Ball-Milling Preparation of the Drug–Drug Solid Form of Pioglitazone-Rosuvastatin at Different Molar Ratios: Characterization and Intrinsic Dissolution Rates Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. NG or LAG Solvent-Screening (Stoichiometry Ratio 2:1)
2.2.2. Evaluation of the Formation of the Multicomponent Salt PGZ-RSV (EtOH, Stoichiometric Ratio 2:1) at Different Grinding Times
2.2.3. Evaluation of the Amorphization Ability of the PGZ·HCl
2.2.4. Evaluation of the Formation of the PGZ·HCl-RSV Solid Forms (1:1, 1:2, 1:4, 1:6, 1:8, and 1:10)
2.2.5. Evaluation of the Formation of the PGZ·HCl-RSV Solid Forms (4:1, 6:1, 8:1, and 10:1)
2.2.6. Evaluation of the Amorphization of the RSV
2.2.7. Thermal Analysis
2.2.8. XRPD
2.2.9. Scanning Electron Microscopy Studies (SEM)
2.2.10. Intrinsic Dissolution Studies
2.2.11. Saturation Solubility Experiments
3. Results
3.1. NG and LAG Solvent-Screening (Stoichiometry 2:1)
3.1.1. Evaluation of the Formation of the PGZ·HCl-RSV Solid Forms (1:1, 1:2, 1:4, 1:6, 1:8, and 1:10)
3.1.2. Evaluation of the Formation of the PGZ·HCl-RSV Solid Forms (4:1, 6:1, 8:1, and 10:1)
3.1.3. SEM
3.1.4. Determination of Dissolution Profiles and Solubility Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramkumar, S.; Raghunath, A.; Raghunath, S. Statin therapy: Review of safety and potential side effects. Acta Cardiol. Sin. 2016, 32, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Belozerova, N.M.; Bilski, P.; Jarek, M.; Jenczyk, J.; Kichanov, S.E.; Kozlenko, D.P.; Mielcarek, J.; Pajzderska, A.; Wąsicki, J. Exploring the molecular reorientations in amorphous rosuvastatin calcium. RSC Adv. 2020, 10, 33585–33594. [Google Scholar] [CrossRef]
- Beg, S.; Raza, K.; Kumar, R.; Chadha, R.; Katare, O.P.; Singh, B. Improved intestinal lymphatic drug targeting via phospholipid complex-loaded nanolipospheres of rosuvastatin calcium. RSC Adv. 2016, 6, 8173–8187. [Google Scholar] [CrossRef]
- Inam, S.; Irfan, M.; Syed, H.K.; Asghar, S.; Abou-taleb, H.A.; Abourehab, M.A.S. Development and Characterization of Eudragit® EPO-Based Solid Dispersion of Rosuvastatin Calcium to Foresee the Impact on Solubility, Dissolution and Antihyperlipidemic Activity. Pharmaceuticals 2022, 15, 492. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Kim, Y.W.; Tin, Y.Y.; Soe, M.T.P.; Ko, B.H.; Park, S.J.; Lee, J.W. Recent technologies for amorphization of poorly water-soluble drugs. Pharmaceutics 2021, 13, 1318. [Google Scholar] [CrossRef] [PubMed]
- Laitinen, R.; Löbmann, K.; Strachan, C.J.; Grohganz, H.; Rades, T. Emerging Trends in the Stabilization of Amorphous Drugs. Int. J. Pharm. 2013, 453, 65. [Google Scholar] [CrossRef]
- Alonzo, D.E.; Zhang, G.G.Z.; Zhou, D.; Gao, Y.; Taylor, L.S. Understanding the behavior of amorphous pharmaceutical systems during dissolution. Pharm. Res. 2010, 27, 608–618. [Google Scholar] [CrossRef]
- Solares-Briones, M.; Coyote-Dotor, G.; Páez-Franco, J.C.; Zermeño-Ortega, M.R.; de la O Contreras, C.M.; Canseco-González, D.; Avila-Sorrosa, A.; Morales-Morales, D.; Germán-Acacio, J.M. Mechanochemistry: A Green Approach in the Preparation of Pharmaceutical Cocrystals. Pharmaceutics 2021, 13, 790. [Google Scholar] [CrossRef]
- Karagianni, A.; Kachrimanis, K.; Nikolakakis, I. Co-Amorphous Solid Dispersions for Solubility and Absorption Improvement of Drugs: Composition, Preparation, Characterization and Formulations for Oral Delivery. Pharmaceutics 2018, 10, 98. [Google Scholar] [CrossRef]
- Chavan, R.B.; Thipparaboina, R.; Kumar, D.; Shastri, N.R. Co amorphous systems: A product development perspective. Int. J. Pharm. 2016, 515, 403–415. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Moinuddin, S.M.; Cai, T. Advances in coamorphous drug delivery systems. Acta Pharm. Sin. B 2019, 9, 19–35. [Google Scholar] [CrossRef]
- Löbmann, K.; Strachan, C.; Grohganz, H.; Rades, T.; Korhonen, O.; Laitinen, R. Co-amorphous simvastatin and glipizide combinations show improved physical stability without evidence of intermolecular interactions. Eur. J. Pharm. Biopharm. 2012, 81, 159–169. [Google Scholar] [CrossRef]
- Lodagekar, A.; Chavan, R.B.; Chella, N.; Shastri, N.R. Role of Valsartan as an Antiplasticizer in Development of Therapeutically Viable Drug-Drug Coamorphous System. Cryst. Growth Des. 2018, 18, 1944–1950. [Google Scholar] [CrossRef]
- Balakumar, P.; Mahadevan, N. Interplay between statins and PPARs in improving cardiovascular outcomes: A double-edged sword? Br. J. Pharmacol. 2012, 165, 373–379. [Google Scholar] [CrossRef]
- Tonstad, S.; Retterstøl, K.; Ose, L.; Öhman, K.P.; Lindberg, M.B.; Svensson, M. The dual peroxisome proliferator-activated receptor α/γ agonist tesaglitazar further improves the lipid profile in dyslipidemic subjects treated with atorvastatin. Metabolism 2007, 56, 1285–1292. [Google Scholar] [CrossRef]
- Muñoz Tecocoatzi, M.F.; Páez-Franco, J.C.; Coyote-Dotor, G.; Dorazco-González, A.; Miranda-Ruvalcaba, R.; Morales-Morales, D.; Germán-Acacio, J.M. Mecanoquímica: Una herramienta importante en la reactividad en el Estado Sólido Mechanochemistry: An important tool in solid-state reactivity. TECNOCIENCIA Chihuah. 2022, 16, e973. [Google Scholar] [CrossRef]
- Teja, S.B.; Patil, S.P.; Shete, G.; Patel, S.; Bansal, A.K. Drug-excipient behavior in polymeric amorphous solid dispersions. J. Excip. Food Chem. 2013, 4, 70–94. [Google Scholar]
- Kapourani, A.; Vardaka, E.; Katopodis, K.; Kachrimanis, K.; Barmpalexis, P. Crystallization tendency of APIs possessing different thermal and glass related properties in amorphous solid dispersions. Int. J. Pharm. 2020, 579, 119149. [Google Scholar] [CrossRef] [PubMed]
- USP 43-NF-38; The United Stated Pharmacopeia. United States Pharmacopoeia Convention Inc.: Rockville, MD, USA, 2020.
- Newman, A.; Zografi, G. Commentary: Considerations in the Measurement of Glass Transition Temperatures of Pharmaceutical Amorphous Solids. AAPS PharmSciTech 2020, 21, 26. [Google Scholar] [CrossRef] [PubMed]
- Shamblin, S.L.; Zografi, G. Enthalpy relaxation in binary amorphous mixtures containing sucrose. Pharm. Res. 1998, 15, 1828–1834. [Google Scholar] [CrossRef]
- Shamblin, S.L.; Huang, E.Y.; Zografi, G. The effects of co-lyophilized polymeric additives on the glass transition temperature and crystallization of amorphous sucrose. J. Therm. Anal. 1996, 47, 1567–1579. [Google Scholar] [CrossRef]
- Su, M.; Xia, Y.; Shen, Y.; Heng, W.; Wei, Y.; Zhang, L.; Gao, Y.; Zhang, J.; Qian, S. A novel drug-drug coamorphous system without molecular interactions: Improve the physicochemical properties of tadalafil and repaglinide. RSC Adv. 2019, 10, 565–583. [Google Scholar] [CrossRef] [PubMed]
- Newman, A.; Engers, D.; Bates, S.; Ivanisevic, I.; Kelly, R.C.; Zografi, G. Characterization of amorphous API:Polymer mixtures using X-ray powder diffraction. J. Pharm. Sci. 2008, 97, 4840–4856. [Google Scholar] [CrossRef]
- Shayanfar, A.; Jouyban, A. Drug-drug coamorphous systems: Characterization and physicochemical properties of coamorphous atorvastatin with carvedilol and glibenclamide. J. Pharm. Innov. 2013, 8, 218–228. [Google Scholar] [CrossRef]
- Jensen, K.T.; Blaabjerg, L.I.; Lenz, E.; Bohr, A.; Grohganz, H.; Kleinebudde, P.; Rades, T.; Löbmann, K. Preparation and characterization of spray-dried co-amorphous drug-amino acid salts. J. Pharm. Pharmacol. 2016, 68, 615–624. [Google Scholar] [CrossRef]
- Gupta, P.; Thilaqavathi, R.; Chakraborti, A.K.; Bansal, A.K. Role of molecular interaction in stability of celecoxib–PVP amorphous systems. Mol. Pharm. 2005, 2, 384. [Google Scholar] [CrossRef]
- Allesø, M.; Chieng, N.; Rehder, S.; Rantanen, J.; Rades, T.; Aaltonen, J. Enhanced dissolution rate and synchronized release of drugs in binary systems through formulation: Amorphous naproxen–cimetidine mixtures prepared by mechanical activation. J. Control. Release 2009, 136, 45–53. [Google Scholar] [CrossRef]
- Julien, P.A.; Friščić, T. Methods for Monitoring Milling Reactions and Mechanistic Studies of Mechanochemistry: A Primer. Cryst. Growth Des. 2022, 22, 5726–5754. [Google Scholar] [CrossRef]
- Pandit, V.; Gorantla, R.; Devi, K.; Pai, R.S.; Sarasija, S. Preparation and Characterization of Pioglitazone Cyclodextrin Inclusion Complexes. J. Young Pharm. 2011, 3, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Al-Heibshy, F.N.S.; Başaran, E.; Öztürk, N.; Demirel, M. Preparation and in vitro characterization of rosuvastatin calcium incorporated methyl beta cyclodextrin and Captisol® inclusion complexes. Drug Dev. Ind. Pharm. 2020, 46, 1495–1506. [Google Scholar] [CrossRef]
- Dengale, S.J.; Grohganz, H.; Rades, T.; Löbmann, K. Recent advances in co-amorphous drug formulations. Adv. Drug Deliv. Rev. 2016, 100, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Löbmann, K.; Laitinen, R.; Grohganz, H.; Gordon, K.C.; Strachan, C.; Rades, T. Coamorphous drug systems: Enhanced physical stability and dissolution rate of indomethacin and naproxen. Mol. Pharm. 2011, 8, 1919–1928. [Google Scholar] [CrossRef] [PubMed]
- Jensen, K.T.; Löbmann, K.; Rades, T.; Grohganz, H. Improving co-amorphous drug formulations by the addition of the highly water soluble amino acid, proline. Pharmaceutics 2014, 6, 416–435. [Google Scholar] [CrossRef]
- Babu, N.J.; Nangia, A. Solubility advantage of amorphous drugs and pharmaceutical cocrystals. Cryst. Growth Des. 2011, 11, 2662–2679. [Google Scholar] [CrossRef]
- Brough, C.; Williams, R.O. Amorphous solid dispersions and nano-crystal technologies for poorly water-soluble drug delivery. Int. J. Pharm. 2013, 453, 157–166. [Google Scholar] [CrossRef]
- Zaid, A.N.; Al Ramahi, R.; Cortesi, R.; Mousa, A.; Jaradat, N.; Ghazal, N.; Bustami, R. Investigation of the bioequivalence of rosuvastatin 20 mg tablets after a single oral administration in mediterranean Arabs using a validated LC-MS/MS method. Sci. Pharm. 2016, 84, 536–546. [Google Scholar] [CrossRef]
- Mostafa, N.M.; Badawey, A.M.; Lamie, N.T.; Abd El-Aleem, A.E.A.B. Selective chromatographic methods for the determination of Rosuvastatin calcium in the presence of its acid degradation products. J. Liq. Chromatogr. Relat. Technol. 2014, 37, 2182–2196. [Google Scholar] [CrossRef]
- Seedher, N.; Kanojia, M. Co-solvent solubilization of some poorly-soluble antidiabetic drugs Solubilization antidiabetic drugs. Pharm. Dev. Technol. 2009, 14, 185–192. [Google Scholar] [CrossRef]
- Jouyban, A.; Soltanpour, S. Solubility of pioglitazone hydrochloride in binary and ternary mixtures of water, propylene glycol, and polyethylene glycols 200, 400, and 600 at 298.2 K. AAPS PharmSciTech 2010, 11, 1713–1717. [Google Scholar] [CrossRef] [PubMed]
- Satheeshkumar, N.; Shantikumar, S.; Srinivas, R. Pioglitazone: A review of analytical methods. J. Pharm. Anal. 2014, 4, 295–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Outcome NG or Solvent-Screening | PGZ·HCl (mg) | RSV (mg) | PGZ·HCl (%w) | RSV (%w) | Tfus first peak (°C) | Tonset second peak (°C) | Tm second peak (°C) | ΔHm second peak J/g | Tg exp/Tg clcd °C |
---|---|---|---|---|---|---|---|---|---|
PGZ·HCl | - | - | - | - | - | 190.0 | 197.8 | 125.5 | 64.4 |
RSV | - | - | - | - | 175.2 | 225.8 | 115.2 | 72.8 | |
NG | 237.0 | 150.0 | 61.24 | 38.76 | Tc: 116.26 exo | Tm:153.69 | Tm:164.27 | 52.12 | 52.55/67.41 |
Hexane | 237.0 | 150.0 | 61.24 | 38.76 | - | 153.61 | 164.68 | 52.77 | - |
AcOEt | 237.0 | 150.0 | 61.24 | 38.76 | Tc: 110.11 exo | Tm:152.77 | Tm:164.98 | 50.44 | - |
EtOH | 237.0 | 150.0 | 61.24 | 38.76 | - | 148.86 | 159.11 | 38.79 | - |
Water | 237.0 | 150.0 | 61.24 | 38.76 | 123.05 | 147.03 | 156.70 | 18.69 | - |
Vibrational Band Assignment | PGZ·HCl | RSV | PGZ·HCl-RSV (NG) | PGZ·HCl-RSV (Hexane) | PGZ·HCl-RSV (EtOH) | PGZ·HCl-RSV (AcOEt) | PGZ·HCl-RSV (Water) |
---|---|---|---|---|---|---|---|
−C=OPGZ (a,b,b′) (Δν cm−1) | a: 1741 b: 1682 | a: 1743 (2) b: 1693 (11) | a: 1743 (2) b: 1693 (11) | a: 1743 (2) b: 1693 (11) | a: 1743 (2) b: 1693 (11) | a: 1743 (2) b: 1693 (11) | |
−C=ORSV (c) (Δν cm−1) | c: 1542 | c: 1543 (1) | c: 1543 (1) | c: 1543 (1) | c: 1543 (1) | c: 1543 (1) |
Stoichiometric Ratios | PGZ·HCl (mg) | RSV (mg) | PGZ·HCl (%w) | RSV (%w) | Tfus first peak (°C) | Tonset second peak (°C) | Tm second peak (°C) | ΔHm second peak J/g | Tg exp/Tg clcd °C |
---|---|---|---|---|---|---|---|---|---|
1:1 a | 201.3 | 251.8 | 44.42 | 55.58 | Tc: 110.53 exo | Tm:130.87 | Tm:156.39 | 24.75 | 56.12/68.81 |
1:2 | 125.6 | 318.6 | 28.27 | 71.73 | - | 145.2 | 159.9 | 16.75 | 110.4./70.21 |
1:4 | 57.2 | 291.5 | 16.40 | 83.60 | - | 143.9 | 158.8 | 9.247 | 112.7/71.27 |
1:6 | 50.0 | 375.43 | 11.75 | 88.25 | - | 144.6 | 154.7 | 4.166 | 114.9/71.70 |
1:8 | 33.3 | 333.8 | 9.07 | 90.93 | - | 143.0 | 151.8 | 2.008 | 115.2/71.94 |
1:10 | 33.3 | 417.14 | 7.39 | 92.61 | - | 141.6 | 150.7 | 1.125 | 117.3/72.10 |
Vibrational Band Assignment | PGZ·HCl | RSV | PGZ·HCl-RSV (1:2) | PGZ·HCl-RSV (1:4) | PGZ·HCl-RSV (1:6) | PGZ·HCl-RSV (1:8) | PGZ·HCl-RSV (1:10) |
---|---|---|---|---|---|---|---|
−C=OPGZ (a,b,) (Δν cm−1) | a: 1744 b: 1690 | a: 1745 (1) b: 1695 (5) | a: 1748 (4) b: 1697 (7) | a: 1748 (4) b: 1700 (10) | a: 1749 (5) b: 1700 (10) | a: 1748 (4) b: 1700 (10) | |
−C=ORSV (c) (Δν cm−1) | c: 1542 | c: 1543 (1) | c: 1543 (1) | c: 1543 (1) | c: 1543 (1) | c: 1543 (1) |
Stoichiometric Ratios | PGZ·HCl (mg) | RSV (mg) | PGZ·HCl (%w) | RSV (%w) | Tfus first peak (°C) | Tonset second peak (°C) | Tm second peak (°C) | ΔHm second peak J/g | Tg exp/Tg clcd °C |
---|---|---|---|---|---|---|---|---|---|
4:1 | 300 | 93.84 | 76.17 | 23.83 | 76.9 | N.D. | 173.3 | 138.3 | 50.5/66.22 |
6:1 | 300 | 62.55 | 82.74 | 17.26 | 74.3 | N.D. | 177.8 | 120.7 | 52.1/65.70 |
8:1 | 350 | 54.8 | 85.82 | 14.18 | 71.4 | N.D. | 182.2 | 127.4 | 56.8/65.47 |
10:1 | 350 | 43.79 | 88.87 | 11.13 | 71.0 | N.D. | 183.6 | 120.0 | 59.1/65.24 |
Vibrational Band Assignment | PGZ·HCl | RSV | PGZ·HCl-RSV (4:1) | PGZ·HCl-RSV (6:1) | PGZ·HCl-RSV (8:1) | PGZ·HCl-RSV (10:1) |
---|---|---|---|---|---|---|
−C=OPGZ (a,b,b’)(Δν cm−1) | a: 1741 b: 1682 | a: 1743 (2) b: 1683 (1) b′: 1682 (0) | a: 1743 (2) b: 1690 (8) b′: 1682 (0) | a: 1743 (2) b: 1684 (2) b′: 1682 (0) | a: 1743 (2) b: 1684 (2) b′: 1682 (0) | |
−C=ORSV (c) (Δν cm−1) | c: 1542 | c: 1548 (6) | c: 1548 (6) | c: 1548 (6) | c: 1549 (7) |
Pure RSV | Pure PGZ·HCl | Coamorphous PGZ·HCl-RSV (1:1) | PGZ·HCl-RSV (1:6) | PGZ·HCl-RSV (1:10) | PGZ·HCl-RSV (6:1) | PGZ·HCl-RSV (10:1) | |
---|---|---|---|---|---|---|---|
Morphology | Irregular | Prism-shaped | Mixed-prism-shaped and irregular | Mixed irregular forms and rods | Mixed irregular forms and rods | Prism-shaped poorly defined | Prism-shaped poorly defined |
Kint mg/cm2·min | Pure RSV | Pure PGZ·HCl | Coamorphous PGZ·HCl-RSV 1:1 | Coamorphous PGZ·HCl-RSV 2:1 | PGZ·HCl-RSV 1:4 | PGZ·HCl-RSV 6:1 | PGZ·HCl-RSV 1:10 |
---|---|---|---|---|---|---|---|
RSV | 0.15475 ± 0.00429 | - | 0.08922 ± 0.00378 | 0.04191 ± 0.00901 | 0.12320 ± 0.00153 | 0.02953 ± 0.00329 | 0.11724 ± 0.01791 |
PGZ·HCl | - | 0.07076 ± 0.00317 | 0.06970 ± 0.00269 | 0.07324 ± 0.00691 | 0.02906 ± 0.00136 | 0.02953 ± 0.00456 | 0.01294 ± 0.00113 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz Tecocoatzi, M.F.; Páez-Franco, J.C.; Rubio-Carrasco, K.; Núñez-Pineda, A.; Dorazco-González, A.; Fuentes-Noriega, I.; Vilchis-Néstor, A.R.; Olvera, L.I.; Morales-Morales, D.; Germán-Acacio, J.M. Ball-Milling Preparation of the Drug–Drug Solid Form of Pioglitazone-Rosuvastatin at Different Molar Ratios: Characterization and Intrinsic Dissolution Rates Evaluation. Pharmaceutics 2023, 15, 630. https://doi.org/10.3390/pharmaceutics15020630
Muñoz Tecocoatzi MF, Páez-Franco JC, Rubio-Carrasco K, Núñez-Pineda A, Dorazco-González A, Fuentes-Noriega I, Vilchis-Néstor AR, Olvera LI, Morales-Morales D, Germán-Acacio JM. Ball-Milling Preparation of the Drug–Drug Solid Form of Pioglitazone-Rosuvastatin at Different Molar Ratios: Characterization and Intrinsic Dissolution Rates Evaluation. Pharmaceutics. 2023; 15(2):630. https://doi.org/10.3390/pharmaceutics15020630
Chicago/Turabian StyleMuñoz Tecocoatzi, M. Fernanda, José C. Páez-Franco, Kenneth Rubio-Carrasco, Alejandra Núñez-Pineda, Alejandro Dorazco-González, Inés Fuentes-Noriega, Alfredo R. Vilchis-Néstor, Lilian I. Olvera, David Morales-Morales, and Juan Manuel Germán-Acacio. 2023. "Ball-Milling Preparation of the Drug–Drug Solid Form of Pioglitazone-Rosuvastatin at Different Molar Ratios: Characterization and Intrinsic Dissolution Rates Evaluation" Pharmaceutics 15, no. 2: 630. https://doi.org/10.3390/pharmaceutics15020630
APA StyleMuñoz Tecocoatzi, M. F., Páez-Franco, J. C., Rubio-Carrasco, K., Núñez-Pineda, A., Dorazco-González, A., Fuentes-Noriega, I., Vilchis-Néstor, A. R., Olvera, L. I., Morales-Morales, D., & Germán-Acacio, J. M. (2023). Ball-Milling Preparation of the Drug–Drug Solid Form of Pioglitazone-Rosuvastatin at Different Molar Ratios: Characterization and Intrinsic Dissolution Rates Evaluation. Pharmaceutics, 15(2), 630. https://doi.org/10.3390/pharmaceutics15020630