ESI) Available: Full Experimental Details and Characterisation. Chem. Commun. Camb Engl. 2011, 47, 8781–8783. [Google Scholar] [CrossRef] [PubMed]
- Lakshminarayanan, V.; Thompson, P.; Wolfert, M.A.; Buskas, T.; Bradley, J.M.; Pathangey, L.B.; Madsen, C.S.; Cohen, P.A.; Gendler, S.J.; Boons, G.-J. Immune Recognition of Tumor-Associated Mucin MUC1 Is Achieved by a Fully Synthetic Aberrantly Glycosylated MUC1 Tripartite Vaccine. Proc. Natl. Acad. Sci. USA 2012, 109, 261–266. [Google Scholar] [CrossRef]
- Ganapathi, L.; Haren, S.V.; Dowling, D.J.; Bergelson, I.; Shukla, N.M.; Malladi, S.S.; Balakrishna, R.; Tanji, H.; Ohto, U.; Shimizu, T.; et al. The Imidazoquinoline Toll-Like Receptor-7/8 Agonist Hybrid-2 Potently Induces Cytokine Production by Human Newborn and Adult Leukocytes. PLoS ONE 2015, 10, e0134640. [Google Scholar] [CrossRef]
- Duthie, M.S.; Windish, H.P.; Fox, C.B.; Reed, S.G. Use of Defined TLR Ligands as Adjuvants within Human Vaccines. Immunol. Rev. 2011, 239, 178–196. [Google Scholar] [CrossRef]
- Wu, T.Y.-H.; Singh, M.; Miller, A.T.; Gregorio, E.D.; Doro, F.; D’Oro, U.; Skibinski, D.A.G.; Mbow, M.L.; Bufali, S.; Herman, A.E.; et al. Rational Design of Small Molecules as Vaccine Adjuvants. Sci. Transl. Med. 2014, 6, 263ra160. [Google Scholar] [CrossRef]
- Kapoor, N.; Uchiyama, S.; Pill, L.; Bautista, L.; Sedra, A.; Yin, L.; Regan, M.; Chu, E.; Rabara, T.; Wong, M.; et al. Non-Native Amino Acid Click Chemistry-Based Technology for Site-Specific Polysaccharide Conjugation to a Bacterial Protein Serving as Both Carrier and Vaccine Antigen. ACS Omega 2022, 7, 24111–24120. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhao, Y.; Wang, G.; Feng, S.; Guo, Z.; Gu, G. Group A Streptococcus Cell Wall Oligosaccharide-Streptococcal C5a Peptidase Conjugates as Effective Antibacterial Vaccines. ACS Infect Dis. 2020, 6, 281–290. [Google Scholar] [CrossRef]
- Gao, N.J.; Uchiyama, S.; Pill, L.; Dahesh, S.; Olson, J.; Bautista, L.; Maroju, S.; Berges, A.; Liu, J.Z.; Zurich, R.H.; et al. Site-Specific Conjugation of Cell Wall Polyrhamnose to Protein SpyAD Envisioning a Safe Universal Group A Streptococcal Vaccine. Infect Microbes Dis. 2020, 3, 87–100. [Google Scholar] [CrossRef]
- van Sorge, N.M.; Cole, J.N.; Kuipers, K.; Henningham, A.; Aziz, R.K.; Kasirer-Friede, A.; Lin, L.; Berends, E.T.M.; Davies, M.R.; Dougan, G.; et al. The Classical Lancefield Antigen of Group a Streptococcus Is a Virulence Determinant with Implications for Vaccine Design. Cell Host Microbe 2014, 15, 729–740. [Google Scholar] [CrossRef] [PubMed]
- Sabharwal, H.; Michon, F.; Nelson, D.; Dong, W.; Fuchs, K.; Manjarrez, R.C.; Sarkar, A.; Uitz, C.; Viteri-Jackson, A.; Suarez, R.S.R.; et al. Group A Streptococcus (GAS) Carbohydrate as an Immunogen for Protection against GAS Infection. J. Infect. Dis. 2006, 193, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Fairman, J.; Agarwal, P.; Barbanel, S.; Behrens, C.; Berges, A.; Burky, J.; Davey, P.; Fernsten, P.; Grainger, C.; Guo, S.; et al. Non-Clinical Immunological Comparison of a Next-Generation 24-Valent Pneumococcal Conjugate Vaccine (VAX-24) Using Site-Specific Carrier Protein Conjugation to the Current Standard of Care (PCV13 and PPV23). Vaccine 2021, 39, 3197–3206. [Google Scholar] [CrossRef]
- Guo, M.; Guo, X.; Zhang, C.; Zhu, S.; Zhang, Y.; Gu, T.; Kong, W.; Wu, Y. Novel Pneumococcal Protein-Polysaccharide Conjugate Vaccine Based on Biotin-Streptavidin. Infect. Immun. 2021, 90, e00352-21. [Google Scholar] [CrossRef]
- Yamamoto, T.; Aoki, K.; Sugiyama, A.; Doi, H.; Kodama, T.; Shimizu, Y.; Kanai, M. Design and Synthesis of Biotin Analogues Reversibly Binding with Streptavidin. Chem.-Asian J. 2015, 10, 1071–1078. [Google Scholar] [CrossRef]
- Deshpande, N.U.; Jayakannan, M. Biotin-Tagged Polysaccharide Vesicular Nanocarriers for Receptor-Mediated Anticancer Drug Delivery in Cancer Cells. Biomacromolecules 2018, 19, 3572–3585. [Google Scholar] [CrossRef]
- Komarova, B.S.; Orekhova, M.V.; Tsvetkov, Y.E.; Beau, R.; Aimanianda, V.; Latgé, J.; Nifantiev, N.E. Synthesis of a Pentasaccharide and Neoglycoconjugates Related to Fungal A-(1→3)-Glucan and Their Use in the Generation of Antibodies to Trace Aspergillus Fumigatus Cell Wall. Chem. Eur. J. 2015, 21, 921. [Google Scholar] [CrossRef]
- Huttner, A.; Hatz, C.; van den Dobbelsteen, G.; Abbanat, D.; Hornacek, A.; Frölich, R.; Dreyer, A.M.; Martin, P.; Davies, T.; Fae, K.; et al. Safety, Immunogenicity, and Preliminary Clinical Efficacy of a Vaccine against Extraintestinal Pathogenic Escherichia Coli in Women with a History of Recurrent Urinary Tract Infection: A Randomised, Single-Blind, Placebo-Controlled Phase 1b Trial. Lancet Infect. Dis. 2017, 17, 528–537. [Google Scholar] [CrossRef] [PubMed]
- Hatz, C.F.R.; Bally, B.; Rohrer, S.; Steffen, R.; Kramme, S.; Siegrist, C.-A.; Wacker, M.; Alaimo, C.; Fonck, V.G. Safety and Immunogenicity of a Candidate Bioconjugate Vaccine against Shigella Dysenteriae Type 1 Administered to Healthy Adults: A Single Blind, Partially Randomized Phase I Study. Vaccine 2015, 33, 4594–4601. [Google Scholar] [CrossRef] [PubMed]
- Riddle, M.S.; Kaminski, R.W.; Paolo, C.D.; Porter, C.K.; Gutierrez, R.L.; Clarkson, K.A.; Weerts, H.E.; Duplessis, C.; Castellano, A.; Alaimo, C.; et al. Safety and Immunogenicity of a Candidate Bioconjugate Vaccine against Shigella Flexneri 2a Administered to Healthy Adults: A Single-Blind, Randomized Phase I Study. Clin. Vaccine Immunol. 2016, 23, 908–917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, C.; Sun, P.; Liu, B.; Liang, H.; Peng, Z.; Dong, Y.; Wang, D.; Liu, X.; Wang, B.; Zeng, M.; et al. Biosynthesis of Conjugate Vaccines Using an O-Linked Glycosylation System. Mbio 2016, 7, e00443-16. [Google Scholar] [CrossRef] [PubMed]
- Feldman, M.F.; Wacker, M.; Hernandez, M.; Hitchen, P.G.; Marolda, C.L.; Kowarik, M.; Morris, H.R.; Dell, A.; Valvano, M.A.; Aebi, M. Engineering N-Linked Protein Glycosylation with Diverse O Antigen Lipopolysaccharide Structures in Escherichia Coli. Proc. Natl. Acad. Sci. USA 2005, 102, 3016–3021. [Google Scholar] [CrossRef]
- Faridmoayer, A.; Fentabil, M.A.; Mills, D.C.; Klassen, J.S.; Feldman, M.F. Functional Characterization of Bacterial Oligosaccharyltransferases Involved in O-Linked Protein Glycosylation. J. Bacteriol. 2007, 189, 8088–8098. [Google Scholar] [CrossRef]
- Hug, I.; Feldman, M.F. Analogies and Homologies in Lipopolysaccharide and Glycoprotein Biosynthesis in Bacteria. Glycobiology 2011, 21, 138–151. [Google Scholar] [CrossRef]
- Wacker, M.; Linton, D.; Hitchen, P.G.; Nita-Lazar, M.; Haslam, S.M.; North, S.J.; Panico, M.; Morris, H.R.; Dell, A.; Wren, B.W.; et al. N-Linked Glycosylation in Campylobacter Jejuni and Its Functional Transfer into E. Coli. Science 2002, 298, 1790–1793. [Google Scholar] [CrossRef]
- Costantino, P. Antifungal Glycoconjugate Vaccines. Recent Trends Carbohydr. Chem. 2020, 315–334. [Google Scholar] [CrossRef]
- Li, X.; Pan, C.; Sun, P.; Peng, Z.; Feng, E.; Wu, J.; Wang, H.; Zhu, L. Orthogonal Modular Biosynthesis of Nanoscale Conjugate Vaccines for Vaccination against Infection. Nano Res. 2022, 15, 1645–1653. [Google Scholar] [CrossRef]
- Gregorio, E.D.; Rappuoli, R. From Empiricism to Rational Design: A Personal Perspective of the Evolution of Vaccine Development. Nat. Rev. Immunol. 2014, 14, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.T.; Hawes, A.K.; Bundy, B.C. Reengineering Viruses and Virus-like Particles through Chemical Functionalization Strategies. Curr. Opin. Biotech. 2013, 24, 620–626. [Google Scholar] [CrossRef] [PubMed]
- Pushko, P.; Pumpens, P.; Grens, E. Development of Virus-Like Particle Technology from Small Highly Symmetric to Large Complex Virus-Like Particle Structures. Intervirology 2013, 56, 141–165. [Google Scholar] [CrossRef] [PubMed]
- Mateu, M.G. Virus Engineering: Functionalization and Stabilization. Protein Eng. Des. Sel. 2011, 24, 53–63. [Google Scholar] [CrossRef]
- Sletten, E.M.; Bertozzi, C.R. Bioorthogonal Chemistry: Fishing for Selectivity in a Sea of Functionality. Angew. Chem. Int. Ed. 2009, 48, 6974–6998. [Google Scholar] [CrossRef]
- Strable, E.; Finn, M.G. Chemical Modification of Viruses and Virus-like Particles. Curr. Top. Microbiol. 2009, 327, 1–21. [Google Scholar] [CrossRef]
- Li, L.; Fierer, J.O.; Rapoport, T.A.; Howarth, M. Structural Analysis and Optimization of the Covalent Association between SpyCatcher and a Peptide Tag. J. Mol. Biol. 2014, 426, 309–317. [Google Scholar] [CrossRef]
- Zakeri, B.; Fierer, J.O.; Celik, E.; Chittock, E.C.; Schwarz-Linek, U.; Moy, V.T.; Howarth, M. Peptide Tag Forming a Rapid Covalent Bond to a Protein, through Engineering a Bacterial Adhesin. Proc. Natl. Acad. Sci. USA 2012, 109, E690–E697. [Google Scholar] [CrossRef]
- A Phase 3 Trial of the VLP-Based Chikungunya Vaccine PXVX0317. Available online: https://clinicaltrials.gov/ct2/show/record/NCT05072080 (accessed on 15 December 2022).
- Molineux, G. The Design and Development of Pegfilgrastim (PEG-RmetHuG-CSF, Neulasta). Curr. Pharm. Des. 2004, 10, 1235–1244. [Google Scholar] [CrossRef]
- Kourlaba, G.; Dimopoulos, M.A.; Pectasides, D.; Skarlos, D.V.; Gogas, H.; Pentheroudakis, G.; Koutras, A.; Fountzilas, G.; Maniadakis, N. Comparison of Filgrastim and Pegfilgrastim to Prevent Neutropenia and Maintain Dose Intensity of Adjuvant Chemotherapy in Patients with Breast Cancer. Support Care Cancer 2015, 23, 2045–2051. [Google Scholar] [CrossRef]
- Staton, T. The Top 10 Patent Losses of 2015. Available online: https://www.fiercepharma.com/special-report/top-10-patent-losses-of-2015 (accessed on 15 December 2022).
- Wang, Y.-S.; Youngster, S.; Grace, M.; Bausch, J.; Bordens, R.; Wyss, D.F. Structural and Biological Characterization of Pegylated Recombinant Interferon Alpha-2b and Its Therapeutic Implications. Adv. Drug Deliver. Rev. 2002, 54, 547–570. [Google Scholar] [CrossRef] [PubMed]
- Kurre, H.A.; Ettinger, A.G.; Veenstra, D.L.; Gaynon, P.S.; Franklin, J.; Sencer, S.F.; Reaman, G.H.; Lange, B.J.; Holcenberg, J.S. A Pharmacoeconomic Analysis of Pegaspargase Versus Native Escherichia Coli L-Asparaginase for the Treatment of Children with Standard-Risk, Acute Lymphoblastic Leukemia: The Children’s Cancer Group Study (CCG-1962). J. Pediatr. Hematol. Oncol. 2002, 24, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Grevys, A.; Frick, R.; Mester, S.; Flem-Karlsen, K.; Nilsen, J.; Foss, S.; Sand, K.M.K.; Emrich, T.; Fischer, J.A.A.; Greiff, V.; et al. Antibody Variable Sequences Have a Pronounced Effect on Cellular Transport and Plasma Half-Life. Iscience 2022, 25, 103746. [Google Scholar] [CrossRef]
- Strohl, W.R. Fusion Proteins for Half-Life Extension of Biologics as a Strategy to Make Biobetters. Biodrugs 2015, 29, 215–239. [Google Scholar] [CrossRef] [PubMed]
- Claassen, J.L.; Kobayashi, R.H.; Kobayashi, A.L.; Hershfield, M.S.; Schiff, R.I.; Buckley, R.H. 276 Antigen-Specific Humoral and Cellular Immune Responses during Treatment of Adenosine Deaminase Deficient Severe Combined Immunodeficiency (ADA-SCID) with Polyethylene Glycol-Modified Bovine Adenosine Deaminase (PEG-ADA). J. Allergy Clin. Immun. 1988, 81, 237. [Google Scholar] [CrossRef]
- Davis, S.; Abuchowski, A.; Park, Y.K.; Davis, F.F. Alteration of the Circulating Life and Antigenic Properties of Bovine Adenosine Deaminase in Mice by Attachment of Polyethylene Glycol. Clin. Exp. Immunol. 1981, 46, 649–652. [Google Scholar] [PubMed]
- Basu, A.; Yang, K.; Wang, M.; Liu, S.; Chintala, R.; Palm, T.; Zhao, H.; Peng, P.; Wu, D.; Zhang, Z.; et al. Structure−Function Engineering of Interferon-β-1b for Improving Stability, Solubility, Potency, Immunogenicity, and Pharmacokinetic Properties by Site-Selective Mono-PEGylation. Bioconjugate Chem. 2006, 17, 618–630. [Google Scholar] [CrossRef]
- Katre, N.V.; Knauf, M.J.; Laird, W.J. Chemical Modification of Recombinant Interleukin 2 by Polyethylene Glycol Increases Its Potency in the Murine Meth A Sarcoma Model. Proc. Natl. Acad. Sci. USA 1987, 84, 1487–1491. [Google Scholar] [CrossRef]
- Rajan, R.S.; Li, T.; Aras, M.; Sloey, C.; Sutherland, W.; Arai, H.; Briddell, R.; Kinstler, O.; Lueras, A.M.K.; Zhang, Y.; et al. Modulation of Protein Aggregation by Polyethylene Glycol Conjugation: GCSF as a Case Study. Protein Sci. 2006, 15, 1063–1075. [Google Scholar] [CrossRef]
- Roque, C.; Sheung, A.; Rahman, N.; Ausar, S.F. Effect of Polyethylene Glycol Conjugation on Conformational and Colloidal Stability of a Monoclonal Antibody Antigen-Binding Fragment (Fab′). Mol. Pharmaceut. 2015, 12, 562–575. [Google Scholar] [CrossRef]
- Rodríguez-Martínez, J.A.; Solá, R.J.; Castillo, B.; Cintrón-Colón, H.R.; Rivera-Rivera, I.; Barletta, G.; Griebenow, K. Stabilization of A-chymotrypsin upon PEGylation Correlates with Reduced Structural Dynamics. Biotechnol. Bioeng. 2008, 101, 1142–1149. [Google Scholar] [CrossRef] [PubMed]
- Nie, Y.; Zhang, X.; Wang, X.; Chen, J. Preparation and Stability of N-Terminal Mono-PEGylated Recombinant Human Endostatin. Bioconjugate Chem. 2006, 17, 995–999. [Google Scholar] [CrossRef] [PubMed]
- Narasimhan, D.; Collins, G.T.; Nance, M.R.; Nichols, J.; Edwald, E.; Chan, J.; Ko, M.-C.; Woods, J.H.; Tesmer, J.J.G.; Sunahara, R.K. Subunit Stabilization and Polyethylene Glycolation of Cocaine Esterase Improves In Vivo Residence Time. Mol. Pharm. 2011, 80, 1056–1065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grigoletto, A.; Mero, A.; Zanusso, I.; Schiavon, O.; Pasut, G. Chemical and Enzymatic Site Specific PEGylation of HGH: The Stability and in Vivo Activity of PEG-N-Terminal-hGH and PEG-Gln141-hGH Conjugates. Macromol. Biosci. 2016, 16, 50–56. [Google Scholar] [CrossRef]
- Natalello, A.; Ami, D.; Collini, M.; D’Alfonso, L.; Chirico, G.; Tonon, G.; Scaramuzza, S.; Schrepfer, R.; Doglia, S.M. Biophysical Characterization of Met-G-CSF: Effects of Different Site-Specific Mono-Pegylations on Protein Stability and Aggregation. PLoS ONE 2012, 7, e42511. [Google Scholar] [CrossRef]
- Chen, B.-M.; Cheng, T.-L.; Roffler, S.R. Polyethylene Glycol Immunogenicity: Theoretical, Clinical, and Practical Aspects of Anti-Polyethylene Glycol Antibodies. ACS Nano 2021, 15, 14022–14048. [Google Scholar] [CrossRef]
- Yang, Q.; Jacobs, T.M.; McCallen, J.D.; Moore, D.T.; Huckaby, J.T.; Edelstein, J.N.; Lai, S.K. Analysis of Pre-Existing IgG and IgM Antibodies against Polyethylene Glycol (PEG) in the General Population. Anal. Chem. 2016, 88, 11804–11812. [Google Scholar] [CrossRef]
- Lipsky, P.E.; Calabrese, L.H.; Kavanaugh, A.; Sundy, J.S.; Wright, D.; Wolfson, M.; Becker, M.A. Pegloticase Immunogenicity: The Relationship between Efficacy and Antibody Development in Patients Treated for Refractory Chronic Gout. Arthritis Res. 2014, 16, R60. [Google Scholar] [CrossRef]
- Armstrong, J.K.; Hempel, G.; Koling, S.; Chan, L.S.; Fisher, T.; Meiselman, H.J.; Garratty, G. Antibody against Poly(Ethylene Glycol) Adversely Affects PEG-asparaginase Therapy in Acute Lymphoblastic Leukemia Patients. Cancer 2007, 110, 103–111. [Google Scholar] [CrossRef]
- Ju, Y.; Lee, W.S.; Pilkington, E.H.; Kelly, H.G.; Li, S.; Selva, K.J.; Wragg, K.M.; Subbarao, K.; Nguyen, T.H.O.; Rowntree, L.C.; et al. Anti-PEG Antibodies Boosted in Humans by SARS-CoV-2 Lipid Nanoparticle MRNA Vaccine. ACS Nano 2022, 16, 11769–11780. [Google Scholar] [CrossRef]
- Yamaoka, T.; Tabata, Y.; Ikada, Y. Distribution and Tissue Uptake of Poly(Ethylene Glycol) with Different Molecular Weights after Intravenous Administration to Mice. J. Pharm. Sci. 1994, 83, 601–606. [Google Scholar] [CrossRef]
- Baumann, A.; Tuerck, D.; Prabhu, S.; Dickmann, L.; Sims, J. Pharmacokinetics, Metabolism and Distribution of PEGs and PEGylated Proteins: Quo Vadis? Drug Discov. Today 2014, 19, 1623–1631. [Google Scholar] [CrossRef] [PubMed]
- Podobnik, B.; Helk, B.; Smilović, V.; Škrajnar, S.; Fidler, K.; Jevševar, S.; Godwin, A.; Williams, P. Conjugation of PolyPEG to Interferon Alpha Extends Serum Half-Life While Maintaining Low Viscosity of the Conjugate. Bioconjugate Chem. 2015, 26, 452–459. [Google Scholar] [CrossRef]
- Qi, Y.; Simakova, A.; Ganson, N.J.; Li, X.; Luginbuhl, K.M.; Ozer, I.; Liu, W.; Hershfield, M.S.; Matyjaszewski, K.; Chilkoti, A. A Brush-Polymer/Exendin-4 Conjugate Reduces Blood Glucose Levels for up to Five Days and Eliminates Poly(Ethylene Glycol) Antigenicity. Nat. Biomed. Eng. 2016, 1, 2. [Google Scholar] [CrossRef] [PubMed]
- Ozer, I.; Kelly, G.; Gu, R.; Li, X.; Zakharov, N.; Sirohi, P.; Nair, S.K.; Collier, J.H.; Hershfield, M.S.; Hucknall, A.M.; et al. Polyethylene Glycol-Like Brush Polymer Conjugate of a Protein Drug Does Not Induce an Antipolymer Immune Response and Has Enhanced Pharmacokinetics than Its Polyethylene Glycol Counterpart. Adv. Sci. 2022, 9, 2103672. [Google Scholar] [CrossRef]
- Yoshikawa, C.; Qiu, J.; Huang, C.-F.; Shimizu, Y.; Suzuki, J.; Bosch, E. van den Non-Biofouling Property of Well-Defined Concentrated Polymer Brushes. Colloids Surf. B Biointerfaces 2015, 127, 213–220. [Google Scholar] [CrossRef]
- Viegas, T.X.; Bentley, M.D.; Harris, J.M.; Fang, Z.; Yoon, K.; Dizman, B.; Weimer, R.; Mero, A.; Pasut, G.; Veronese, F.M. Polyoxazoline: Chemistry, Properties, and Applications in Drug Delivery. Bioconjugate Chem. 2011, 22, 976–986. [Google Scholar] [CrossRef] [PubMed]
- Berteau, C.; Filipe-Santos, O.; Wang, T.; Rojas, H.E.; Granger, C.; Schwarzenbach, F. Evaluation of the Impact of Viscosity, Injection Volume, and Injection Flow Rate on Subcutaneous Injection Tolerance. Med. Devices Auckl. N. Z. 2015, 8, 473–484. [Google Scholar] [CrossRef]
- Hoogenboom, R.; Schlaad, H. Thermoresponsive Poly(2-Oxazoline)s, Polypeptoids, and Polypeptides. Polym. Chem. 2016, 8, 24–40. [Google Scholar] [CrossRef]
- Ladd, J.; Zhang, Z.; Chen, S.; Hower, J.C.; Jiang, S. Zwitterionic Polymers Exhibiting High Resistance to Nonspecific Protein Adsorption from Human Serum and Plasma. Biomacromolecules 2008, 9, 1357–1361. [Google Scholar] [CrossRef]
- Lewis, A.; Tang, Y.; Brocchini, S.; Choi, J.; Godwin, A. Poly(2-Methacryloyloxyethyl Phosphorylcholine) for Protein Conjugation. Bioconjugate Chem. 2008, 19, 2144–2155. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Yuan, Z.; Zhang, P.; Jiang, S. Zwitterlation Mitigates Protein Bioactivity Loss in Vitro over PEGylation. Chem. Sci. 2018, 9, 8561–8566. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Jiang, S. Zwitterionic Polymer-Protein Conjugates Reduce Polymer-Specific Antibody Response. Nano Today 2016, 11, 285–291. [Google Scholar] [CrossRef] [Green Version]
- Tsao, C.; Zhang, P.; Yuan, Z.; Dong, D.; Wu, K.; Niu, L.; McMullen, P.; Luozhong, S.; Hung, H.-C.; Cheng, Y.-H.; et al. Zwitterionic Polymer Conjugated Glucagon-like Peptide-1 for Prolonged Glycemic Control. Bioconjugate Chem. 2020, 31, 1812–1819. [Google Scholar] [CrossRef]
- Xie, J.; Lu, Y.; Wang, W.; Zhu, H.; Wang, Z.; Cao, Z. Simple Protein Modification Using Zwitterionic Polymer to Mitigate the Bioactivity Loss of Conjugated Insulin. Adv. Health Mater. 2017, 6, 1601428. [Google Scholar] [CrossRef]
- Li, B.; Jain, P.; Ma, J.; Smith, J.K.; Yuan, Z.; Hung, H.-C.; He, Y.; Lin, X.; Wu, K.; Pfaendtner, J.; et al. Trimethylamine N-Oxide–Derived Zwitterionic Polymers: A New Class of Ultralow Fouling Bioinspired Materials. Sci. Adv. 2019, 5, eaaw9562. [Google Scholar] [CrossRef]
- Kisley, L.; Miller, K.A.; Davis, C.M.; Guin, D.; Murphy, E.A.; Gruebele, M.; Leckband, D.E. Soluble Zwitterionic Poly(Sulfobetaine) Destabilizes Proteins. Biomacromolecules 2018, 19, 3894–3901. [Google Scholar] [CrossRef]
- Ahmed, S.T.; Leckband, D.E. Protein Adsorption on Grafted Zwitterionic Polymers Depends on Chain Density and Molecular Weight. Adv. Funct. Mater. 2020, 30, 2000757. [Google Scholar] [CrossRef]
- Schellenberger, V.; Wang, C.; Geething, N.C.; Spink, B.J.; Campbell, A.; To, W.; Scholle, M.D.; Yin, Y.; Yao, Y.; Bogin, O.; et al. A Recombinant Polypeptide Extends the in Vivo Half-Life of Peptides and Proteins in a Tunable Manner. Nat. Biotechnol. 2009, 27, 1186–1190. [Google Scholar] [CrossRef]
- Podust, V.N.; Balan, S.; Sim, B.-C.; Coyle, M.P.; Ernst, U.; Peters, R.T.; Schellenberger, V. Extension of in Vivo Half-Life of Biologically Active Molecules by XTEN Protein Polymers. J. Control. Release 2016, 240, 52–66. [Google Scholar] [CrossRef]
- Mazaheri, S.; Talebkhan, Y.; Mahboudi, F.; Nematollahi, L.; Cohan, R.A.; Ardakani, E.M.; Bayat, E.; Sabzalinejad, M.; Sardari, S.; Torkashvand, F. Improvement of Certolizumab Fab′ Properties by PASylation Technology. Sci. Rep. 2020, 10, 18464. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Song, M.; Sim, B.-C.; Gu, C.; Podust, V.N.; Wang, C.-W.; McLaughlin, B.; Shah, T.P.; Lax, R.; Gast, R.; et al. Multivalent Antiviral XTEN–Peptide Conjugates with Long in Vivo Half-Life and Enhanced Solubility. Bioconjugate Chem. 2014, 25, 1351–1359. [Google Scholar] [CrossRef] [PubMed]
- Zacharias, N.; Podust, V.N.; Kajihara, K.K.; Leipold, D.; Rosario, G.D.; Thayer, D.; Dong, E.; Paluch, M.; Fischer, D.; Zheng, K.; et al. A Homogeneous High-DAR Antibody–Drug Conjugate Platform Combining THIOMAB Antibodies and XTEN Polypeptides. Chem. Sci. 2022, 13, 3147–3160. [Google Scholar] [CrossRef] [PubMed]
- Gilroy, C.A.; Roberts, S.; Chilkoti, A. Fusion of Fibroblast Growth Factor 21 to a Thermally Responsive Biopolymer Forms an Injectable Depot with Sustained Anti-Diabetic Action. J. Control. Release 2018, 277, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Luginbuhl, K.M.; Schaal, J.L.; Umstead, B.; Mastria, E.M.; Li, X.; Banskota, S.; Arnold, S.; Feinglos, M.; D’Alessio, D.; Chilkoti, A. One-Week Glucose Control via Zero-Order Release Kinetics from an Injectable Depot of Glucagon-like Peptide-1 Fused to a Thermosensitive Biopolymer. Nat. Biomed. Eng. 2017, 1, 78. [Google Scholar] [CrossRef] [PubMed]
- Long-Term, Open Label Extension Study of Pemziviptadil (PB1046) in PAH Subjects Following Completion of Study PB1046-PT-CL-0004 (VIP Extend). Available online: https://www.clinicaltrials.gov/ct2/show/NCT03795428 (accessed on 12 December 2022).
- Tomalia, D.A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. A New Class of Polymers: Starburst-Dendritic Macromolecules. Polym. J. 1985, 17, 117–132. [Google Scholar] [CrossRef]
- Abbasi, E.; Aval, S.F.; Akbarzadeh, A.; Milani, M.; Nasrabadi, H.T.; Joo, S.W.; Hanifehpour, Y.; Nejati-Koshki, K.; Pashaei-Asl, R. Dendrimers: Synthesis, Applications, and Properties. Nanoscale Res. Lett. 2014, 9, 247. [Google Scholar] [CrossRef]
- Esfand, R.; Tomalia, D.A. Poly(Amidoamine) (PAMAM) Dendrimers: From Biomimicry to Drug Delivery and Biomedical Applications. Drug Discov. Today 2001, 6, 427–436. [Google Scholar] [CrossRef]
- Feliu, N.; Walter, M.V.; Montañez, M.I.; Kunzmann, A.; Hult, A.; Nyström, A.; Malkoch, M.; Fadeel, B. Stability and Biocompatibility of a Library of Polyester Dendrimers in Comparison to Polyamidoamine Dendrimers. Biomaterials 2012, 33, 1970–1981. [Google Scholar] [CrossRef]
- Boyd, B.J.; Kaminskas, L.M.; Karellas, P.; Krippner, G.; Lessene, R.; Porter, C.J.H. Cationic Poly-l-Lysine Dendrimers: Pharmacokinetics, Biodistribution, and Evidence for Metabolism and Bioresorption after Intravenous Administration to Rats. Mol. Pharmaceut 2006, 3, 614–627. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Mesa-Antunez, P.; Fortuin, L.; Andrén, O.C.J.; Malkoch, M. Degradable High Molecular Weight Monodisperse Dendritic Poly(Ethylene Glycols). Biomacromolecules 2020, 21, 4294–4301. [Google Scholar] [CrossRef]
- Wang, J.; Li, B.; Qiu, L.; Qiao, X.; Yang, H. Dendrimer-Based Drug Delivery Systems: History, Challenges, and Latest Developments. J. Biol. Eng. 2022, 16, 18. [Google Scholar] [CrossRef]
- Gregoriadis, G.; Fernandes, A.; Mital, M.; McCormack, B. Polysialic Acids: Potential in Improving the Stability and Pharmacokinetics of Proteins and Other Therapeutics. Cell Mol. Life Sci. Cmls 2000, 57, 1964–1969. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Hreczuk-Hirst, D.H.; McCormack, B.; Mital, M.; Epenetos, A.; Laing, P.; Gregoriadis, G. Polysialylated Insulin: Synthesis, Characterization and Biological Activity in Vivo. Biochimica Et Biophysica Acta Bba Gen. Subj. 2003, 1622, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Kong, J.-H.; Oh, E.J.; Chae, S.Y.; Lee, K.C.; Hahn, S.K. Long Acting Hyaluronate–Exendin 4 Conjugate for the Treatment of Type 2 Diabetes. Biomaterials 2010, 31, 4121–4128. [Google Scholar] [CrossRef] [PubMed]
- Mero, A.; Pasqualin, M.; Campisi, M.; Renier, D.; Pasut, G. Conjugation of Hyaluronan to Proteins. Carbohyd. Polym. 2013, 92, 2163–2170. [Google Scholar] [CrossRef]
- Birke, A.; Ling, J.; Barz, M. Polysarcosine-Containing Copolymers: Synthesis, Characterization, Self-Assembly, and Applications. Prog. Polym. Sci. 2018, 81, 163–208. [Google Scholar] [CrossRef]
- Tiede, A.; Allen, G.; Bauer, A.; Chowdary, P.; Collins, P.; Goldstein, B.; Jiang, H.J.; Köck, K.; Takács, I.; Timofeeva, M.; et al. SHP656, a Polysialylated Recombinant Factor VIII (PSA-rFVIII): First-in-human Study Evaluating Safety, Tolerability and Pharmacokinetics in Patients with Severe Haemophilia A. Haemophilia 2020, 26, 47–55. [Google Scholar] [CrossRef]
- Cleland, R.L. The Persistence Length of Hyaluronic Acid: An Estimate from Small-Angle X-Ray Scattering and Intrinsic Viscosity. Arch. Biochem. Biophys. 1977, 180, 57–68. [Google Scholar] [CrossRef]
- Luo, Z.; Dai, Y.; Gao, H. Development and Application of Hyaluronic Acid in Tumor Targeting Drug Delivery. Acta Pharm. Sinica B 2019, 9, 1099–1112. [Google Scholar] [CrossRef]
- Montagner, I.M.; Merlo, A.; Carpanese, D.; Pietà, A.D.; Mero, A.; Grigoletto, A.; Loregian, A.; Renier, D.; Campisi, M.; Zanovello, P.; et al. A Site-Selective Hyaluronan-Interferonα2a Conjugate for the Treatment of Ovarian Cancer. J. Control. Release 2016, 236, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Settanni, G.; Schäfer, T.; Muhl, C.; Barz, M.; Schmid, F. Poly-Sarcosine and Poly(Ethylene-Glycol) Interactions with Proteins Investigated Using Molecular Dynamics Simulations. Comput. Struct. Biotechnol. J. 2018, 16, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Weber, B.; Birke, A.; Fischer, K.; Schmidt, M.; Barz, M. Solution Properties of Polysarcosine: From Absolute and Relative Molar Mass Determinations to Complement Activation. Macromolecules 2018, 51, 2653–2661. [Google Scholar] [CrossRef]
- Hu, Y.; Hou, Y.; Wang, H.; Lu, H. Polysarcosine as an Alternative to PEG for Therapeutic Protein Conjugation. Bioconjugate Chem. 2018, 29, 2232–2238. [Google Scholar] [CrossRef] [PubMed]
- Conilh, L.; Fournet, G.; Fourmaux, E.; Murcia, A.; Matera, E.-L.; Joseph, B.; Dumontet, C.; Viricel, W. Exatecan Antibody Drug Conjugates Based on a Hydrophilic Polysarcosine Drug-Linker Platform. Pharmaceuticals 2021, 14, 247. [Google Scholar] [CrossRef] [PubMed]
- Moussa, E.M.; Panchal, J.P.; Moorthy, B.S.; Blum, J.S.; Joubert, M.K.; Narhi, L.O.; Topp, E.M. Immunogenicity of Therapeutic Protein Aggregates. J. Pharm. Sci. 2016, 105, 417–430. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Lee, J.; Mansfield, K.M.; Ko, J.H.; Sallam, S.; Wesdemiotis, C.; Maynard, H.D. Trehalose Glycopolymer Enhances Both Solution Stability and Pharmacokinetics of a Therapeutic Protein. Bioconjugate Chem. 2017, 28, 836–845. [Google Scholar] [CrossRef]
- Mancini, R.J.; Lee, J.; Maynard, H.D. Trehalose Glycopolymers for Stabilization of Protein Conjugates to Environmental Stressors. J. Am. Chem. Soc. 2012, 134, 8474–8479. [Google Scholar] [CrossRef]
- Tomlinson, A.; Demeule, B.; Lin, B.; Yadav, S. Polysorbate 20 Degradation in Biopharmaceutical Formulations: Quantification of Free Fatty Acids, Characterization of Particulates, and Insights into the Degradation Mechanism. Mol. Pharmaceut. 2015, 12, 3805–3815. [Google Scholar] [CrossRef]
- Forsythe, N.L.; Maynard, H.D. Synthesis of Disulfide-Bridging Trehalose Polymers for Antibody and Fab Conjugation Using a Bis-Sulfone ATRP Initiator. Polym. Chem. 2021, 12, 1217–1223. [Google Scholar] [CrossRef]
- Thiagarajan, G.; Semple, A.; James, J.K.; Cheung, J.K.; Shameem, M. A Comparison of Biophysical Characterization Techniques in Predicting Monoclonal Antibody Stability. Mabs 2016, 8, 1088–1097. [Google Scholar] [CrossRef] [PubMed]
- Boutureira, O.; Bernardes, G.J.L. Advances in Chemical Protein Modification. Chem. Rev. 2015, 115, 2174–2195. [Google Scholar] [CrossRef] [PubMed]
- Dozier, J.K.; Distefano, M.D. Site-Specific PEGylation of Therapeutic Proteins. Int. J. Mol. Sci. 2015, 16, 25831–25864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Messina, M.S.; Messina, K.M.M.; Bhattacharya, A.; Montgomery, H.R.; Maynard, H.D. Preparation of Biomolecule-Polymer Conjugates by Grafting-from Using ATRP, RAFT, or ROMP. Prog. Polym. Sci. 2020, 100, 101186. [Google Scholar] [CrossRef]
- Sadiki, A.; Vaidya, S.R.; Abdollahi, M.; Bhardwaj, G.; Dolan, M.E.; Turna, H.; Arora, V.; Sanjeev, A.; Robinson, T.D.; Koid, A.; et al. Site-Specific Conjugation of Native Antibody. Antib 2020, 3, 271–284. [Google Scholar] [CrossRef]
- Zalipsky, S. Chemistry of Polyethylene Glycol Conjugates with Biologically Active Molecules. Adv. Drug Deliver. Rev. 1995, 16, 157–182. [Google Scholar] [CrossRef]
- Østergaard, H.; Bjelke, J.R.; Hansen, L.; Petersen, L.C.; Pedersen, A.A.; Elm, T.; Møller, F.; Hermit, M.B.; Holm, P.K.; Krogh, T.N.; et al. Prolonged Half-Life and Preserved Enzymatic Properties of Factor IX Selectively PEGylated on Native N-Glycans in the Activation Peptide. Blood 2011, 118, 2333–2341. [Google Scholar] [CrossRef]
- Arvedson, T.; O’Kelly, J.; Yang, B.-B. Design Rationale and Development Approach for Pegfilgrastim as a Long-Acting Granulocyte Colony-Stimulating Factor. Biodrugs 2015, 29, 185–198. [Google Scholar] [CrossRef]
- Pasut, G. Pegylation of Biological Molecules and Potential Benefits: Pharmacological Properties of Certolizumab Pegol. Biodrugs 2014, 28, 15–23. [Google Scholar] [CrossRef]
- Mao, H.; Hart, S.A.; Schink, A.; Pollok, B.A. Sortase-Mediated Protein Ligation: A New Method for Protein Engineering. J. Am. Chem. Soc. 2004, 126, 2670–2671. [Google Scholar] [CrossRef]
- Chen, L.; Cohen, J.; Song, X.; Zhao, A.; Ye, Z.; Feulner, C.J.; Doonan, P.; Somers, W.; Lin, L.; Chen, P.R. Improved Variants of SrtA for Site-Specific Conjugation on Antibodies and Proteins with High Efficiency. Sci. Rep. 2016, 6, 31899. [Google Scholar] [CrossRef] [PubMed]
- Rachel, N.M.; Toulouse, J.L.; Pelletier, J.N. Transglutaminase-Catalyzed Bioconjugation Using One-Pot Metal-Free Bioorthogonal Chemistry. Bioconjugate Chem. 2017, 28, 2518–2523. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-W.; Ting, A.Y. Transglutaminase-Catalyzed Site-Specific Conjugation of Small-Molecule Probes to Proteins in Vitro and on the Surface of Living Cells. J. Am. Chem. Soc. 2006, 128, 4542–4543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, H.-S.; Hohn, M.J.; Umehara, T.; Guo, L.-T.; Osborne, E.M.; Benner, J.; Noren, C.J.; Rinehart, J.; Söll, D. Expanding the Genetic Code of Escherichia Coli with Phosphoserine. Science 2011, 333, 1151–1154. [Google Scholar] [CrossRef]
- de la Torre, D.; Chin, J.W. Reprogramming the Genetic Code. Nat. Rev. Genet. 2021, 22, 169–184. [Google Scholar] [CrossRef]
- Adhikari, A.; Bhattarai, B.R.; Aryal, A.; Thapa, N.; KC, P.; Adhikari, A.; Maharjan, S.; Chanda, P.B.; Regmi, B.P.; Parajuli, N. Reprogramming Natural Proteins Using Unnatural Amino Acids. RSC Adv. 2021, 11, 38126–38145. [Google Scholar] [CrossRef]
- Lang, K.; Chin, J.W. Cellular Incorporation of Unnatural Amino Acids and Bioorthogonal Labeling of Proteins. Chem. Rev. 2014, 114, 4764–4806. [Google Scholar] [CrossRef]
- Bontempo, D.; Heredia, K.L.; Fish, B.A.; Maynard, H.D. Cysteine-Reactive Polymers Synthesized by Atom Transfer Radical Polymerization for Conjugation to Proteins. J. Am. Chem. Soc. 2004, 126, 15372–15373. [Google Scholar] [CrossRef]
- Lele, B.S.; Murata, H.; Matyjaszewski, K.; Russell, A.J. Synthesis of Uniform Protein−Polymer Conjugates. Biomacromolecules 2005, 6, 3380–3387. [Google Scholar] [CrossRef]
- Liu, J.; Bulmus, V.; Herlambang, D.L.; Barner-Kowollik, C.; Stenzel, M.H.; Davis, T.P. In Situ Formation of Protein–Polymer Conjugates through Reversible Addition Fragmentation Chain Transfer Polymerization. Angew. Chem. Int. Ed. 2007, 46, 3099–3103. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, C.; Li, Z.; Yin, S.; Wang, Q.; Guo, F.; Zhang, Y.; Yu, R.; Liu, Y.; Su, Z. Extending Half Life of H-Ferritin Nanoparticle by Fusing Albumin Binding Domain for Doxorubicin Encapsulation. Biomacromolecules 2018, 19, 773–781. [Google Scholar] [CrossRef]
- Glover, Z.K.; Basa, L.; Moore, B.; Laurence, J.S.; Sreedhara, A. Metal Ion Interactions with MAbs: Part 1. Mabs 2015, 7, 901–911. [Google Scholar] [CrossRef]
- Glover, Z.K.; Wecksler, A.; Aryal, B.; Mehta, S.; Pegues, M.; Chan, W.; Lehtimaki, M.; Luo, A.; Sreedhara, A.; Rao, V.A. Physicochemical and Biological Impact of Metal-Catalyzed Oxidation of IgG1 Monoclonal Antibodies and Antibody-Drug Conjugates via Reactive Oxygen Species. Mabs 2022, 14, 2122957. [Google Scholar] [CrossRef]
- Vinogradov, A.A.; Yin, Y.; Suga, H. Macrocyclic Peptides as Drug Candidates: Recent Progress and Remaining Challenges. J. Am. Chem. Soc. 2019, 141, 4167–4181. [Google Scholar] [CrossRef]
- Rein, D.B.; Wittenborn, J.S.; Burke-Conte, Z.; Gulia, R.; Robalik, T.; Ehrlich, J.R.; Lundeen, E.A.; Flaxman, A.D. Prevalence of Age-Related Macular Degeneration in the US in 2019. JAMA Ophthalmol 2022, 140, 1202. [Google Scholar] [CrossRef]
- Holz, F.G.; Tadayoni, R.; Beatty, S.; Berger, A.; Cereda, M.G.; Cortez, R.; Hoyng, C.B.; Hykin, P.; Staurenghi, G.; Heldner, S.; et al. Multi-Country Real-Life Experience of Anti-Vascular Endothelial Growth Factor Therapy for Wet Age-Related Macular Degeneration. Brit. J. Ophthalmol. 2015, 99, 220. [Google Scholar] [CrossRef]
- Okada, M.; Mitchell, P.; Finger, R.P.; Eldem, B.; Talks, S.J.; Hirst, C.; Paladini, L.; Barratt, J.; Wong, T.Y.; Loewenstein, A. Non-Adherence or Non-Persistence to Intravitreal Injection Therapy for Neovascular Age-Related Macular Degeneration: A Mixed-Methods Systematic Review. Ophthalmology 2020, 128, 234–247. [Google Scholar] [CrossRef]
- Crowell, S.R.; Wang, K.; Famili, A.; Shatz, W.; Loyet, K.M.; Chang, V.; Liu, Y.; Prabhu, S.; Kamath, A.V.; Kelley, R.F. Influence of Charge, Hydrophobicity, and Size on Vitreous Pharmacokinetics of Large Molecules. Transl. Vis. Sci. Technol. 2019, 8, 1. [Google Scholar] [CrossRef]
- Gadkar, K.; Pastuskovas, C.V.; Couter, J.E.L.; Elliott, J.M.; Zhang, J.; Lee, C.V.; Sanowar, S.; Fuh, G.; Kim, H.S.; Lombana, T.N.; et al. Design and Pharmacokinetic Characterization of Novel Antibody Formats for Ocular Therapeutics. Investig. Opthalmol. Vis. Sci. 2015, 56, 5390. [Google Scholar] [CrossRef]
- Lamers, C.; Mastellos, D.C.; Ricklin, D.; Lambris, J.D. Compstatins: The Dawn of Clinical C3-Targeted Complement Inhibition. Trends Pharm. Sci. 2022, 43, 629–640. [Google Scholar] [CrossRef]
- Liao, D.S.; Grossi, F.V.; Mehdi, D.E.; Gerber, M.R.; Brown, D.M.; Heier, J.S.; Wykoff, C.C.; Singerman, L.J.; Abraham, P.; Grassmann, F.; et al. Complement C3 Inhibitor Pegcetacoplan for Geographic Atrophy Secondary to Age-Related Macular Degeneration A Randomized Phase 2 Trial. Ophthalmology 2020, 127, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Stern, H.D.; Hussain, R.M. KSI-301: An Investigational Anti-VEGF Biopolymer Conjugate for Retinal Diseases. Expert Opin. Investig. Drug 2022, 31, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, P.R.; Madanagopalan, V.G. KSI-301: Antibody Biopolymer Conjugate in Retinal Disorders. Adv. Ophthalmol. 2021, 13, 25158414211027708. [Google Scholar] [CrossRef] [PubMed]
- A Deeper Dive into Why DAZZLE Results of KSI-301 in NAMD ‘Disappointed’. Available online: https://www.retina-specialist.com/article/a-deeper-dive-into-why-dazzle-results-of-ksi301-in-namd-disappointed (accessed on 15 December 2022).
- Shatz, W.; Hass, P.E.; Peer, N.; Paluch, M.T.; Blanchette, C.; Han, G.; Sandoval, W.; Morando, A.; Loyet, K.M.; Bantseev, V.; et al. Identification and Characterization of an Octameric PEG-Protein Conjugate System for Intravitreal Long-Acting Delivery to the Back of the Eye. PLoS ONE 2019, 14, e0218613. [Google Scholar] [CrossRef]
- Hennig, R.; Veser, A.; Kirchhof, S.; Goepferich, A. Branched Polymer–Drug Conjugates for Multivalent Blockade of Angiotensin II Receptors. Mol. Pharmaceut. 2015, 12, 3292–3302. [Google Scholar] [CrossRef]
- Altiok, E.I.; Santiago-Ortiz, J.L.; Svedlund, F.L.; Zbinden, A.; Jha, A.K.; Bhatnagar, D.; Loskill, P.; Jackson, W.M.; Schaffer, D.V.; Healy, K.E. Multivalent Hyaluronic Acid Bioconjugates Improve SFlt-1 Activity in Vitro. Biomaterials 2016, 93, 105. [Google Scholar] [CrossRef] [PubMed]
- Famili, A.; Crowell, S.R.; Loyet, K.M.; Mandikian, D.; Boswell, C.A.; Cain, D.; Chan, J.; Comps-Agrar, L.; Kamath, A.; Rajagopal, K. Hyaluronic Acid–Antibody Fragment Bioconjugates for Extended Ocular Pharmacokinetics. Bioconjugate Chem. 2019, 30, 2782–2789. [Google Scholar] [CrossRef]
- Jackson, W.; Brier, L.; Barnebey, A.; McFarland, J.; Twite, A. Antibody-Hyaluronic Acid Conjugates for Sustained Treatment of Neovascular Ocular Disease. Investig. Ophthalmol. Vis. Sci. 2022, 63, 1329-F0163. [Google Scholar]
- Ahmadzadeh, M.; Rosenberg, S.A. IL-2 Administration Increases CD4+CD25hi Foxp3+ Regulatory T Cells in Cancer Patients. Blood 2006, 107, 2409–2414. [Google Scholar] [CrossRef]
- Atkins, M.B.; Lotze, M.T.; Dutcher, J.P.; Fisher, R.I.; Weiss, G.; Margolin, K.; Abrams, J.; Sznol, M.; Parkinson, D.; Hawkins, M.; et al. High-Dose Recombinant Interleukin 2 Therapy for Patients with Metastatic Melanoma: Analysis of 270 Patients Treated Between 1985 and 1993. J. Clin. Oncol. 1999, 17, 2105. [Google Scholar] [CrossRef]
- Ptacin, J.L.; Caffaro, C.E.; Ma, L.; Gall, K.M.S.J.; Aerni, H.R.; Acuff, N.V.; Herman, R.W.; Pavlova, Y.; Pena, M.J.; Chen, D.B.; et al. An Engineered IL-2 Reprogrammed for Anti-Tumor Therapy Using a Semi-Synthetic Organism. Nat. Commun. 2021, 12, 4785. [Google Scholar] [CrossRef] [PubMed]
- Rosen, D.B.; Kvarnhammar, A.M.; Laufer, B.; Knappe, T.; Karlsson, J.J.; Hong, E.; Lee, Y.-C.; Thakar, D.; Zúñiga, L.A.; Bang, K.; et al. TransCon IL-2 β/γ: A Novel Long-Acting Prodrug with Sustained Release of an IL-2Rβ/γ-Selective IL-2 Variant with Improved Pharmacokinetics and Potent Activation of Cytotoxic Immune Cells for the Treatment of Cancer. J. Immunother. Cancer 2022, 10, e004991. [Google Scholar] [CrossRef] [PubMed]
- Dixit, N.; Fanton, C.; Langowski, J.L.; Kirksey, Y.; Kirk, P.; Chang, T.; Cetz, J.; Dixit, V.; Kim, G.; Kuo, P.; et al. NKTR-358: A Novel Regulatory T-Cell Stimulator That Selectively Stimulates Expansion and Suppressive Function of Regulatory T Cells for the Treatment of Autoimmune and Inflammatory Diseases. J. Transl. Autoimmun. 2021, 4, 100103. [Google Scholar] [CrossRef] [PubMed]
- Continued Strong Growth in Q3 with Key Regulatory Milestones Achieved. Available online: https://www.sanofi.com/dam/jcr:f625469e-70f6-4117-9170-bf33e2b787a1/2022_10_28_Sanofi_Q3_Results_Press_Release_EN.pdf (accessed on 12 December 2022).
- Nektar and Bristol Myers Squibb Announce Update on Clinical Development Program for Bempegaldesleukin (BEMPEG) in Combination with Opdivo (Nivolumab). Available online: https://news.bms.com/news/details/2022/Nektar-and-Bristol-Myers-Squibb-Announce-Update-on-Clinical-Development-Program-for-Bempegaldesleukin-BEMPEG-in-Combination-with-Opdivo-nivolumab/default.aspx (accessed on 12 December 2022).
- Sprogøe, K.; Mortensen, E.; Karpf, D.B.; Leff, J.A. The Rationale and Design of TransCon Growth Hormone for the Treatment of Growth Hormone Deficiency. Endocr. Connect. 2017, 6, R171–R181. [Google Scholar] [CrossRef] [Green Version]
- Holten-Andersen, L.; Pihl, S.; Rasmussen, C.E.; Zettler, J.; Maitro, G.; Baron, J.; Heinig, S.; Hoffmann, E.; Wegge, T.; Krusch, M.; et al. Design and Preclinical Development of TransCon PTH, an Investigational Sustained-Release PTH Replacement Therapy for Hypoparathyroidism. J. Bone Min. Res. 2019, 34, 2075–2086. [Google Scholar] [CrossRef]
- Starling, S. Promising Findings in PTH Replacement Therapy Trial. Nat. Rev. Endocrinol. 2022, 19, 4. [Google Scholar] [CrossRef]
- Cattaruzza, F.; Nazeer, A.; To, M.; Hammond, M.; Koski, C.; Liu, L.; Yeung, V.P.; Rennerfeldt, D.; Henkensiefken, A.; Fox, M.; et al. XPAT® Proteins, Conditionally Activated T-Cell Engagers Engineered to Mitigate on-Target, off-Tumor Toxicity for Immunotherapy of Solid Tumors. preprint. 2022. [Google Scholar] [CrossRef]
- Zhao, Y.; Xie, Y.-Q.; Herck, S.V.; Nassiri, S.; Gao, M.; Guo, Y.; Tang, L. Switchable Immune Modulator for Tumor-Specific Activation of Anticancer Immunity. Sci. Adv. 2021, 7, eabg7291. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, J.; Sun, J.; Liang, P.; Wei, Y.; Deng, X.; Gao, W. Thermoresponsive and Protease-Cleavable Interferon-Polypeptide Conjugates with Spatiotemporally Programmed Two-Step Release Kinetics for Tumor Therapy. Adv. Sci. 2019, 6, 1900586. [Google Scholar] [CrossRef]
- Cong, Y.; Ji, L.; Gao, Y.; Liu, F.; Cheng, D.; Hu, Z.; Qiao, Z.; Wang, H. Microenvironment-Induced In Situ Self-Assembly of Polymer–Peptide Conjugates That Attack Solid Tumors Deeply. Angew. Chem. Int. Ed. 2019, 58, 4632–4637. [Google Scholar] [CrossRef]
- Dustin, M.L.; Groves, J.T. Receptor Signaling Clusters in the Immune Synapse. Biophysics 2012, 41, 543–556. [Google Scholar] [CrossRef]
- Mammen, M.; Choi, S.; Whitesides, G.M. Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors. Angew. Chem. Int. Ed. 1998, 37, 2754–2794. [Google Scholar] [CrossRef]
- Banani, S.F.; Lee, H.O.; Hyman, A.A.; Rosen, M.K. Biomolecular Condensates: Organizers of Cellular Biochemistry. Nat. Rev. Mol. Cell Bio 2017, 18, 285–298. [Google Scholar] [CrossRef] [PubMed]
- Agard, N.J.; Zhang, G.; Ridgeway, J.; Dicara, D.M.; Chu, P.Y.; Ohri, R.; Sanowar, S.; Vernes, J.-M.; Chi, H.; Zhang, J.; et al. Direct Tie2 Agonists Stabilize Vasculature for the Treatment of Diabetic Macular Edema. Transl. Vis. Sci. Technol. 2022, 11, 27. [Google Scholar] [CrossRef]
- Muro, S.; Wiewrodt, R.; Thomas, A.; Koniaris, L.; Albelda, S.M.; Muzykantov, V.R.; Koval, M. A Novel Endocytic Pathway Induced by Clustering Endothelial ICAM-1 or PECAM-1. J. Cell Sci. 2003, 116, 1599–1609. [Google Scholar] [CrossRef]
- Moody, P.R.; Sayers, E.J.; Magnusson, J.P.; Alexander, C.; Borri, P.; Watson, P.; Jones, A.T. Receptor Crosslinking: A General Method to Trigger Internalization and Lysosomal Targeting of Therapeutic Receptor:Ligand Complexes. Mol. Ther. 2015, 23, 1888–1898. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, S.; Schiffelers, R.M.; van der Veeken, J.; van der Meel, R.; Vongpromek, R.; Henegouwen, P.M.P. van B. en; Storm, G.; Roovers, R.C. Downregulation of EGFR by a Novel Multivalent Nanobody-Liposome Platform. J. Control. Release 2010, 145, 165–175. [Google Scholar] [CrossRef]
- Radford, D.C.; Yang, J.; Doan, M.C.; Li, L.; Dixon, A.S.; Owen, S.C.; Kopeček, J. Multivalent HER2-Binding Polymer Conjugates Facilitate Rapid Endocytosis and Enhance Intracellular Drug Delivery. J. Control. Release 2020, 319, 285–299. [Google Scholar] [CrossRef]
- Li, L.; Li, Y.; Yang, C.; Radford, D.C.; Wang, J.; Janát-Amsbury, M.; Kopeček, J.; Yang, J. Inhibition of Immunosuppressive Tumors by Polymer-Assisted Inductions of Immunogenic Cell Death and Multivalent PD-L1 Crosslinking. Adv. Funct. Mater. 2020, 30, 1908961. [Google Scholar] [CrossRef]
- Mandal, S.; Hammink, R.; Tel, J.; Eksteen-Akeroyd, Z.H.; Rowan, A.E.; Blank, K.; Figdor, C.G. Polymer-Based Synthetic Dendritic Cells for Tailoring Robust and Multifunctional T Cell Responses. ACS Chem. Biol. 2015, 10, 485–492. [Google Scholar] [CrossRef]
- Carlson, C.B.; Mowery, P.; Owen, R.M.; Dykhuizen, E.C.; Kiessling, L.L. Selective Tumor Cell Targeting Using Low-Affinity, Multivalent Interactions. ACS Chem. Biol. 2007, 2, 119–127. [Google Scholar] [CrossRef]
- Dubacheva, G.V.; Curk, T.; Auzély-Velty, R.; Frenkel, D.; Richter, R.P. Designing Multivalent Probes for Tunable Superselective Targeting. Proc. Natl. Acad. Sci. USA 2015, 112, 5579–5584. [Google Scholar] [CrossRef] [PubMed]
- Dubacheva, G.V.; Curk, T.; Mognetti, B.M.; Auzély-Velty, R.; Frenkel, D.; Richter, R.P. Superselective Targeting Using Multivalent Polymers. J. Am. Chem. Soc. 2014, 136, 1722–1725. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Veracoechea, F.J.; Frenkel, D. Designing Super Selectivity in Multivalent Nano-Particle Binding. Proc. Natl. Acad. Sci. USA 2011, 108, 10963–10968. [Google Scholar] [CrossRef] [Green Version]
- Simmons, J.K.; Burke, P.J.; Cochran, J.H.; Pittman, P.G.; Lyon, R.P. Reducing the Antigen-Independent Toxicity of Antibody-Drug Conjugates by Minimizing Their Non-Specific Clearance through PEGylation. Toxicol Appl. Pharm. 2020, 392, 114932. [Google Scholar] [CrossRef] [PubMed]
- Lyon, R.P.; Bovee, T.D.; Doronina, S.O.; Burke, P.J.; Hunter, J.H.; Neff-LaFord, H.D.; Jonas, M.; Anderson, M.E.; Setter, J.R.; Senter, P.D. Reducing Hydrophobicity of Homogeneous Antibody-Drug Conjugates Improves Pharmacokinetics and Therapeutic Index. Nat. Biotechnol. 2015, 33, 733–735. [Google Scholar] [CrossRef]
- Viricel, W.; Fournet, G.; Beaumel, S.; Perrial, E.; Papot, S.; Dumontet, C.; Joseph, B. Monodisperse Polysarcosine-Based Highly-Loaded Antibody-Drug Conjugates. Chem. Sci. 2019, 10, 4048–4053. [Google Scholar] [CrossRef]
- Buecheler, J.W.; Winzer, M.; Tonillo, J.; Weber, C.; Gieseler, H. Impact of Payload Hydrophobicity on the Stability of Antibody–Drug Conjugates. Mol. Pharmaceut 2018, 15, 2656–2664. [Google Scholar] [CrossRef]
- Yurkovetskiy, A.V.; Yin, M.; Bodyak, N.; Stevenson, C.A.; Thomas, J.D.; Hammond, C.E.; Qin, L.; Zhu, B.; Gumerov, D.R.; Ter-Ovanesyan, E.; et al. A Polymer-Based Antibody–Vinca Drug Conjugate Platform: Characterization and Preclinical Efficacy. Cancer Res. 2015, 75, 3365–3372. [Google Scholar] [CrossRef]
- Bodyak, N.D.; Mosher, R.; Yurkovetskiy, A.V.; Yin, M.; Bu, C.; Conlon, P.R.; Demady, D.R.; DeVit, M.J.; Gumerov, D.R.; Gurijala, V.R.; et al. The Dolaflexin-Based Antibody–Drug Conjugate XMT-1536 Targets the Solid Tumor Lineage Antigen SLC34A2/NaPi2b. Mol. Cancer Ther. 2021, 20, 896–905. [Google Scholar] [CrossRef]
- Smith, R.A.; Zammit, D.J.; Damle, N.K.; Usansky, H.; Reddy, S.P.; Lin, J.-H.; Mistry, M.; Rao, N.S.; Denis, L.J.; Gupta, S. ASN004, A 5T4-Targeting ScFv-Fc Antibody–Drug Conjugate with High Drug-to-Antibody Ratio, Induces Complete and Durable Tumor Regressions in Preclinical Models. Mol. Cancer Ther. 2021, 20, 1327–1337. [Google Scholar] [CrossRef]
- Schneider, H.; Deweid, L.; Pirzer, T.; Yanakieva, D.; Englert, S.; Becker, B.; Avrutina, O.; Kolmar, H. Dextramabs: A Novel Format of Antibody-Drug Conjugates Featuring a Multivalent Polysaccharide Scaffold. Chemistryopen 2019, 8, 354–357. [Google Scholar] [CrossRef]
- Baker, S.L.; Munasinghe, A.; Murata, H.; Lin, P.; Matyjaszewski, K.; Colina, C.M.; Russell, A.J. Intramolecular Interactions of Conjugated Polymers Mimic Molecular Chaperones to Stabilize Protein–Polymer Conjugates. Biomacromolecules 2018, 19, 3798–3813. [Google Scholar] [CrossRef]
- Lin, P.; Colina, C.M. Molecular Simulation of Protein–Polymer Conjugates. Curr. Opin. Chem. Eng. 2019, 23, 44–50. [Google Scholar] [CrossRef]
- Hoy, S.M. Pegcetacoplan: First Approval. Drugs 2021, 81, 1423–1430. [Google Scholar] [CrossRef] [PubMed]
- Castro, C.; Grossi, F.; Weitz, I.C.; Maciejewski, J.; Sharma, V.; Roman, E.; Brodsky, R.A.; Tan, L.; Casoli, C.D.; Mehdi, D.E.; et al. C3 Inhibition with Pegcetacoplan in Subjects with Paroxysmal Nocturnal Hemoglobinuria Treated with Eculizumab. Am. J. Hematol. 2020, 95, 1334–1343. [Google Scholar] [CrossRef] [PubMed]
- Hughes, S.; Gumas, J.; Lee, R.; Rumano, M.; Berger, N.; Gautam, A.K.; Sfyroera, G.; Chan, A.L.; Gnanaguru, G.; Connor, K.M.; et al. Prolonged Intraocular Residence and Retinal Tissue Distribution of a Fourth-Generation Compstatin-Based C3 Inhibitor in Non-Human Primates. Clin. Immunol. 2020, 214, 108391. [Google Scholar] [CrossRef]
- Kizhner, T.; Azulay, Y.; Hainrichson, M.; Tekoah, Y.; Arvatz, G.; Shulman, A.; Ruderfer, I.; Aviezer, D.; Shaaltiel, Y. Characterization of a Chemically Modified Plant Cell Culture Expressed Human α-Galactosidase-A Enzyme for Treatment of Fabry Disease. Mol. Genet. Metab 2015, 114, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Schiffmann, R.; Goker-Alpan, O.; Holida, M.; Giraldo, P.; Barisoni, L.; Colvin, R.B.; Jennette, C.J.; Maegawa, G.; Boyadjiev, S.A.; Gonzalez, D.; et al. Pegunigalsidase Alfa, a Novel PEGylated Enzyme Replacement Therapy for Fabry Disease, Provides Sustained Plasma Concentrations and Favorable Pharmacodynamics: A 1-year Phase 1/2 Clinical Trial. J. Inherit Metab. Dis. 2019, 42, 534–544. [Google Scholar] [CrossRef]
- Furie, R.A.; Bruce, I.N.; Dörner, T.; Leon, M.G.; Leszczyński, P.; Urowitz, M.; Haier, B.; Jimenez, T.; Brittain, C.; Liu, J.; et al. Phase 2, Randomized, Placebo-Controlled Trial of Dapirolizumab Pegol in Patients with Moderate-to-Severe Active Systemic Lupus Erythematosus. Rheumatology 2021, 60, keab381. [Google Scholar] [CrossRef]
- Konkle, B.A.; Shapiro, A.D.; Quon, D.V.; Staber, J.M.; Kulkarni, R.; Ragni, M.V.; Chhabra, E.S.; Poloskey, S.; Rice, K.; Katragadda, S.; et al. BIVV001 Fusion Protein as Factor VIII Replacement Therapy for Hemophilia A. N. Engl. J. Med. 2020, 383, 1018–1027. [Google Scholar] [CrossRef]
- Ott, P.A.; Carvajal, R.D.; Pandit-Taskar, N.; Jungbluth, A.A.; Hoffman, E.W.; Wu, B.-W.; Bomalaski, J.S.; Venhaus, R.; Pan, L.; Old, L.J.; et al. Phase I/II Study of Pegylated Arginine Deiminase (ADI-PEG 20) in Patients with Advanced Melanoma. Investig. New Drug 2013, 31, 425–434. [Google Scholar] [CrossRef]
- Breinholt, V.M.; Mygind, P.H.; Christoffersen, E.D.; Zhang, Y.; Ota, S.; Charlton, R.W.; Viuff, D. Phase 1 Safety, Tolerability, Pharmacokinetics and Pharmacodynamics Results of a Long-acting C-type Natriuretic Peptide Prodrug, TransCon CNP. Brit. J. Clin. Pharm. 2022, 88, 4763–4772. [Google Scholar] [CrossRef]
- Breinholt, V.M.; Rasmussen, C.E.; Mygind, P.H.; Kjelgaard-Hansen, M.; Faltinger, F.; Bernhard, A.; Zettler, J.; Hersel, U. TransCon CNP, a Sustained-Release C-Type Natriuretic Peptide Prodrug, a Potentially Safe and Efficacious New Therapeutic Modality for the Treatment of Comorbidities Associated with Fibroblast Growth Factor Receptor 3–Related Skeletal Dysplasias. J. Pharm. Exp. 2019, 370, 459–471. [Google Scholar] [CrossRef]
- Ananthakrishnan, R.; Li, Q.; O’Shea, K.M.; Quadri, N.; Wang, L.; Abuchowski, A.; Schmidt, A.M.; Ramasamy, R. Carbon Monoxide Form of PEGylated Hemoglobin Protects Myocardium against Ischemia/Reperfusion Injury in Diabetic and Normal Mice. Artif. Cells Nanomed. Biotechnol. 2013, 41, 428–436. [Google Scholar] [CrossRef]
- Fanton, C.; Furie, R.; Chindalore, V.; Levin, R.; Diab, I.; Dixit, N.; Haglund, C.; Gibbons, J.; Hanan, N.; Dickerson, D.; et al. Selective Expansion of Regulatory T Cells by NKTR-358 in Healthy Volunteers and Patients with Systemic Lupus Erythematosus. J. Transl. Autoimmun. 2022, 5, 100152. [Google Scholar] [CrossRef]
- Miyazaki, T.; Maiti, M.; Hennessy, M.; Chang, T.; Kuo, P.; Addepalli, M.; Obalapur, P.; Sheibani, S.; Wilczek, J.; Pena, R.; et al. NKTR-255, a Novel Polymer-Conjugated RhIL-15 with Potent Antitumor Efficacy. J. Immunother. Cancer 2021, 9, e002024. [Google Scholar] [CrossRef]
- Falchook, G.; Gan, H.; Fu, S.; McKean, M.; Azad, A.; Sommerhalder, D.; Wang, J.; Tan, T.; Chee, C.; Barve, M.; et al. 481 Phase 1/2 Study of THOR-707 (SAR444245), a Pegylated Recombinant Non-Alpha IL-2, as Monotherapy and in Combination with Pembrolizumab or Cetuximab in Patients (Pts) with Advanced Solid Tumors. J. Immunother. Cancer 2021, 9, A511. [Google Scholar] [CrossRef]
- Tillman, E.J.; Rolph, T. FGF21: An Emerging Therapeutic Target for Non-Alcoholic Steatohepatitis and Related Metabolic Diseases. Front. Endocrinol. 2020, 11, 601290. [Google Scholar] [CrossRef]
- Kinneer, K.; Wortmann, P.; Cooper, Z.A.; Dickinson, N.J.; Masterson, L.; Cailleau, T.; Hutchinson, I.; Vijayakrishnan, B.; McFarlane, M.; Ball, K.; et al. Design and Preclinical Evaluation of a Novel B7-H4–Directed Antibody–Drug Conjugate, AZD8205, Alone and in Combination with the PARP1-Selective Inhibitor AZD5305. Clin. Cancer Res 2022, OF1–OF16. [Google Scholar] [CrossRef]
ADC | Target | Antibody Isotype | Conjugation Site | Linker | Payload/ Payload Class | Payload MOA | DAR | Disease Indication (Approval Year) |
---|---|---|---|---|---|---|---|---|
Mylotarg® (gemtuzumab ozogamicin) | CD33 | IgG4 | Lysines | acid cleavable | ozogamicin/ calicheamicin | DNA damaging | 2–3 | Acute myeloid leukemia (2000) withdrawn 2010, reapproved 2017 with alternative dosing regimen |
Adcetris® (brentuximab vedotin) | CD30 | IgG1 | Interchain disulfides | enzyme cleavable | MMAE/ auristatin | microtubule inhibitor | 4 | Hodgkin lymphoma, anaplastic large cell lymphoma, CD30+ mycosis fungoides (2011) |
Kadcyla® (trastuzumab emtansine) | HER2 | IgG1 | Lysines | noncleavable | DM1/ maytansinoid | microtubule inhibitor | 3.5 | HER2+ metastatic breast cancer (2013) |
Besponsa® (inotozumab ozogamicin) | CD22 | IgG4 | Lysines | acid cleavable | ozogamicin/ calicheamicin | DNA damaging | 6 | B-cell acute lymphoblastic leukemia (2017) |
Polivy® (polatuzumab vedotin) | CD79b | IgG1 | Interchain disulfides | enzyme cleavable | MMAE/ auristatin | microtubule inhibitor | 3.5 | Diffuse large B-cell lymphoma (2019) |
Padcev® (enfortumab vedotin) | Nectin-4 | IgG1 | Interchain disulfides | enzyme cleavable | MMAE/ auristatin | microtubule inhibitor | 3.8 | Locally advanced or metastatic urothelial cancer (2019) |
Enhertu® (trastuzumab deruxtecan) | HER2 | IgG1 | Interchain disulfides | enzyme cleavable | DXd/ camptothecin | TOP1 inhibitor | 8 | HER2+ unresectable or metastatic breast cancer (2021) |
Trodelvy® (sacituzumab govitecan) | TROP2 | IgG1 | Interchain disulfides | acid cleavable | SN-38/ camptothecin | TOP1 inhibitor | 7.6 | Locally advanced or metastatic HER2+ breast cancer (2019) |
Blenrep® (belantamab mafodotin) | BMCA | IgG1 (a-fucosylated) | Interchain disulfides | noncleavable | MMAF/ auristatin | microtubule inhibitor | 4 | Multiple myeloma (2020) withdrawn 2022 |
Zynlonta® (loncastuximab tesirine) | CD19 | IgG1 | Interchain disulfides | enzyme cleavable | SG3199/PBD dimer | DNA damaging | 2.3 | Large B-cell lymphoma (2021) |
Tivdak® (tisotumab vedotin) | Tissue Factor | IgG1 | Interchain disulfides | enzyme cleavable | MMAE/ auristatin | microtubule inhibitor | 4 | Recurrent or metastatic cervical cancer (2021) |
Elahere® (mirvetuximab soravtansine) | Folate receptor alpha | IgG1 | Lysines | Reducible disulfide | DM4/ maytansinoid | microtubule inhibitor | 3–4 | Platinum-resistant epithelial ovarian, fallopian tube, or primary peritoneal cancer (2022) |
Oligo Type | Indication | Peptide | Formulation Type | Target | Current Stage | Reference |
---|---|---|---|---|---|---|
ASO | Histiocytic lymphoma cell | Protamine | Noncovalent nanosuspension | c-myc | in vitro | [88] |
ASO | HIV-AIDS | Protamine | Covalent conjugate/nanoparticle | HIV-1 | in vitro | [89] |
PMO | Cell proliferation disorders | Arginine-rich CPP | Covalent conjugate | c-myc | preclinical | [90] |
PMO | N/A | Bicyclic CPP | Covalent conjugate | mutant intron from the human β-globin gene | in vitro | [91] |
PMO | N/A | Tat CPP | Covalent conjugate | mutant splice site of the human globin β-thalassemic intron 2 | in vitro | [92] |
PMO SSO | DMD | B-MSP | Peptide fusion-conjugate | heart and skeletal muscle | preclinical | [93] |
PMO SSO | DMD | Arginine-rich CPP | Covalent conjugate | muscle | preclinical | [94] |
PMO SSO | SMA | Pip6a | Covalent conjugate | ISS-N1 | preclinical | [81] |
PNA | HIV |
Transportan/ R6-Penetratin | Covalent conjugate | HIV-1+ HeLa cells | in vitro | [95] |
siRNA | HIV | Protamine-Fab fusion | Noncovalent conjugate | HIV-1 | preclinical | [96] |
siRNA | Melanoma | Protamine-ScFv fusion | Noncovalent conjugate | ErbB2 | preclinical | [96] |
siRNA | Neurodegeneration | Penetratin1 | Covalent conjugate | SOD1/Casp3 in neurons | in vitro | [97] |
siRNA | Colon cancer | LMWP | Covalent conjugate | eGFP | in vitro | [98] |
siRNA | HIV | Protamine-ScFv fusion | Noncovalent conjugate | Ku70 | preclinical | [99] |
Name | Commercial Product | Serotypes | Carrier Protein | Year |
---|---|---|---|---|
PPV23 | Pneumovax®23 | 1, 2, 3, 4, 5, 6B, 7F, 8, 9N, 9V, 10A, 11A, 12F, 14, 15B, 17F, 18C, 19A, 19F, 20, 22F, 23F, and 33F | None | 1983 |
PCV7 | Prevnar® | 4, 6B, 9V, 14, 18C, 19F, and 23F | Attenuated diphtheria protein CRM197 | 2000 |
PCV10 | Synflorix™ | 1, 4, 5, 6B, 7F, 9V, 14, 18C, 19F, and 23F | NTHi, diphtheria toxoid, tetanus toxoid | 2009 |
PCV13 | Prevnar13® | 1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 19A, 19F, 18C, and 23F | Attenuated diphtheria protein CRM197 | 2010 |
PCV15 | Vaxneuvance™ | 1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F, 22F, 23F, and 33F | Attenuated diphtheria protein CRM197 | 2021 |
PCV20 | Prevnar20™ | 1, 3, 4, 5, 6A, 6B, 7F, 8, 9V, 10A, 11A, 12F, 14, 15B, 18C, 19A, 19F, 22F, 23F, and 33F | Attenuated diphtheria protein CRM197 | 2021 |
Name | Polymer | API | Route of Administration | Indication | FDA Approval Year |
---|---|---|---|---|---|
Stimufend® (pegfilgrastim-fpgk) | PEG | Recombinant human G-CSF | SC | Febrile neutropenia | 2022 |
Rolvedon® (eflapegrastim-xnst) | PEG | Recombinant human G-CSF | SC | Febrile neutropenia | 2022 |
Besremi® (ropeginterferon alfa-2b-njft) | PEG | Recombinant interferon alfa-2b | SC | Polycythemia vera | 2021 |
Skytrofa® (lonapegsomatropin-tcgd) | PEG | Somatropin | SC | Pediatric growth hormone deficiency | 2021 |
Empaveli® (pegcetacoplan) | PEG | Peptide-based C3 inhibitor (compstatin derivative) | SC | Paroxysmal nocturnal hemoglobinuria | 2021 |
Fylnetra® (pegfilgrastim-pbbk) | PEG | Recombinant human G-CSF | SC | Febrile neutropenia | 2021 |
Nyvepria® (pegfilgrastim-apgf) | PEG | Recombinant human G-CSF | SC | Febrile neutropenia | 2020 |
Ziextenzo® (pegfilgrastim-bmez) | PEG | Recombinant human G-CSF | SC | Febrile neutropenia | 2019 |
Esperoct® (antihemophilic factor (recombinant), glycopegylated-exei) | PEG | Recombinant factor VIII | IV | Hemophilia A | 2019 |
Asparlas® (calaspargase pegol-mknl) | PEG | L-asparaginase | IV | Acute lymphoblastic leukemia | 2018 |
Udenyca® (pegfilgrastim-cbqv) | PEG | Recombinant human G-CSF | SC | Febrile neutropenia | 2018 |
Revcovi® (elapegademase-lvlr) | PEG | Recombinant adenosine deaminase | IM | Adenosine deaminase severe combined immune deficiency | 2018 |
Jivi® (antihemophilic factor (recombinant), PEGylated-aucl) | PEG | Recombinant factor VII | IV | Hemophilia A | 2018 |
Fulphila® (pegfilgrastim-jmdb) | PEG | Recombinant human G-CSF | SC | Febrile neutropenia | 2018 |
Palynziq® (pegvaliase-pqpz) | PEG | Recombinant phenylalanine ammonia lyase | SC | Phenylketonuria | 2018 |
Rebinyn® (Jivi® (antihemophilic factor (recombinant), PEGylated-aucl) | PEG | Recombinant factor IX | IV | Hemophilia B | 2017 |
Adynovate® (rurioctocog alfa pegol) | PEG | Recombinant factor VIII | IV | Hemophilia A | 2015 |
Plegridy® (peginterferon beta-1a) | PEG | Recombinant interferon beta-1a | SC, IM | Multiple sclerosis | 2014 |
Omontys® (peginesatide) | PEG | Peptide-based erythropoietin receptor agonist | SC, IV | Anemia associated with chronic kidney disease | 2012 (Withdrawn 2019) |
Sylatron® (peginterferon alfa-2b | PEG | Recombinant interferon alfa-2b | SC | Melanoma | 2011 |
Krystexxa® (pegloticase) | PEG | Recombinant uricase | IV | Gout | 2010 |
Cimzia® (certolizumab pegol) | PEG | Anti-TNF-ɑ Fab′ | SC | Crohn’s disease | 2008 |
Mircera® (methoxy polyethylene glycol-epoetin beta) | PEG | Recombinant erythropoietin | IV, SC | Anemia associated with chronic kidney disease | 2007 |
Somavert® (pegvisomant) | PEG | Human growth hormone analog, growth hormone receptor antagonist | SC | Acromegaly | 2003 |
Neulasta® (pegfilgrastim) | PEG | Recombinant human G-CSF | SC | Febrile neutropenia | 2002 |
Pegasys® (peginterferon alfa-2a) | PEG | Recombinant interferon alfa-2a | SC | Chronic hepatitis B and C | 2002 |
Pegintron ® | PEG | Recombinant interferon alfa-2b | SC | Chronic hepatitis C, melanoma | 2001 |
Oncaspar® (pegaspargase) | PEG | L-asparaginase | IM, IV | Acute lymphoblastic leukemia | 1994 |
Adagen® (pegademase bovine) | PEG | Bovine adenosine deaminase | IM | Adenosine deaminase severe combined immune deficiency | 1990 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holz, E.; Darwish, M.; Tesar, D.B.; Shatz-Binder, W. A Review of Protein- and Peptide-Based Chemical Conjugates: Past, Present, and Future. Pharmaceutics 2023, 15, 600. https://doi.org/10.3390/pharmaceutics15020600
Holz E, Darwish M, Tesar DB, Shatz-Binder W. A Review of Protein- and Peptide-Based Chemical Conjugates: Past, Present, and Future. Pharmaceutics. 2023; 15(2):600. https://doi.org/10.3390/pharmaceutics15020600
Chicago/Turabian StyleHolz, Emily, Martine Darwish, Devin B. Tesar, and Whitney Shatz-Binder. 2023. "A Review of Protein- and Peptide-Based Chemical Conjugates: Past, Present, and Future" Pharmaceutics 15, no. 2: 600. https://doi.org/10.3390/pharmaceutics15020600
APA StyleHolz, E., Darwish, M., Tesar, D. B., & Shatz-Binder, W. (2023). A Review of Protein- and Peptide-Based Chemical Conjugates: Past, Present, and Future. Pharmaceutics, 15(2), 600. https://doi.org/10.3390/pharmaceutics15020600