In Vitro Study of Biological Activity of Tanacetum vulgare Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. T. vulgare Samples for Extraction
2.3. Preparation of T. vulgare Extracts
2.4. Determination of BASs in Extracts of T. vulgare
2.5. Determination of the Antioxidant Activity of BASs from T. vulgare Extracts
2.6. Determination of the Antimicrobial Activity of BASs from T. vulgare Extracts
2.7. Molecular Docking
2.8. Statistical Data Processing
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Devrnja, N.; Krstić-Milošević, D.; Janošević, D.; Tešević, V.; Vinterhalter, B.; Savić, J.; Ćalić, D. In vitro cultivation of tansy (Tanacetum vulgare L.): A tool for the production of potent pharmaceutical agents. Protoplasma 2021, 258, 587–599. [Google Scholar] [CrossRef]
- Juan-Badaturuge, M.; Habtemariam, S.; Jackson, C.; Thomas, M.J. Antioxidant principles of Tanacetum vulgare L. aerial parts. Nat. Prod. Commun. 2009, 4, 1561–1564. [Google Scholar] [CrossRef]
- Rocabado, G.; Bedoya, L.; Abad, M.; Bermejo, P. Rubus—A Review of its Phytochemical and Pharmacological Profile. Nat. Prod. Commun. 2008, 3, 423–436. [Google Scholar] [CrossRef]
- Shirshova, T.I.; Bezmaternykh, K.V.; Beshlei, I.V.; Smirnova, A.N.; Oktyabrâskii, O.N. Antioxidant properties of extracts of leaves and inflorescences of spiraea media franz schmidt from the flora of komi republic. Pharm. Chem. J. 2020, 54, 622–625. [Google Scholar] [CrossRef]
- Devrnja, N.; Anđelković, B.; Aranđelović, S.; Radulović, S.; Soković, M.; Krstić-Milošević, D.; Ristić, M.; Ćalić, D. Comparative studies on the antimicrobial and cytotoxic activities of Tanacetum vulgare L. essential oil and methanol extracts. S. Afr. J. Bot. 2017, 111, 212–221. [Google Scholar] [CrossRef]
- De Luca, L.M.; Norum, K.R. Scurvy and Cloudberries: A Chapter in the History of Nutritional Sciences. J. Nutr. 2011, 141, 2101–2105. [Google Scholar] [CrossRef]
- Orlova, A.A.; Povydysh, M.N. Review of methods for qualitative and quantitative analysis of tannins in plant raw materials. Chem. Veg. Raw Mater. 2019, 4, 29–45. (In Russian). Available online: http://journal.asu.ru/cw/article/view/5459 (accessed on 9 February 2023).
- Poroikov, V.V. Computer-aided drug design: From discovery of novel pharmaceutical agents to systems pharmacology. Biomed. Khim. 2020, 66, 30–41. (In Russian) [Google Scholar] [CrossRef]
- Li, Y.; Kong, D.; Fu, Y.; Sussman, M.R.; Wu, H. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol. Biochem. 2020, 148, 80–89. [Google Scholar] [CrossRef]
- Lagunin, A.; Povydysh, M.; Ivkin, D. Antihypoxic action of Panax Japonicus, Tribulus Terrestris and Dioscorea Deltoidea cell cultures: In silico and animal studies. Mol. Inform. 2020, 39, 2000093. (In Russian) [Google Scholar] [CrossRef]
- Ivănescu, B.; Tuchilus, C.; Corciovă, A.; Lungu, C.; Mihai, C.T.; Gheldiu, A.M.; Vlase, L. Antioxidant, antimicrobial and cytotoxic activity of Tanacetum vulgare, Tanacetum corymbosum and Tanacetum macrophyllum extracts. Farmacia 2018, 66, 282–288. [Google Scholar]
- Coté, H.; Boucher, M.A.; Pichette, A.; Legault, J. Anti-inflammatory, antioxidant, antibiotic, and cytotoxic activities of Tanacetum vulgare L. essential oil and its constituents. Medicines 2017, 4, 34. [Google Scholar] [CrossRef] [PubMed]
- Gruszecki, R.; Zawiślak, G.; Rybiński, M.; Zalewska, E.; Walasek-Janusz, M. Usychalność surowców zielarskich (Drying ratio of herbal raw materials). Ann. Hort. 2020, 30, 5–21. [Google Scholar] [CrossRef]
- Soong, Y.Y.; Barlow, P.J. Isolation and structure elucidation of phenolic compounds from longan (Dimocarpus longan Lour.) seed by high-performance liquid chromatography-electrospray ionization mass spectrometry. J. Chromatogr. A 2005, 1085, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Nurzyńska-Wierdak, R.; Sałata, A.; Kniaziewicz, M. Tansy (Tanacetum vulgare L.)—A wild-growing aromatic medicinal plant with a variable essential oil composition. Agronomy 2022, 12, 277. [Google Scholar] [CrossRef]
- Konieczny, M.; Ślęzak, E. The influence of the environment on the content of macro- and microelements in the Tanacetum vulgare. J. Ecol. Eng. 2019, 20, 1–7. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef]
- Acimovic, M.; Puvača, N. Tanacetum vulgare L.—A systematic review. J. Agron. Technol. Eng. Manag. 2020, 3, 416–422. [Google Scholar]
- Räisänen, R.; Primetta, A.; Nikunen, S.; Honkalampi, U.; Nygren, H.; Pihlava, J.M.; Berghe, I.V.; Wright, A. Examining safety of biocolourants from fungal and plant sources-examples from Cortinarius and Tapinella, Salix and Tanacetum spp. and dyed woollen fabrics. Antibiotics 2020, 9, 266. [Google Scholar] [CrossRef]
- Vasileva, A.M.; Iliev, I.A.; Lozanov, V.S.; Dimitrova, M.B.; Mitev, V.I.; Ivanov, I.P. In vitro study on the antitumor activity of Tanacetum vulgare L. extracts. Bulg. Chem. Commun. 2019, 51829, 249–255. [Google Scholar] [CrossRef]
- Sowa, P.; Marcinčáková, D.; Miłek, M.; Sidor, E.; Legáth, J.; Dżugan, M. Analysis of cytotoxicity of selected Asteraceae plant extracts in real time, their antioxidant properties and polyphenolic profile. Molecules 2020, 25, 5517. [Google Scholar] [CrossRef] [PubMed]
- Vazquez-Morado, L.E.; Robles-Zepeda, R.E.; Ochoa-Leyva, A.; Arvizu-Flores, A.A.; Garibay-Escobar, A.; Castillo-Yañez, F.; Lopez-Zavala, A.A. Biochemical characterization and inhibition of thermolabile hemolysin from Vibrio parahaemolyticus by phenolic compounds. PeerJ 2021, 9, e10506. [Google Scholar] [CrossRef] [PubMed]
- Feduraev, P.; Skrypnik, L.; Nebreeva, S.; Dzhobadze, G.; Vatagina, A.; Kalinina, E.; Pungin, A.; Maslennikov, P.; Riabova, A.; Krol, O.; et al. Variability of phenolic compound accumulation and antioxidant activity in wild plants of some rumex species (Polygonaceae). Antioxidants 2022, 11, 311. [Google Scholar] [CrossRef] [PubMed]
- Lilic, M.; Chen, J.; Boyaci, H.; Braffman, N.; Hubin, E.A.; Herrmann, J.; Müller, R.; Mooney, R.; Landick, R.; Darst, S.A. The antibiotic sorangicin A inhibits promoter DNA unwinding in a Mycobacterium tuberculosis rifampicin-resistant RNA polymerase. Proc. Natl. Acad. Sci. USA 2020, 117, 30423–30432. [Google Scholar] [CrossRef]
- Owczarek, S.; Kiryushko, D.; Larsen, M.H.; Kastrup, J.S.; Gajhede, M.; Sandi, C.; Berezin, V.; Bock, E.; Soroka, V. Neuroplastin-55 binds to and signals through the fibroblast growth factor receptor. FASEB J. 2010, 24, 1139–1150. [Google Scholar] [CrossRef]
- Hansson, S.; Singh, R.; Gudkov, A.T.; Liljas, A.; Logan, D.T. Crystal structure of a mutant elongation factor G trapped with a GTP analogue. FEBS Lett. 2005, 579, 4492–4497. [Google Scholar] [CrossRef]
- Lee, H.H.; Moon, J.; Suh, S.W. Crystal structure of the Helicobacter pylori enoyl-acyl carrier protein reductase in complex with hydroxydiphenyl ether compounds, triclosan and diclosan. Proteins Struct. Funct. Bioinform. 2007, 69, 691–694. [Google Scholar] [CrossRef]
- Gennadios, H.A.; Whittington, D.A.; Li, X.; Fierke, C.A.; Christianson, D.W. Mechanistic Inferences from the Binding of Ligands to LpxC, a Metal-Dependent Deacetylase. Biochemistry 2006, 45, 7940–7948. [Google Scholar] [CrossRef]
- Toledo Warshaviak, D.; Golan, G.; Borrelli, K.W.; Zhu, K.; Kalid, O. Structure-Based Virtual Screening Approach for Discovery of Covalently Bound Ligands. J. Chem. Inf. Model. 2014, 54, 1941–1950. [Google Scholar] [CrossRef]
- Zhu, K.; Borrelli, K.W.; Greenwood, J.R.; Day, T.; Abel, R.; Farid, R.S.; Harder, E. Docking Covalent Inhibitors: A Parameter Free Approach To Pose Prediction and Scoring. J. Chem. Inf. Model. 2014, 54, 1932–1940. [Google Scholar] [CrossRef]
- Palierse, E.; Przybylski, C.; Brouri, D.; Jolivalt, C.; Coradin, T. Interactions of calcium with chlorogenic and rosmarinic acids: An experimental and theoretical approach. Int. J. Mol. Sci. 2020, 21, 4948. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Ochoa, M.L.; Vera-Guzmán, A.M.; Mondragón-Chaparro, D.M.; Sandoval-Torres, S.; Carrillo-Rodríguez, J.C.; Chávez-Servia, J.L. Effects of growth conditions on phenolic composition and antioxidant activity in the medicinal plant Ageratina petiolaris (Asteraceae). Diversity 2022, 14, 595. [Google Scholar] [CrossRef]
- Lekmine, S.; Bendjedid, S.; Benslama, O.; Martín-García, A.I.; Boussekine, S.; Kadi, K.; Akkal, S.; Nieto, G.; Sami, R.; Al-Mushhin, A.A.M. Ultrasound-Assisted Extraction, LC–MS/MS analysis, anticholinesterase, and antioxidant activities of valuable natural metabolites from Astragalus armatus Willd.: In silico molecular docking and In vitro enzymatic studies. Antioxidants 2022, 11, 2000. [Google Scholar] [CrossRef] [PubMed]
- Erwin, A.L. Antibacterial Drug Discovery Targeting the Lipopolysaccharide Biosynthetic Enzyme LpxC. Cold Spring Harb. Perspect. Med 2016, 6, a025304. [Google Scholar] [CrossRef] [PubMed]
- Silver, L.L. Appropriate Targets for Antibacterial Drugs. Cold Spring Harb. Perspect. Med. 2016, 6, a030239. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Pandey, N.; Ahmad, F.; Upadhyay, T.K.; Islam, M.H.; Alshammari, N.; Saeed, M.; Al-Keridis, L.A.; Sharma, R. Identification of Novel Inhibitor of Enoyl-Acyl Carrier Protein Reductase (InhA) Enzyme in Mycobacterium tuberculosis from Plant-Derived Metabolites: An In Silico Study. Antibiotics 2022, 11, 1038. [Google Scholar] [CrossRef]
- Shahad, A.; Zainab, H.; Wafa, M.A.-L.; Amal, A.A.L.; Shah, A.K. Chemical composition, In vitro antibacterial and antioxidant potential of Omani Thyme essential oil along with in silico studies of its major constituent. J. King Saud Univ. Sci. 2020, 32, 1021–1028. [Google Scholar] [CrossRef]
- Anzali, S.; Barnickel, G.; Cezanne, B.; Krug, M.; Filimonov, D.; Poroikov, V. Discriminating between drugs and nondrugs by prediction of activity spectra for substances (PASS). J. Med. Chem. 2001, 44, 2432–2437. [Google Scholar] [CrossRef]
- Filimonov, D.A.; Lagunin, A.A.; Gloriozova, T.A.; Rudik, A.V.; Druzhilovskii, D.S.; Pogodin, P.V.; Poroikov, V.V. Prediction of the biological activity spectra of organic compounds using the pass online web resource. Chem. Heterocycl. Comp. 2014, 50, 444–457. [Google Scholar] [CrossRef]
- Kryzhanovskii, S.A.; Salimov, R.M.; Lagunin, A.A.; Filimonov, D.A.; Gloriozova, T.A.; Poroikov, V.V. Nootropic action of some antihypertensive drugs: Computer predicting and experimental testing. Pharm. Chem. J. 2012, 45, 605–611. [Google Scholar] [CrossRef]
- Fedorova, E.V.; Buryakina, A.V.; Zakharov, A.V.; Filimonov, D.A.; Lagunin, A.A.; Poroikov, V.V. Design, synthesis and pharmacological evaluation of novel vanadium-containing complexes as antidiabetic agents. PLoS ONE 2014, 9, e100386. [Google Scholar] [CrossRef] [PubMed]
- Kurashov, E.A.; Krylova, J.V.; Mitrukova, G.G.; Chernova, A.M. Low-molecular-weight metabolites of aquatic macrophytes growing on the territory of Russia and their role in hydroecosystems. Contemp. Probl. Ecol. 2014, 7, 433–448. [Google Scholar] [CrossRef]
- Bączek, K.B.; Kosakowska, O.; Przybył, J.L.; Pióro-Jabrucka, E.; Costa, R.; Mondello, L.; Gniewosz, M.; Synowiec, A.; Węglarz, Z. Antibacterial and antioxidant activity of essential oils and extracts from costmary (Tanacetum balsamita L.) and tansy (Tanacetum vulgare L.). Ind. Crops Prod. 2017, 102, 154–163. [Google Scholar] [CrossRef]
- Sharopov, F.; Braun, M.S.; Gulmurodov, I.; Khalifaev, D.; Isupov, S.; Wink, M. Antimicrobial, antioxidant, and anti-inflammatory activities of essential oils of selected aromatic plants from Tajikistan. Foods 2015, 4, 645–653. [Google Scholar] [CrossRef]
- Moussa, H.; El Omari, B.; Chefchaou, H.; Tanghort, M.; Mzabi, A.; Chami, N.; Remmal, A. Action of thymol, carvacrol and eugenol on Penicillium and Geotrichum isolates resistant to commercial fungicides and causing postharvest citrus decay. Can. J. Plant Pathol. 2021, 43, 26–34. [Google Scholar] [CrossRef]
- Amorati, R.; Foti, M.C.; Valgimigli, L. Antioxidant activity of essential oils. J. Agric. Food Chem. 2013, 61, 10835–10847. [Google Scholar] [CrossRef]
- Dai, J.; Zhu, L.; Yang, L.; Qiu, J. Chemical composition, antioxidant and antimicrobial activities of essential oil from Wedelia prostrata. Excli J. 2013, 12, 479–490. [Google Scholar]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Malekpoor, F.; Pirbalouti, A.G.; Salimi, A.; Shabani, L.; Sharifi, M.; Hamedi, B. Antimicrobial and antioxidant activities and total phenolic content of Tanacetum polycephalum Schutz. Bip. as a folkloric herb in South western Iran. Indian J. Tradit. Knowl. 2015, 14, 370–375. [Google Scholar]
- Ulukanli, Z.; Demirci, S.; Yilmaztekin, M. Essential oil constituents of Tanacetum cilicicum: Antimicrobial and phytotoxic activities. J. Food Qual. 2017, 2017, 6214896. [Google Scholar] [CrossRef]
- Mureşan, M.L. Antimicrobial effects of the ethanolic extracts and essential oils of Tanacetum vulgare L. from Romania. Food Technol. 2015, 19, 75–80. [Google Scholar] [CrossRef]
- Mikulášová, M.; Vaverková, Š. Antimicrobial effects of essential oils from Tanacatum vulgare L. and Salvia officinalis L., growing in Slovakia. Nov. Biotechnol. 2009, 9, 161–166. [Google Scholar]
- Gheorghita, D.; Robu, A.; Antoniac, A.; Antoniac, I.; Ditu, L.M.; Raiciu, A.-D.; Tomescu, J.; Grosu, E.; Saceleanu, A. In vitro antibacterial activity of some plant essential oils against four different microbial strains. Appl. Sci. 2022, 12, 9482. [Google Scholar] [CrossRef]
- Gupta, N.; Saxena, G. Antimicrobial activity of constituents identified in essential oils from Mentha and Cinnamomum through GC-MS. Int. J. Pharma. Bio. Sci. 2010, 1, 715–720. [Google Scholar]
- Hsouna, A.B.; Halima, N.B.; Abdelkafi, S.; Hamdi, N. Essential oil from Artemisia phaeolepis: Chemical composition and antimicrobial activities. J. Oleo Sci. 2013, 980, 973–980. [Google Scholar] [CrossRef] [PubMed]
Name | Extract Yield, wt. % | |||||
---|---|---|---|---|---|---|
Soxhlet Method | Maceration Method | |||||
Methanol | Methanol | Methanol–NaOH | Methanol–NH4OH | Methanol–TFA | Methanol–HCOOH | |
T. vulgare | 17.10 ± 0.51 a | 8.98 ± 0.27 b | 4.56 ± 0.13 c | 18.74 ± 0.56 a | 22.65 ± 0.68 d | 17.25 ± 0.51 a |
BAS | Retention Time, min | Content, mg/kg | ||
---|---|---|---|---|
Methanol–TFA | Methanol | Methanol–NaOH | ||
3,4-dihydroxybenzoic acid | 5.8 ± 0.5 | 14.40 ± 0.43 | 15.36 ± 0.46 | - |
Neochlorogenic acid | 7.6 ± 0.5 | 112.14 ± 3.36 | - | - |
Caftaric acid | 9.1 ± 0.5 | 63.00 ± 1.89 | - * | - |
Chlorogenic acid | 10.3 ± 0.5 | 5945.40 ± 178.36 | 2265.24 ± 67.96 | - |
Caffeic acid | 10.5 ± 0.5 | 280.80 ± 8.42 | 93.45 ± 2.80 | - * |
Coumaric acid | 13.9 ± 0.5 | - * | - * | - * |
Ferulic acid | 16.3 ± 0.5 | 1818.00 ± 54.54 | - | - * |
Luteolin-7-glucoside | 20.7 ± 0.5 | 550.80 ± 16.52 | 104.88 ± 3.15 | - |
Chicoric acid | 21.7 ± 0.5 | - * | 80.05 ± 2.40 | - |
Apigenin-7-O-glucoside | 26.1 ± 0.5 | 30.60 ± 0.91 | - | - |
Rosmarinic acid | 29.3 ± 0.5 | 1764.00 ± 52.92 | 661.31 ± 19.84 | 3.72 ± 0.11 |
Acacetin | 54.7 ± 0.5 | 23.40 ± 0.70 | - | - |
Compounds | 6VVT | 2WV3 | 2BV3 | 2PD4 | 2GO4 |
---|---|---|---|---|---|
3,4-dihydroxybenzoic acid | 2.90 | 5.29 | 6.75 | 5.42 | 3.07 |
Neochlorogenic acid | 6.54 | 9.02 | 7.71 | 10.22 | 9.14 |
Cafftaric acid | 5.88 | 7.65 | 9.65 | 8.66 | 8.37 |
Chlorogenic acid | 5.77 | 9.49 | 6.15 | 9.77 | 9.93 |
Caffeic acid | 3.68 | 5.67 | 5.38 | 4.66 | 1.35 |
Coumaric acid | - | - | - | - | 8.22 |
Ferulic acid | 2.96 | 5.58 | - | 5.02 | 4.47 |
Luteolin-7-glucoside | 8.20 | 11.46 | 7.12 | 12.55 | 7.57 |
Apigenin-7-O-glucoside | 6.27 | 10.34 | 7.32 | 12.12 | 8.00 |
Rosmarinic acid | 5.49 | 8.92 | 9.29 | 8.94 | 5.59 |
Acacetin | 2.23 | 5.68 | 3.64 | 4.80 | 3.97 |
Active Ingredients | Antioxidant Activity, mmol Trolox Equivalent/g | ||
---|---|---|---|
ABTS | DPPH | FRAP | |
Luteolin-7-glucoside | 6.5 ± 0.34 | 2.99 ± 0.16 | 1.79 ± 0.06 |
Chlorogenic acid | 12.31 ± 0.98 | 7.52 ± 0.32 | 6.91 ± 0.22 |
Rosmarinic acid | 5.69 ± 0.29 | 3.44 ± 0.19 | 3.74 ± 0.12 |
Active Components | BAS Weight, µg/disk | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
200 | 150 | 100 | 50 | 25 | 10 | 5 | 2.5 | 1.25 | 0.625 | |
B. subtilis | ||||||||||
Luteolin-7-glucoside | – | – | – | 6.0 ± 0.2 a | 8.0 ± 0.2 b | 8.0 ± 0.2 b | 10.0 ± 0.3 b | 7.0 ± 0.2 ab | 3.0 ± 0.1 c | – |
Chlorogenic acid | – | – | – | 4.0 ± 0.1 a | 5.0 ± 0.2 a | 6.0 ± 0.2 ab | 8.0 ± 0.2 b | 6.0 ± 0.2 ab | 2.0 ± 0.1 a | – |
Rosmarinic acid | – | – | – | 3.0 ± 0.1 a | 4.0 ± 0.1 a | 6.0 ± 0.2 ab | 7.0 ± 0.2 b | 5.0 ± 0.2 a | 2.0 ± 0.1 a | – |
P. aeruginosa | ||||||||||
Luteolin-7-glucoside | – | – | – | 5.0 ± 0.2 a | 6.0 ± 0.2 a | 7.0 ± 0.2 ab | 8.0 ± 0.2 b | 5.0 ± 0.2 a | 2.0 ± 0.1 c | – |
Chlorogenic acid | – | – | – | 6.0 ± 0.2 a | 6.0 ± 0.2 a | 7.0 ± 0.2 a | 7.0 ± 0.2 a | 3.0 ± 0.1 b | – | – |
Rosmarinic acid | – | – | – | 4.0 ± 0.1 a | 6.0 ± 0.2 ab | 7.0 ± 0.2 b | 8.0 ± 0.2 b | 6.0 ± 0.2 ab | 3.0 ± 0.1 a | – |
E. coli | ||||||||||
Luteolin-7-glucoside | – | – | – | 1.0 ± 0.1 a | 2.0 ± 0.1 a | 2.0 ± 0.1 a | 5.0 ± 0.2 b | 1.0 ± 0.1 a | – | – |
Chlorogenic acid | – | – | – | 1.0 ± 0.1 a | 2.0 ± 0.1 a | 3.0 ± 0.1 ab | 4.0 ± 0.1 b | 2.0 ± 0.1 a | – | – |
Rosmarinic acid | – | – | – | 1.0 ± 0.1 a | 3.0 ± 0.1 a | 4.0 ± 0.1 ab | 5.0 ± 0.2 b | 2.0 ± 0.1 a | – | – |
C. albicans | ||||||||||
Luteolin-7-glucoside | – | – | – | – | 1.0 ± 0.1 a | 6.0 ± 0.2 b | 2.0 ± 0.1 a | – | – | – |
Chlorogenic acid | – | – | – | – | – | – | – | – | – | – |
Rosmarinic acid | – | – | – | – | – | – | – | – | – | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Babich, O.; Larina, V.; Krol, O.; Ulrikh, E.; Sukhikh, S.; Gureev, M.A.; Prosekov, A.; Ivanova, S. In Vitro Study of Biological Activity of Tanacetum vulgare Extracts. Pharmaceutics 2023, 15, 616. https://doi.org/10.3390/pharmaceutics15020616
Babich O, Larina V, Krol O, Ulrikh E, Sukhikh S, Gureev MA, Prosekov A, Ivanova S. In Vitro Study of Biological Activity of Tanacetum vulgare Extracts. Pharmaceutics. 2023; 15(2):616. https://doi.org/10.3390/pharmaceutics15020616
Chicago/Turabian StyleBabich, Olga, Viktoria Larina, Olesia Krol, Elena Ulrikh, Stanislav Sukhikh, Maxim A. Gureev, Alexander Prosekov, and Svetlana Ivanova. 2023. "In Vitro Study of Biological Activity of Tanacetum vulgare Extracts" Pharmaceutics 15, no. 2: 616. https://doi.org/10.3390/pharmaceutics15020616
APA StyleBabich, O., Larina, V., Krol, O., Ulrikh, E., Sukhikh, S., Gureev, M. A., Prosekov, A., & Ivanova, S. (2023). In Vitro Study of Biological Activity of Tanacetum vulgare Extracts. Pharmaceutics, 15(2), 616. https://doi.org/10.3390/pharmaceutics15020616