Size-Controlled Preparation of Docetaxel- and Curcumin-Loaded Nanoemulsions for Potential Pulmonary Delivery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Nanoemulsions
2.3. Experimental Design
2.4. Statistical Analysis and Model Verification
2.5. Physicochemical Characterization
2.5.1. Particle Size Distribution and ζ-Potential Determination
2.5.2. Viscosity Measurement
2.5.3. pH Measurement
2.5.4. Entrapment Efficiency
2.6. Aerosolization and Inhalation Studies
2.6.1. Nebulizer Aerosol Rate and Output Determination
2.6.2. Laser Diffraction Analysis
2.7. Stability Study
2.8. Drug Permeation Studies
2.8.1. Permeability Study in Zebrafish Embryo
2.8.2. Drug Release Study via Franz Diffusion Cell
2.9. In Vitro Nanotoxicity Assessment
2.10. Statistical Analysis
3. Results and Discussion
3.1. Model Fitting and Analysis of Variance
3.2. The Central Composite Design Analysis
3.3. Physicochemical and Aerosolization Properties
3.4. Stability Evaluation
3.5. Permeability Study
3.6. Nanotoxicity Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Gildea, T.R.; Byfield, S.D.; Kyle Hogarth, D.; Wilson, D.S.; Quinn, C.C. A Retrospective Analysis of Delays in the Diagnosis of Lung Cancer and Associated Costs. Clin. Outcomes Res. 2017, 9, 261–269. [Google Scholar] [CrossRef] [Green Version]
- Guirado, M.; Fernández Martín, E.; Fernández Villar, A.; Navarro Martín, A.; Sánchez-Hernández, A. Clinical Impact of Delays in the Management of Lung Cancer Patients in the Last Decade: Systematic Review. Clin. Transl. Oncol. 2022, 24, 1549–1568. [Google Scholar] [CrossRef] [PubMed]
- Bluthgen, M.V.; Besse, B. Second-Line Combination Therapies in Non-small Cell Lung Cancer without Known Driver Mutations. Eur. Respir. Rev. 2015, 24, 582–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steendam, C.M.J.; Peric, R.; van Walree, N.C.; Youssef, M.; Schramel, F.M.N.H.; Brocken, P.; van Putten, J.W.G.; van der Noort, V.; Veerman, G.D.M.; Koolen, S.L.W.; et al. Randomized Phase III Study of Docetaxel versus Docetaxel plus Intercalated Erlotinib in Patients with Relapsed Non-Squamous Non-Small Cell Lung Carcinoma. Lung Cancer 2021, 160, 44–49. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Wang, J.; Li, Y. Efficacy and Safety of Docetaxel for Advanced Non-Small-Cell Lung Cancer: A Meta-Analysis of Phase III Randomized Controlled Trials. Onco. Targets. Ther. 2015, 8, 2023–2031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, Y.; Chen, J.; Tao, L.; Zhang, K.; Wang, R.; Chu, X.; Chen, L.; Pan, Y.; Chen, J.; Tao, L.; et al. Long Noncoding RNA ROR Regulates Chemoresistance in Docetaxel-Resistant Lung Adenocarcinoma Cells via Epithelial-Mesenchymal Transition Pathway. Oncotarget 2017, 8, 33144–33158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iglesias, V.S.; Giuranno, L.; Dubois, L.J.; Theys, J.; Vooijs, M. Drug Resistance in Non-Small Cell Lung Cancer: A Potential for NOTCH Targeting? Front. Oncol. 2018, 8, 267. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, S.; Singh, S.K.; Chowdhury, I.; Lillard, J.W.; Singh, R.; Singh, R. Combinatorial Effect of Curcumin with Docetaxel Modulates Apoptotic and Cell Survival Molecules in Prostate Cancer. Front. Biosci. 2017, 9, 235–245. [Google Scholar]
- Hong, J.M.; Park, C.S.; Nam-Goong, I.S.; Kim, Y.S.; Lee, J.C.; Han, M.W.; Choi, J.I.; Kim, Y.I.; Kim, E.S. Curcumin Enhances Docetaxel-Induced Apoptosis of 8505C Anaplastic Thyroid Carcinoma Cells. Endocrinol. Metab. 2014, 29, 54. [Google Scholar] [CrossRef] [Green Version]
- Farghadani, R.; Naidu, R. Curcumin as an Enhancer of Therapeutic Efficiency of Chemotherapy Drugs in Breast Cancer. Int. J. Mol. Sci. 2022, 23, 2144. [Google Scholar] [CrossRef]
- Toden, S.; Okugawa, Y.; Jascur, T.; Wodarz, D.; Komarova, N.L.; Buhrmann, C.; Shakibaei, M.; Richard Boland, C.; Goel, A. Curcumin Mediates Chemosensitization to 5-Fluorouracil through MiRNA-Induced Suppression of Epithelial-to-Mesenchymal Transition in Chemoresistant Colorectal Cancer. Carcinogenesis 2015, 36, 355–367. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Lv, L.; Shen, Y.; Hu, Z.; He, Q.; Chen, X. A Nanoparticulate Pre-Chemosensitizer for Efficacious Chemotherapy of Multidrug Resistant Breast Cancer. Sci. Rep. 2016, 6, 21459. [Google Scholar] [CrossRef] [Green Version]
- Sharifi-Rad, J.; Rayess, Y.E.; Rizk, A.A.; Sadaka, C.; Zgheib, R.; Zam, W.; Sestito, S.; Rapposelli, S.; Neffe-Skocińska, K.; Zielińska, D.; et al. Turmeric and Its Major Compound Curcumin on Health: Bioactive Effects and Safety Profiles for Food, Pharmaceutical, Biotechnological and Medicinal Applications. Front. Pharmacol. 2020, 11, 1021. [Google Scholar] [CrossRef] [PubMed]
- Epstein, J.; Sanderson, I.R.; MacDonald, T.T. Curcumin as a Therapeutic Agent: The Evidence from in Vitro, Animal and Human Studies. Br. J. Nutr. 2010, 103, 1545–1557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jantawong, C.; Priprem, A.; Intuyod, K.; Pairojkul, C.; Pinlaor, P.; Waraasawapati, S.; Mongkon, I.; Chamgramol, Y.; Pinlaor, S. Curcumin-Loaded Nanocomplexes: Acute and Chronic Toxicity Studies in Mice and Hamsters. Toxicol. Reports 2021, 8, 1346. [Google Scholar] [CrossRef] [PubMed]
- Secret, E.; Crannell, K.E.; Kelly, S.J.; Villancio-Wolter, M.; Andrew, J.S. Matrix Metalloproteinase-Sensitive Hydrogel Microparticles for Pulmonary Drug Delivery of Small Molecule Drugs or Proteins. J. Mater. Chem. B 2015, 3, 5629–5634. [Google Scholar] [CrossRef]
- He, S.; Gui, J.; Xiong, K.; Chen, M.; Gao, H.; Fu, Y. A Roadmap to Pulmonary Delivery Strategies for the Treatment of Infectious Lung Diseases. J. Nanobiotechnology 2022, 20, 101. [Google Scholar] [CrossRef]
- Emami, F.; Mostafavi Yazdi, S.J.; Na, D.H. Poly(Lactic Acid)/Poly(Lactic-Co-Glycolic Acid) Particulate Carriers for Pulmonary Drug Delivery. J. Pharm. Investig. 2019, 49, 427–442. [Google Scholar] [CrossRef] [Green Version]
- Paranjpe, M.; Müller-Goymann, C.C. Nanoparticle-Mediated Pulmonary Drug Delivery: A Review. Int. J. Mol. Sci. 2014, 15, 5852–5873. [Google Scholar] [CrossRef] [Green Version]
- Shah, K.; Chan, L.W.; Wong, T.W. Critical Physicochemical and Biological Attributes of Nanoemulsions for Pulmonary Delivery of Rifampicin by Nebulization Technique in Tuberculosis Treatment. Drug Deliv. 2017, 24, 1631–1647. [Google Scholar] [CrossRef]
- Ngan, C.L.; Asmawi, A.A. Lipid-Based Pulmonary Delivery System: A Review and Future Considerations of Formulation Strategies and Limitations. Drug Deliv. Transl. Res. 2018, 8, 1527–1544. [Google Scholar] [CrossRef]
- Nahar, K.; Gupta, N.; Gauvin, R.; Absar, S.; Patel, B.; Gupta, V.; Khademhosseini, A.; Ahsan, F. In Vitro, in Vivo and Ex Vivo Models for Studying Particle Deposition and Drug Absorption of Inhaled Pharmaceuticals. Eur. J. Pharm. Sci. 2013, 49, 805–818. [Google Scholar] [CrossRef] [PubMed]
- Arbain, N.H.; Salim, N.; Masoumi, H.R.F.; Wong, T.W.; Basri, M.; Abdul Rahman, M.B. In Vitro Evaluation of the Inhalable Quercetin Loaded Nanoemulsion for Pulmonary Delivery. Drug Deliv. Transl. Res. 2018, 9, 497–507. [Google Scholar] [CrossRef] [PubMed]
- Nahar, K.; Absar, S.; Patel, B.; Ahsan, F. Starch-Coated Magnetic Liposomes as an Inhalable Carrier for Accumulation of Fasudil in the Pulmonary Vasculature. Int. J. Pharm. 2014, 464, 185–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamal, N.A.M.A.; Abdulmalek, E.; Fakurazi, S.; Cordova, K.E.; Abdul Rahman, M.B. Dissolution and Biological Assessment of Cancer-Targeting Nano-ZIF-8 in Zebrafish Embryos. ACS Biomater. Sci. Eng. 2022, 8, 2445–2454. [Google Scholar] [CrossRef] [PubMed]
- Saimi, N.I.M.; Salim, N.; Ahmad, N.; Abdulmalek, E.; Rahman, M.B.A. Aerosolized Niosome Formulation Containing Gemcitabine and Cisplatin for Lung Cancer Treatment: Optimization, Characterization and In Vitro Evaluation. Pharmaceutics 2021, 13, 59. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Choi, Y.; Yang, S.; Lee, J.; Choi, J.; Moon, Y.; Kim, J.; Shim, N.; Cho, H.; Shim, M.K.; et al. Sustained and Long-Term Release of Doxorubicin from PLGA Nanoparticles for Eliciting Anti-Tumor Immune Responses. Pharmaceutics 2022, 14, 474. [Google Scholar] [CrossRef]
- Elbardisy, B.; Boraie, N.; Galal, S. Tadalafil Nanoemulsion Mists for Treatment of Pediatric Pulmonary Hypertension via Nebulization. Pharmaceutics 2022, 14, 2717. [Google Scholar] [CrossRef]
- Asmawi, A.A.; Salim, N.; Abdulmalek, E.; Rahman, M.B.A. Modeling the Effect of Composition on Formation of Aerosolized Nanoemulsion System Encapsulating Docetaxel and Curcumin Using D-Optimal Mixture Experimental Design. Int. J. Mol. Sci. 2020, 21, 4357. [Google Scholar] [CrossRef]
- Nesamony, J.; Shah, I.S.; Kalra, A.; Jung, R. Nebulized Oil-in-Water Nanoemulsion Mists for Pulmonary Delivery: Development, Physico-Chemical Characterization and in Vitro Evaluation. Drug Dev. Ind. Pharm. 2014, 40, 1253–1263. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhu, L.; Liu, B.; Du, L.; Jia, X.; Han, L.; Jin, Y. Tea Tree Oil Nanoemulsions for Inhalation Therapies of Bacterial and Fungal Pneumonia. Colloids Surf. B Biointerfaces 2016, 141, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Fan, T.M.; Borst, L.B.; Cheng, J. Synthesis and Biological Response of Size-Specific, Monodisperse Drug–Silica Nanoconjugates. ACS Nano 2012, 6, 3954–3966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Wang, F.; Shen, Y.; He, Q.; Guo, S. Tumor-Specific Disintegratable Nanohybrids Containing Ultrasmall Inorganic Nanoparticles: From Design and Improved Properties to Cancer Applications. Mater. Horizons 2018, 5, 184–205. [Google Scholar] [CrossRef]
- Montes de Oca-Ávalos, J.M.; Candal, R.J.; Herrera, M.L. Nanoemulsions: Stability and Physical Properties. Curr. Opin. Food Sci. 2017, 16, 1–6. [Google Scholar] [CrossRef]
- Liu, Q.; Huang, H.; Chen, H.; Lin, J.; Wang, Q. Food-Grade Nanoemulsions: Preparation, Stability and Application in Encapsulation of Bioactive Compounds. Molecules 2019, 24, 4242. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.; Eral, H.B.; Hatton, T.A.; Doyle, P.S. Nanoemulsions: Formation, Properties and Applications. Soft Matter 2016, 12, 2826–2841. [Google Scholar] [CrossRef] [Green Version]
- Ngan, C.L.; Basri, M.; Lye, F.F.; Fard Masoumi, H.R.; Tripathy, M.; Abedi Karjiban, R.; Abdul-Malek, E. Comparison of Box-Behnken and Central Composite Designs in Optimization of Fullerene Loaded Palm-Based Nano-Emulsions for Cosmeceutical Application. Ind. Crops Prod. 2014, 59, 309–317. [Google Scholar] [CrossRef]
- Keng, P.S.; Basri, M.; Zakaria, M.R.S.; Rahman, M.B.A.; Ariff, A.B.; Rahman, R.N.Z.A.; Salleh, A.B. Newly Synthesized Palm Esters for Cosmetics Industry. Ind. Crops Prod. 2009, 29, 37–44. [Google Scholar] [CrossRef]
- Harun, S.N.; Nordin, S.A.; Gani, S.S.A.; Shamsuddin, A.F.; Basri, M.; Basri, H. Bin Development of Nanoemulsion for Efficient Brain Parenteral Delivery of Cefuroxime: Designs, Characterizations, and Pharmacokinetics. Int. J. Nanomed. 2018, 13, 2571–2584. [Google Scholar] [CrossRef] [Green Version]
- EN ISO 27427; Anesthetic and Respiratory Equipment: Nebulizing Systems and Components. International Organization for Standardization: Geneva, Switzerland, 2019; pp. 1–56.
- Syed Azhar, S.N.A.; Ashari, S.E.; Salim, N. Development of a Kojic Monooleate-Enriched Oil-in-Water Nanoemulsion as a Potential Carrier for Hyperpigmentation Treatment. Int. J. Nanomed. 2018, 13, 6465–6479. [Google Scholar] [CrossRef] [PubMed]
- Wyszogrodzka, G.; Gil, B.; Roth, W.J.; Strzempek, M.; Marsza, B. Iron-Based Metal-Organic Frameworks as a Theranostic Carrier for Local Tuberculosis Therapy. Pharm. Res. 2018, 35, 144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duncan, G.A.; Jung, J.; Hanes, J.; Suk, J.S. The Mucus Barrier to Inhaled Gene Therapy. Mol. Ther. 2016, 24, 2043–2053. [Google Scholar] [CrossRef] [Green Version]
- Kuen, C.Y.; Fakurazi, S.; Othman, S.S.; Masarudin, M.J. Increased Loading, Efficacy and Sustained Release of Silibinin, a Poorly Soluble Drug Using Hydrophobically-Modified Chitosan Nanoparticles for Enhanced Delivery of Anticancer Drug Delivery Systems. Nanomaterials 2017, 7, 379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mensah, R.A.; Kirton, S.B.; Cook, M.T.; Styliari, I.D.; Hutter, V.; Chau, D.Y.S. Optimising Poly(Lactic-Co-Glycolic Acid) Microparticle Fabrication Using a Taguchi Orthogonal Array Design-of-Experiment Approach. PLoS ONE 2019, 14, e0222858. [Google Scholar] [CrossRef]
- Fuentes, K.; Matamala, C.; Martínez, N.; Zúñiga, R.N.; Troncoso, E. Comparative Study of Physicochemical Properties of Nanoemulsions Fabricated with Natural and Synthetic Surfactants. Processes 2021, 9, 2002. [Google Scholar] [CrossRef]
- Zainol, S.; Basri, M.; Basri, H.B.; Shamsuddin, A.F.; Abdul-Gani, S.S.; Karjiban, R.A.; Abdul-Malek, E. Formulation Optimization of a Palm-Based Nanoemulsion System Containing Levodopa. Int. J. Mol. Sci. 2012, 13, 13049–13064. [Google Scholar] [CrossRef]
- Hoshyar, N.; Gray, S.; Han, H.; Bao, G. The Effect of Nanoparticle Size on in Vivo Pharmacokinetics and Cellular Interaction. Nanomedicine 2016, 11, 673–692. [Google Scholar] [CrossRef] [Green Version]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef] [Green Version]
- Moreira, J.B.; Goularte, P.G.; de MORAIS, M.G.; Costa, J.A.V. Preparation of Beta-Carotene Nanoemulsion and Evaluation of Stability at a Long Storage Period. Food Sci. Technol. 2019, 39, 599–604. [Google Scholar] [CrossRef] [Green Version]
- Council of Europe. European Directorate for the Quality of Medicines and Healthcare, 8th ed.; Council of Europe: Strasbourg, France, 2014; pp. 363–365. [Google Scholar]
- Del Gaudio, P.; Ventura, G.; Taddeucci, J. The Effect of Particle Size on the Rheology of Liquid-Solid Mixtures with Application to Lava Flows: Results from Analogue Experiments. Geochem. Geophys. Geosystems 2013, 14, 2661–2669. [Google Scholar] [CrossRef]
- Nasr, M.; Nawaz, S.; Elhissi, A. Amphotericin B Lipid Nanoemulsion Aerosols for Targeting Peripheral Respiratory Airways via Nebulization. Int. J. Pharm. 2012, 436, 611–616. [Google Scholar] [CrossRef] [PubMed]
- Amani, A.; York, P.; Chrystyn, H.; Clark, B.J. Evaluation of a Nanoemulsion-Based Formulation for Respiratory Delivery of Budesonide by Nebulizers. AAPS PharmSciTech 2010, 11, 1147–1151. [Google Scholar] [CrossRef] [Green Version]
- Goodarzi, F.; Zendehboudi, S. A Comprehensive Review on Emulsions and Emulsion Stability in Chemical and Energy Industries. Can. J. Chem. Eng. 2019, 97, 281–309. [Google Scholar] [CrossRef] [Green Version]
- Musa, S.H.; Basri, M.; Fard Masoumi, H.R.; Shamsudin, N.; Salim, N. Enhancement of Physicochemical Properties of Nanocolloidal Carrier Loaded with Cyclosporine for Topical Treatment of Psoriasis: In Vitro Diffusion and in Vivo Hydrating Action. Int. J. Nanomed. 2017, 12, 2427–2441. [Google Scholar] [CrossRef] [Green Version]
- Usui, M.; Harusawa, F.; Sakai, T.; Yamashita, T.; Sakai, H.; Abe, M. Dynamic Light Scattering Studies on Ostwald Ripening and Composition Ripening of Oil Droplets in Oil-in-Water Emulsion Systems. J. Oleo Sci. 2004, 53, 611–617. [Google Scholar] [CrossRef] [Green Version]
- Nesamony, J.; Kalra, A.; Majrad, M.S.; Boddu, S.H.S.; Jung, R.; Williams, F.E.; Schnapp, A.M.; Nauli, S.M.; Kalinoski, A.L. Development and Characterization of Nanostructured Mists with Potential for Actively Targeting Poorly Water-Soluble Compounds into the Lungs. Pharm. Res. 2013, 30, 2625–2639. [Google Scholar] [CrossRef]
- Bali, V.; Ali, M.; Ali, J. Nanocarrier for the Enhanced Bioavailability of a Cardiovascular Agent: In Vitro, Pharmacodynamic, Pharmacokinetic and Stability Assessment. Int. J. Pharm. 2011, 403, 46–56. [Google Scholar] [CrossRef]
- Piazzini, V.; Monteforte, E.; Luceri, C.; Bigagli, E.; Bilia, A.R.; Bergonzi, M.C. Nanoemulsion for Improving Solubility and Permeability of Vitex Agnus-Castus Extract: Formulation and in Vitro Evaluation Using PAMPA and Caco-2 Approaches. Drug Deliv. 2017, 24, 380–390. [Google Scholar] [CrossRef] [Green Version]
- Shakeel, F.; Ramadan, W. Transdermal Delivery of Anticancer Drug Caffeine from Water-in-Oil Nanoemulsions. Colloids Surf. B Biointerfaces 2010, 75, 356–362. [Google Scholar] [CrossRef]
- Pelfrêne, A.; Cave, M.R.; Wragg, J.; Douay, F. In Vitro Investigations of Human Bioaccessibility from Reference Materials Using Simulated Lung Fluids. Int. J. Environ. Res. Public Health 2017, 14, 112. [Google Scholar] [CrossRef] [PubMed]
- Son, Y.J.; Horng, M.; Copley, M.; McConville, J.T. Optimization of an in Vitro Dissolution Test Method for Inhalation Formulations. Dissolution Technol. 2010, 17, 6–13. [Google Scholar] [CrossRef]
- Bennet, T.J.; Randhawa, A.; Hua, J.; Cheung, K.C. Airway-On-A-Chip: Designs and Applications for Lung Repair and Disease. Cells 2021, 10, 1602. [Google Scholar] [CrossRef] [PubMed]
Independent Variables | Coded Levels | |||
---|---|---|---|---|
−1 | +1 | −alpha | +alpha | |
Overhead stirrer rate (rpm), A | 150 | 450 | 0 | 600 |
Overhead stirrer time (min), B | 60 | 180 | 0 | 240 |
High shear rate (rpm), C | 10,000 | 14,000 | 8000 | 16,000 |
High shear time (min), D | 10 | 25 | 2.5 | 32.5 |
Source | DTX | CCM | ||||
---|---|---|---|---|---|---|
Mean Square | f-Value | p-Value | Mean Square | f-Value | p-Value | |
Particle Size | ||||||
Model | 2827.35 | 530.70 | <0.0001 | 2045.99 | 226.76 | <0.0001 |
A | 1950.57 | 366.13 | <0.0001 | 2116.13 | 234.54 | <0.0001 |
B | 924.68 | 173.57 | <0.0001 | 1615.40 | 179.04 | <0.0001 |
C | 13,924.02 | 2613.59 | <0.0001 | 12,415.13 | 1376.00 | <0.0001 |
D | 11,469.78 | 2152.92 | <0.0001 | 7301.87 | 809.29 | <0.0001 |
AB | 128.53 | 24.12 | 0.0003 | 7.02 | 0.78 | 0.3916 |
AC | 145.88 | 27.38 | 0.0002 | 141.37 | 15.67 | 0.0013 |
AD | 41.04 | 7.70 | 0.0157 | 454.12 | 50.33 | <0.0001 |
BC | 294.27 | 55.24 | <0.0001 | 16.20 | 1.80 | 0.2002 |
BD | 855.32 | 160.55 | <0.0001 | 77.88 | 8.63 | 0.0102 |
CD | 8.99 | 1.69 | 0.2165 | 12.01 | 1.33 | 0.2667 |
A2 | 2270.97 | 426.27 | <0.0001 | 480.00 | 53.20 | <0.0001 |
B2 | 3025.98 | 567.99 | <0.0001 | 451.68 | 50.06 | <0.0001 |
C2 | 9.58 | 1.80 | 0.2028 | 2274.94 | 252.14 | <0.0001 |
D2 | 1002.11 | 188.10 | <0.0001 | 1072.56 | 118.87 | <0.0001 |
Lack of fit | 3.35 | 0.39 | 0.8839 | 10.83 | 2.00 | 0.2300 |
Pure error | 8.50 | - | - | 5.41 | - | - |
PDI | ||||||
Model | 0.014 | 78.25 | <0.0001 | 0.029 | 29.81 | <0.0001 |
A | <0.001 | 0.97 | 0.3339 | <0.001 | 2.29 | 0.1437 |
B | <0.001 | 6.01 | 0.0219 | 0.001 | 10.81 | 0.0032 |
C | 0.049 | 265.40 | <0.0001 | 0.110 | 108.78 | <0.0001 |
D | <0.001 | 33.49 | <0.0001 | <0.001 | 5.63 | 0.0263 |
Lack of fit | <0.001 | 2.96 | 0.1165 | <0.001 | 1.03 | 0.5384 |
Pure error | <0.001 | - | - | <0.001 | - | - |
Process Parameter | Particle Size (nm) | PDI | |||||||
---|---|---|---|---|---|---|---|---|---|
A | B | C | D | Act. | Pre. | RSE (%) | Act. | Pre. | RSE (%) |
DTX-loaded nanoemulsion | |||||||||
300 | 55.5 | 14,000 | 26.0 | 103.5 | 100.1 | 3.40 | 0.256 | 0.248 | 3.23 |
200 | 81.0 | 13,000 | 20.0 | 151.9 | 150.0 | 1.27 | 0.271 | 0.283 | 4.24 |
200 | 21.5 | 11,000 | 10.0 | 203.6 | 200.1 | 1.75 | 0.345 | 0.359 | 3.90 |
CCM-loaded nanoemulsion | |||||||||
300 | 56.0 | 14,000 | 19.7 | 99.3 | 100.0 | 0.70 | 0.185 | 0.194 | 4.64 |
300 | 62.0 | 12,000 | 10.0 | 148.6 | 150.1 | 1.00 | 0.273 | 0.282 | 3.19 |
300 | 14.0 | 10,000 | 10.0 | 197.9 | 200.0 | 1.05 | 0.358 | 0.367 | 2.45 |
Characteristics | D100 | D150 | D200 | C100 | C150 | C200 |
---|---|---|---|---|---|---|
Physicochemical characteristics | ||||||
Particle size (nm) | 104.70 ± 0.44 | 152.40 ± 0.56 | 205.60 ± 2.45 | 101.23 ± 0.76 | 151.70 ± 1.74 | 202.33 ± 1.50 |
PDI | 0.26 ± 0.02 | 0.26 ± 0.04 | 0.32 ± 0.03 | 0.18 ± 0.02 | 0.24 ± 0.03 | 0.34 ± 0.02 |
ζ-potential (mV) | −38.10 ± 1.41 | −36.67 ± 0.45 | −34.33 ± 1.20 | −36.83 ± 1.25 | −33.73 ± 0.51 | −33.13 ± 0.77 |
pH | 7.14 ± 0.01 | 7.14 ± 0.01 | 7.14 ± 0.01 | 7.13 ± 0.01 | 7.15 ± 0.01 | 7.14 ± 0.02 |
Viscosity (cP) | 2.19 ± 0.13 | 2.06 ± 0.09 | 2.01 ± 0.07 | 2.01 ± 0.04 | 1.68 ± 0.04 | 1.59 ± 0.09 |
Aerodynamic characteristics | ||||||
Aerosol output (%) | 98.32 ± 0.25 | 98.47 ± 0.11 | 98.53 ± 0.74 | 98.58 ± 0.22 | 98.84 ± 0.65 | 99.08 ± 0.51 |
Aerosol rate (g/min) | 0.12 ± 0.01 | 0.15 ± 0.01 | 0.15 ± 0.01 | 0.16 ± 0.01 | 0.17 ± 0.01 | 0.19 ± 0.01 |
DV10 (μm) | 2.43 ± 0.06 | 2.36 ± 0.06 | 2.07 ± 0.19 | 2.31 ± 0.05 | 2.11 ± 0.22 | 2.11 ± 0.17 |
DV50 (μm) | 5.53 ± 0.26 | 5.11 ± 0.03 | 4.76 ± 0.37 | 5.03 ± 0.12 | 4.93 ± 0.04 | 4.63 ± 0.31 |
DV90 (μm) | 11.73 ± 0.10 | 10.47 ± 0.18 | 10.50 ± 0.38 | 10.41 ± 0.57 | 10.74 ± 0.75 | 9.62 ± 0.92 |
D[3,2] (μm) | 4.52 ± 0.14 | 3.92 ± 0.56 | 3.91 ± 0.29 | 4.22 ± 0.07 | 3.99 ± 0.20 | 3.86 ± 0.29 |
D[4,3] (μm) | 6.42 ± 0.39 | 5.87 ± 0.02 | 8.50 ± 2.37 | 8.24 ± 4.41 | 5.80 ± 0.14 | 5.35 ± 0.38 |
GSD/Span | 1.65 ± 0.11 | 1.59 ± 0.56 | 1.78 ± 0.12 | 1.61 ± 0.08 | 1.75 ± 0.21 | 1.61 ± 0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asmawi, A.A.; Salim, N.; Abdulmalek, E.; Abdul Rahman, M.B. Size-Controlled Preparation of Docetaxel- and Curcumin-Loaded Nanoemulsions for Potential Pulmonary Delivery. Pharmaceutics 2023, 15, 652. https://doi.org/10.3390/pharmaceutics15020652
Asmawi AA, Salim N, Abdulmalek E, Abdul Rahman MB. Size-Controlled Preparation of Docetaxel- and Curcumin-Loaded Nanoemulsions for Potential Pulmonary Delivery. Pharmaceutics. 2023; 15(2):652. https://doi.org/10.3390/pharmaceutics15020652
Chicago/Turabian StyleAsmawi, Azren Aida, Norazlinaliza Salim, Emilia Abdulmalek, and Mohd Basyaruddin Abdul Rahman. 2023. "Size-Controlled Preparation of Docetaxel- and Curcumin-Loaded Nanoemulsions for Potential Pulmonary Delivery" Pharmaceutics 15, no. 2: 652. https://doi.org/10.3390/pharmaceutics15020652
APA StyleAsmawi, A. A., Salim, N., Abdulmalek, E., & Abdul Rahman, M. B. (2023). Size-Controlled Preparation of Docetaxel- and Curcumin-Loaded Nanoemulsions for Potential Pulmonary Delivery. Pharmaceutics, 15(2), 652. https://doi.org/10.3390/pharmaceutics15020652