Optimization and In Vitro Characterization of Telmisartan Loaded Sodium Alginate Beads and Its In Vivo Efficacy Investigation in Hypertensive Induced Animal Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Part
2.2.1. Design for TEL-Loaded Oil-Entrapped Floating Alginate Beads Based on the Central Composite Design
2.2.2. Preparation of TEL-Loaded Oil-Entrapped Floating Alginate Beads
2.2.3. Characterization of TEL-Loaded Oil-Entrapped Floating Alginate Beads
Determination of the Entrapment Efficiency Percentage (Y1) of TEL-Loaded Oil-Entrapped Floating Alginate Beads
In Vitro Buoyancy Study of TEL-Loaded Oil-Entrapped Floating Alginate Beads at pH 1.2 (Y2)
In Vitro Drug-Release Study of TEL-Loaded Oil-Entrapped Floating Alginate Beads (Y3)
2.2.4. Selection of the Optimized Formulation of TEL-Loaded Oil-Entrapped Floating Alginate Beads
Preparation and Evaluation of the Optimized Formulation (OP1 and OP2)
Determination of the Average Size of Optimized Formulation (OP1 and OP2)
Determination of the Swelling Characteristics of Optimized Formulation (OP1 and OP2)
Determination of Surface Morphology of the Optimized Formulation using Scanning electron microscopy (SEM)
- Infrared (IR) Spectroscopy Study
2.3. In Vivo Study
2.3.1. Experimental Animals
2.3.2. In Vivo Pharmacokinetics Study
2.3.3. In Vivo Pharmacokinetic Analysis
2.3.4. Efficacy of Beads against Hypertension Induced in Rats
2.4. Statistical Analysis
3. Results and Discussion
3.1. Study of the Effect of Formulation Factors (X1, X2, and X3) on Responses (Y1, Y2, and Y3)
3.1.1. Effect of Formulation Factors (X1, X2, and X3) on Entrapment Efficiency Percentage (Y1)
3.1.2. Effect of Formulation Factors (X1, X2, and X3) on the In Vitro Buoyancy (Y2)
3.1.3. Effect of Formulation Factors (X1, X2, and X3) on the In Vitro Drug Release Q6h (Y3)
ANOVA Analysis
3.2. Optimization of the Formulation Factors Using the Central Composite Design
3.3. Study of the Effect of Oil on the Formulation of Gastroretentive Alginate Beads
3.3.1. The Average Size of the Optimized Formulation (OP1 and OP2)
3.3.2. The Entrapment Efficiency Percentage of the Optimized Formulation (OP1 and OP2)
3.3.3. In Vitro Buoyancy of Optimized Formulation (OP1 and OP2)
3.3.4. The Swelling Ratio of the Optimized Formulation (OP1 and OP2)
3.3.5. In Vitro Release Study of the Optimized Formulation (OP1 and OP2)
The In Vitro Release Kinetics of the Optimized Formulation
3.3.6. The Surface Morphology of the Optimized Formulation Using SEM
3.3.7. The Compatibility between Drug and Ingredients in the Optimized Formulation by FTIR Spectroscopy
3.4. In Vivo Pharmacokinetics Evaluation Study
3.5. Anti-Hypertensive Efficiency of Gastro-Retentive Beads
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ensign, L.M.; Cone, R.; Hanes, J. Oral Drug Delivery with Polymeric Nanoparticles: The Gastrointestinal Mucus Barriers. Adv. Drug Deliv. Rev. 2012, 64, 557–570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Debotton, N.; Dahan, A. Applications of Polymers as Pharmaceutical Excipients in Solid Oral Dosage Forms. Med. Res. Rev. 2017, 37, 52–97. [Google Scholar] [CrossRef]
- Alqahtani, M.S.; Kazi, M.; Alsenaidy, M.A.; Ahmad, M.Z. Advances in Oral Drug Delivery. Front. Pharmacol. 2021, 12, 618411. [Google Scholar] [CrossRef] [PubMed]
- Williams, H.D.; Trevaskis, N.L.; Charman, S.A.; Shanker, R.M.; Charman, W.N.; Pouton, C.W.; Porter, C.J. Strategies to Address Low Drug Solubility in Discovery and Development. Pharmacol. Rev. 2013, 65, 315–499. [Google Scholar] [CrossRef] [PubMed]
- Ting, J.M.; Porter III, W.W.; Mecca, J.M.; Bates, F.S.; Reineke, T.M. Advances in Polymer Design for Enhancing Oral Drug Solubility and Delivery. Bioconjug. Chem. 2018, 29, 939–952. [Google Scholar] [CrossRef]
- Sathisaran, I.; Dalvi, S.V. Engineering Cocrystals of Poorly Water-Soluble Drugs to Enhance Dissolution in Aqueous Medium. Pharmaceutics 2018, 10, 108. [Google Scholar] [CrossRef] [Green Version]
- Birer, M.; Acartürk, F. Electrospun Orally Disintegrating Film Formulation of Telmisartan. Pharm. Dev. Technol. 2021, 26, 661–672. [Google Scholar] [CrossRef]
- Gökbulut, E.; Vural, İ.; Aşıkoğlu, M.; Özdemir, N. Floating Drug Delivery System of Itraconazole: Formulation, In Vitro and In Vivo Studies. J. Drug Deliv. Sci. Technol. 2019, 49, 491–501. [Google Scholar] [CrossRef]
- Setia, M.; Kumar, K.; Teotia, D. Gastro-Retentive Floating Beads a New Trend of Drug Delivery System. J. Drug Deliv. Ther. 2018, 8, 169–180. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, T.; Zhang, Q.; Wang, S. Inclusion of Telmisartan in Mesocellular Foam Nanoparticles: Drug Loading and Release Property. Eur. J. Pharm. Biopharm. 2010, 76, 17–23. [Google Scholar] [CrossRef]
- Patel, H.; Patel, H.; Gohel, M.; Tiwari, S. Dissolution Rate Improvement of Telmisartan through Modified MCC Pellets Using 32 Full Factorial Design. Saudi Pharm. J. 2016, 24, 579–587. [Google Scholar] [CrossRef] [Green Version]
- Jain, A.; Ahirwar, H.C.; Tayal, S.; Mohanty, P.K. Fast Dissolving Oral Films: A Tabular Update. J. Drug Deliv. Ther. 2018, 8, 10–19. [Google Scholar] [CrossRef]
- Giri, B.R.; Kwon, J.; Vo, A.Q.; Bhagurkar, A.M.; Bandari, S.; Kim, D.W. Hot-Melt Extruded Amorphous Solid Dispersion for Solubility, Stability, and Bioavailability Enhancement of Telmisartan. Pharmaceuticals 2021, 14, 73. [Google Scholar] [CrossRef] [PubMed]
- Parikh, B.N.; Patel, D.M.; Patel, C.N.; Dave, J.B.; Gothi, G.D.; Patel, T.D. Formulation, Optimization and Evaluation of Immediate Release Tablet of Telmisartan. J. Glob. Pharma Technol. 2010, 2, 79–84. [Google Scholar]
- Chaudhari, K.D.; Nimbalwar, M.G.; Singhal, N.S.; Panchale, W.A.; Manwar, J.V.; Bakal, R.L. Comprehensive Review on Characterizations and Application of Gastro-Retentive Floating Drug Delivery System. GSC Adv. Res. Rev. 2021, 7, 35–44. [Google Scholar] [CrossRef]
- Jeganath, S. Recent Approaches of Gastroretentive Drug Delivery System—A Review. Asian J. Pharm. AJP 2022, 16. [Google Scholar] [CrossRef]
- Haimhoffer, Á.; Fenyvesi, F.; Lekli, I.; Béresová, M.; Bak, I.; Czagány, M.; Vasvári, G.; Bácskay, I.; Tóth, J.; Budai, I. Preparation of Acyclovir-Containing Solid Foam by Ultrasonic Batch Technology. Pharmaceutics 2021, 13, 1571. [Google Scholar] [CrossRef]
- Sohn, J.S.; Park, J.-W.; Choi, D.-H.; Choi, J.-S. Design of Telmisartan-Weak Acid Solid Dispersion to Improve Its Solubility and Stability. Mater. Sci. Eng. B 2020, 261, 114649. [Google Scholar] [CrossRef]
- Kumar, R.; Chandra, A.; Saloni, S.; Gautam, P.K. Advanced Multiple Unit Controlled Release Floating Beads: A Review. World J. Pharm. Res. 2017, 6, 238–259. [Google Scholar]
- Arora, S.; Ali, J.; Ahuja, A.; Khar, R.K.; Baboota, S. Floating Drug Delivery Systems: A Review. AAPS PharmSciTech 2005, 6, E372–E390. [Google Scholar] [CrossRef] [Green Version]
- Reda, W.W.M.; Mohamed, A.M.; Razaak, A.; EL-Gindy, G.; Fathalla, D. Formulation and Assessment of Celecoxib Floating Beads in Capsule Using 2^3 Full Factorial Design. J. Adv. Biomed. Pharm. Sci. 2022, 5, 101–112. [Google Scholar] [CrossRef]
- Rutkowski, S.; Si, T.; Gai, M.; Sun, M.; Frueh, J.; He, Q. Magnetically-Guided Hydrogel Capsule Motors Produced via Ultrasound Assisted Hydrodynamic Electrospray Ionization Jetting. J. Colloid Interface Sci. 2019, 541, 407–417. [Google Scholar] [CrossRef]
- Rutkowski, S.; Mu, L.; Si, T.; Gai, M.; Sun, M.; Frueh, J.; He, Q. Magnetically-Propelled Hydrogel Particle Motors Produced by Ultrasound Assisted Hydrodynamic Electrospray Ionization Jetting. Colloids Surf. B Biointerfaces 2019, 175, 44–55. [Google Scholar] [CrossRef] [PubMed]
- Sosnik, A. Alginate Particles as Platform for Drug Delivery by the Oral Route: State-of-the-Art. ISRN Pharm. 2014, 2014, 926157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lohani, A.; Singh, G.; Bhattacharya, S.S.; Verma, A. Interpenetrating Polymer Networks as Innovative Drug Delivery Systems. J. Drug Deliv. 2014, 2014, 583612. [Google Scholar] [CrossRef] [Green Version]
- Chaturvedi, K.; Ganguly, K.; More, U.A.; Reddy, K.R.; Dugge, T.; Naik, B.; Aminabhavi, T.M.; Noolvi, M.N. Sodium Alginate in Drug Delivery and Biomedical Areas. In Natural Polysaccharides in Drug Delivery and Biomedical Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 59–100. [Google Scholar]
- Blynskaya, E.V.; Tishkov, S.V.; Vinogradov, V.P.; Alekseev, K.V.; Marakhova, A.I.; Vetcher, A.A. Polymeric Excipients in the Technology of Floating Drug Delivery Systems. Pharmaceutics 2022, 14, 2779. [Google Scholar] [CrossRef] [PubMed]
- Tønnesen, H.H.; Karlsen, J. Alginate in Drug Delivery Systems. Drug Dev. Ind. Pharm. 2002, 28, 621–630. [Google Scholar] [CrossRef]
- Liew, C.V.; Chan, L.W.; Ching, A.L.; Heng, P.W.S. Evaluation of Sodium Alginate as Drug Release Modifier in Matrix Tablets. Int. J. Pharm. 2006, 309, 25–37. [Google Scholar] [CrossRef]
- Shan, V.M. Formulation and Evaluation of Famotidine Beads as Controlled Drug Delivery System. Ph.D. Thesis, JKK Munirajah Medical Research Foundation College of Pharmacy, Komarapalayam, India, 2012. [Google Scholar]
- Ishak, R.A. Buoyancy-Generating Agents for Stomach-Specific Drug Delivery: An Overview with Special Emphasis on Floating Behavior. J. Pharm. Pharm. Sci. 2015, 18, 77–100. [Google Scholar] [CrossRef] [Green Version]
- Choudhury, P.K.; Kar, M. Preparation of Alginate Gel Beads Containing Metformin Hydrochloride Using Emulsion-Gelation Method. Trop. J. Pharm. Res. 2005, 4, 489–493. [Google Scholar] [CrossRef] [Green Version]
- Azad, A.K.; Al-Mahmood, S.M.A.; Chatterjee, B.; Wan Sulaiman, W.M.A.; Elsayed, T.M.; Doolaanea, A.A. Encapsulation of Black Seed Oil in Alginate Beads as a Ph-Sensitive Carrier for Intestine-Targeted Drug Delivery: In Vitro, In Vivo and Ex Vivo Study. Pharmaceutics 2020, 12, 219. [Google Scholar] [CrossRef] [Green Version]
- Baviskar, P.; Patil, P.; Saudagar, R.B. Formulation Development and Evaluation of Floating Wax Beads of Olopatadine Hydrochloride. J. Drug Deliv. Ther. 2019, 9, 569–576. [Google Scholar] [CrossRef]
- Pan, X.; Li, J.; Gan, R.; Hu, X. Preparation and In Vitro Evaluation of Enteric-Coated Tablets of Rosiglitazone Sodium. Saudi Pharm. J. 2015, 23, 581–586. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, M.; Vardhan, H.; Mishra, B. Natural Polymers Composed Mucoadhesive Interpenetrating Buoyant Hydrogel Beads of Capecitabine: Development, Characterization and In Vivo Scintigraphy. J. Drug Deliv. Sci. Technol. 2020, 55, 101480. [Google Scholar] [CrossRef]
- Dangre, P.V.; Dusad, P.P.; Singh, A.D.; Surana, S.J.; Chaturvedi, K.K.; Chalikwar, S.S. Fabrication of Hesperidin Self-Micro-Emulsifying Nutraceutical Delivery System Embedded in Sodium Alginate Beads to Elicit Gastric Stability. Polym. Bull. 2022, 79, 605–626. [Google Scholar] [CrossRef]
- Dallabona, I.D.; de Lima, G.G.; Cestaro, B.I.; de Souza Tasso, I.; Paiva, T.S.; Laureanti, E.J.G.; de Matos Jorge, L.M.; da Silva, B.J.G.; Helm, C.V.; Mathias, A.L. Development of Alginate Beads with Encapsulated Jabuticaba Peel and Propolis Extracts to Achieve a New Natural Colorant Antioxidant Additive. Int. J. Biol. Macromol. 2020, 163, 1421–1432. [Google Scholar] [CrossRef]
- Rajmohan, D.; Bellmer, D. Characterization of Spirulina-Alginate Beads Formed Using Ionic Gelation. Int. J. Food Sci. 2019, 2019, 7101279. [Google Scholar] [CrossRef]
- Zhao, H.; Ouyang, X.-K.; Yang, L.-Y. Adsorption of Lead Ions from Aqueous Solutions by Porous Cellulose Nanofiber–Sodium Alginate Hydrogel Beads. J. Mol. Liq. 2021, 324, 115122. [Google Scholar] [CrossRef]
- Khan, I.U.; Shoukat, M.; Asif, M.; Khalid, S.H.; Asghar, S.; Munir, M.U.; Irfan, M.; Rasul, A.; Qari, S.H.; Qumsani, A.T. Assessing the Synergistic Activity of Clarithromycin and Therapeutic Oils Encapsulated in Sodium Alginate Based Floating Microbeads. Microorganisms 2022, 10, 1171. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Jiao, Z.; Li, Z.D.; Shi, X.J.; Zhong, M.K. HPLC Determination of Telmisartan in Human Plasma and Its Application to a Pharmacokinetic Study. Pharm.-Int. J. Pharm. Sci. 2005, 60, 418–420. [Google Scholar]
- Ganesh, M.; Ubaidulla, U.; Rathnam, G.; Jang, H.T. Chitosan-Telmisartan Polymeric Cocrystals for Improving Oral Absorption: In Vitro and In Vivo Evaluation. Int. J. Biol. Macromol. 2019, 131, 879–885. [Google Scholar] [CrossRef] [PubMed]
- Al-Mahroos, M.I.A.; Al-Tamimi, D.J.J.; Al-Tamimi, Z.J.J.; Ibraheem, J.J. Clinical Pharmacokinetics and Bioavailability Study between Generic and Branded Fluconazole Capsules. J. Adv. Pharm. Educ. Res. 2021, 11, 161–169. [Google Scholar] [CrossRef]
- Putecova, K.; Nedbalcova, K.; Bartejsova, I.; Zouharova, M.; Matiaskova, K.; Jeklova, E.; Viskova, M.; Zouzelkova, P.; Jerabek, M.; Stastny, K. Experimental Determination of the Pharmacokinetic Properties of Trimethoprim and Sulfamethoxazole Combination in the Blood Serum of Broiler Chickens. Veterinární Med. 2021, 66, 248–256. [Google Scholar] [CrossRef]
- Vieira, A.B.; Restrepo, M.A.; Auzenne, D.; Molina, K.; O’Sullivan, M.; Machado, M.V.; Cavanaugh, S.M. Mild to Moderate Overweight in Dogs: Is There an Impact on Routine Hematological and Biochemical Profiles, Echocardiographic Parameters and Cardiac Autonomic Modulation? Vet. Res. Commun. 2022, 46, 527–535. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Sharma, M.; Verma, N.; Pandit, J.K. Floating Alginate Beads: Studies on Formulation Factors for Improved Drug Entrapment Efficiency and In Vitro Release. Farmacia 2013, 61, 143–161. [Google Scholar]
- Jaiswal, D.; Bhattacharya, A.; Yadav, I.K.; Singh, H.P.; Chandra, D.; Jain, D.A. Formulation and Evaluation of Oil Entrapped Floating Alginate Beads of Ranitidine Hydrochloride. Int. J. Pharm. Pharm. Sci. 2009, 1, 128–140. [Google Scholar]
- Anal, A.K.; Stevens, W.F. Chitosan–Alginate Multilayer Beads for Controlled Release of Ampicillin. Int. J. Pharm. 2005, 290, 45–54. [Google Scholar] [CrossRef]
- Kaddoori, Z.S.; Mohamed, M.B.M.; Kadhum, W.R.; Numan, N.A. To Consider the Organogel of Span 40 and Span 60 in Sesame Oil as a New Member in the Gastro Retentive Drug Delivery Systems. Syst. Rev. Pharm. 2020, 11, 850–861. [Google Scholar]
- Ganesh, M.; Jeon, U.J.; Ubaidulla, U.; Hemalatha, P.; Saravanakumar, A.; Peng, M.M.; Jang, H.T. Chitosan Cocrystals Embedded Alginate Beads for Enhancing the Solubility and Bioavailability of Aceclofenac. Int. J. Biol. Macromol. 2015, 74, 310–317. [Google Scholar] [CrossRef]
- Hassan, H.; Adam, S.K.; Alias, E.; Meor Mohd Affandi, M.M.R.; Shamsuddin, A.F.; Basir, R. Central Composite Design for Formulation and Optimization of Solid Lipid Nanoparticles to Enhance Oral Bioavailability of Acyclovir. Molecules 2021, 26, 5432. [Google Scholar] [CrossRef]
- Faidi, A.; Lassoued, M.A.; Becheikh, M.E.H.; Touati, M.; Stumbé, J.-F.; Farhat, F. Application of Sodium Alginate Extracted from a Tunisian Brown Algae Padina Pavonica for Essential Oil Encapsulation: Microspheres Preparation, Characterization and in Vitro Release Study. Int. J. Biol. Macromol. 2019, 136, 386–394. [Google Scholar] [CrossRef] [PubMed]
- Treesinchai, S.; Puttipipatkhachorn, S.; Pitaksuteepong, T.; Sungthongjeen, S. Development of Curcumin Floating Beads with Low Density Materials and Solubilizers. J. Drug Deliv. Sci. Technol. 2019, 51, 542–551. [Google Scholar] [CrossRef]
- Badri, W.; El Asbahani, A.; Miladi, K.; Baraket, A.; Agusti, G.; Nazari, Q.A.; Errachid, A.; Fessi, H.; Elaissari, A. Poly (ε-Caprolactone) Nanoparticles Loaded with Indomethacin and Nigella Sativa L. Essential Oil for the Topical Treatment of Inflammation. J. Drug Deliv. Sci. Technol. 2018, 46, 234–242. [Google Scholar] [CrossRef]
- Huang, J.; Wang, Q.; Chu, L.; Xia, Q. Liposome-Chitosan Hydrogel Bead Delivery System for the Encapsulation of Linseed Oil and Quercetin: Preparation and In Vitro Characterization Studies. LWT 2020, 117, 108615. [Google Scholar] [CrossRef]
- Sangsuwan, J.; Sutthasupa, S. Effect of Chitosan and Alginate Beads Incorporated with Lavender, Clove Essential Oils, and Vanillin against Botrytis Cinerea and Their Application in Fresh Table Grapes Packaging System. Packag. Technol. Sci. 2019, 32, 595–605. [Google Scholar] [CrossRef]
- Daihom, B.A.; Bendas, E.R.; Mohamed, M.I.; Badawi, A.A. Development and In Vitro Evaluation of Domperidone/Dowex Resinate Embedded Gastro-Floatable Emulgel and Effervescent Alginate Beads. J. Drug Deliv. Sci. Technol. 2020, 59, 101941. [Google Scholar] [CrossRef]
- Chavanpatil, M.D.; Jain, P.; Chaudhari, S.; Shear, R.; Vavia, P.R. Novel Sustained Release, Swellable and Bioadhesive Gastroretentive Drug Delivery System for Ofloxacin. Int. J. Pharm. 2006, 316, 86–92. [Google Scholar] [CrossRef]
- Siepmann, J.; Peppas, N.A. Modeling of Drug Release from Delivery Systems Based on Hydroxypropyl Methylcellulose (HPMC). Adv. Drug Deliv. Rev. 2012, 64, 163–174. [Google Scholar] [CrossRef]
- Manjanna, K.M.; Rajesh, K.S.; Shivakumar, B. Formulation and Optimization of Natural Polysaccharide Hydrogel Microbeads of Aceclofenac Sodium for Oral Controlled Drug Delivery. Am. J. Med. Sci. Med. 2013, 1, 5–17. [Google Scholar] [CrossRef] [Green Version]
- Azad, A.K.; Al-Mahmood, S.M.A.; Kennedy, J.F.; Chatterjee, B.; Bera, H. Electro-Hydrodynamic Assisted Synthesis of Lecithin-Stabilized Peppermint Oil-Loaded Alginate Microbeads for Intestinal Drug Delivery. Int. J. Biol. Macromol. 2021, 185, 861–875. [Google Scholar] [CrossRef] [PubMed]
- Ismail, S.; El-Mahdy, M.; Abd Ellah, N.H.; Abdelmalek, D.A. Oil-Entrapped Ranitidine HCl Beads Heal Peptic Ulcers via Local and Systemic Mechanisms. Drug Dev. Ind. Pharm. 2019, 45, 231–243. [Google Scholar] [CrossRef] [PubMed]
- Sharma, C.; Desai, M.A.; Patel, S.R. Effect of Surfactants and Polymers on Morphology and Particle Size of Telmisartan in Ultrasound-Assisted Anti-Solvent Crystallization. Chem. Pap. 2019, 73, 1685–1694. [Google Scholar] [CrossRef]
- Praveen, R.; Singh, S.K.; Verma, P.R.P. Pharmacokinetic Evaluation of Cefdinir-Loaded Floating Alginate Beads in Rabbits Using LC–MS/MS. J. Pharm. Investig. 2016, 46, 283–291. [Google Scholar] [CrossRef]
- Witzler, M.; Vermeeren, S.; Kolevatov, R.O.; Haddad, R.; Gericke, M.; Heinze, T.; Schulze, M. Evaluating Release Kinetics from Alginate Beads Coated with Polyelectrolyte Layers for Sustained Drug Delivery. ACS Appl. Bio Mater. 2021, 4, 6719–6731. [Google Scholar] [CrossRef]
Formulation Factors (Independent Variables) | Low (−1) | Med (0) | High (+1) | −Alpha (−1.68179) | +Alpha (+1.68179) |
---|---|---|---|---|---|
X1: Sodium alginate concentration (%) | 2 | 4 | 6 | 0.636414 | 7.36359 |
X2: Cross-linker concentration (%) | 5 | 10 | 15 | 1.59104 | 18.409 |
X3: Sesame oil concentration (%) | 4 | 6 | 8 | 2.63641 | 9.36359 |
Responses (dependent variables) | Goals | ||||
Y1: Entrapment efficiency (%) | Maximize | ||||
Y2: In vitro buoyancy (h) | Maximize | ||||
Y3: Drug release Q6h (%) | Prolong |
Std | Run | Independent Variables | Dependent Variables | ||||
---|---|---|---|---|---|---|---|
X1 | X2 | X3 | Y1 | Y2 | Y3 | ||
13 | 1 | 0 | 0 | −1.68179 | 59 | 2 | 49 |
16 | 2 | 0 | 0 | 0 | 90 | 9 | 69 |
7 | 3 | −1 | 1 | 1 | 66 | 8 | 35 |
3 | 4 | −1 | 1 | −1 | 41 | 2.5 | 28 |
1 | 5 | −1 | −1 | −1 | 50 | 4 | 66 |
17 | 6 | 0 | 0 | 0 | 90 | 9 | 69 |
8 | 7 | 1 | 1 | 1 | 92 | 10.6 | 42 |
11 | 8 | 0 | −1.68179 | 0 | 56 | 6.2 | 75 |
9 | 9 | −1.68179 | 0 | 0 | 51 | 3.3 | 55 |
6 | 10 | 1 | −1 | 1 | 83 | 10 | 56 |
4 | 11 | 1 | 1 | −1 | 77 | 2.6 | 36 |
14 | 12 | 0 | 0 | 1.68179 | 94 | 11.5 | 49 |
10 | 13 | 1.68179 | 0 | 0 | 90 | 7 | 48 |
12 | 14 | 0 | 1.68179 | 0 | 63 | 7.5 | 25 |
2 | 15 | 1 | −1 | −1 | 63 | 4.5 | 59 |
5 | 16 | −1 | −1 | 1 | 68 | 7 | 65 |
15 | 17 | 0 | 0 | 0 | 90 | 9 | 69 |
Responses | Adjusted R2 | Predicted R2 | Model p Value | Adequate Precision | % CV |
---|---|---|---|---|---|
Entrapment efficiency (Y1) | 0.9901 | 0.9613 | <0.0001 | 39.06 | 2.40 |
In vitro buoyancy (Y2) | 0.9750 | 0.9167 | <0.0002 | 25.34 | 7.20 |
Drug release Q6h (Y3) | 0.9830 | 0.9434 | <0.0001 | 30.15 | 3.82 |
Factor | Alginate (X1) | CaCl2 (X2) | Sesame Oil (X3) | Desirability |
---|---|---|---|---|
Optimized formulation (OP1) | 4.56% | 8.72% | 7.68% | 0.978 |
Point Prediction | Y1 | Y2 | Y3 | |
Predicted | 95.95 | 10.89 | 66.0 | |
Observed | 98.84 | 11.25 | 67.76 |
The Optimized Formulation | Mean Particle Size (mm) |
---|---|
Optimized beads with oil (OP1) | 1.22 ± 0.24 |
Optimized beads without oil (OP2) | 0.933 ± 0.06 |
The Optimized Formulation | Entrapment Efficiency (%) |
---|---|
Optimized beads with oil (OP1) | 98.83 ± 1.23% |
Optimized beads without oil (OP2) | 90.35 ± 3.56% |
The Optimized Formulation | Floating Lag Time (s) | Floating Time (h) |
---|---|---|
Optimized beads with oil (OP1) | 5.1 ± 2 | 11 ± 2.45 |
Optimized beads without oil (OP2) | 12 ± 1.5 | 6.7 ± 1.7 |
The Optimized Formulation | Swelling Ratio | |||||
---|---|---|---|---|---|---|
Time (h) | ||||||
1 | 2 | 3 | 4 | 5 | 6 | |
Optimized beads with oil (OP1) | 1.62 | 1.58 | 1.53 | 1.49 | 1.47 | 1.41 |
Optimized beads without oil (OP2) | 1.76 | 1.68 | 1.64 | 1.59 | 1.55 | 1.52 |
Kinetic Models | K | R2 | n | |||
---|---|---|---|---|---|---|
OP1 | OP2 | OP1 | OP2 | OP1 | OP2 | |
Zero-order | 7.334 | 13.68 | 0.9524 | 0.9852 | ||
First-order | 0.0939 | 0.0939 | 0.9799 | 0.6402 | ||
Higuchi kinetics | 34.416 | 38.165 | 0.9836 | 0.9653 | ||
Korsemeyer–Peppas | 1.1548 | 1.375 | 0.9762 | 0.9816 | 0.836 | 0.7297 |
Hixson–Crowell | 0.269 | 0.5145 | 0.6982 | 0.7091 |
Pharmacokinetic Parameters | Pure TEL | OP1 | OP2 |
---|---|---|---|
Cmax (μg/mL) | 1.16 ± 0.15 | 1.13 ± 0.08 | 1.06 ± 0.15 |
Tmax (h) | 3 | 5 | 5 |
AUC0–∞ (µg·h/mL) | 5.615 ± 0.928 | 12.495 ± 1.56 * | 8.25 ± 1.03 |
Kel (h−1) | 0.114 ± 0.02 | 0.0585 ± 0.005 * | 0.093 ± 0.007 |
Relative bioavailability (%) | - | 222.52 ± 20.74 * | 146.93 ± 18.35 |
MRT (h) | 1.86 ± 0.26 | 9.02 ± 1.38 * | 6.38 ± 0.85 |
Mean BP (mmHg) | Group I | Group II | Group III | Group IV | Group V |
---|---|---|---|---|---|
Control | Positive Control | Standard | OP2 | OP1 | |
Initial (h) | 125 ± 1.5 | 167 ± 1.2 | 165 ± 3.4 | 169 ± 3.2 | 166 ± 1.5 |
1 | 124 ± 2.6 | 163 ± 2.6 * | 123 ± 1.2 ** | 160 ± 1.5 *** | 131 ± 3.1 **** |
2 | 125 ± 1.7 | 162 ± 1.9 * | 110 ± 4.0 ** | 149 ± 2.6 *** | 124 ± 3.1 **** |
3 | 124 ± 2.4 | 165 ± 1.3 * | 134 ± 3.5 ** | 135 ± 2.5 *** | 119 ± 4.1 **** |
4 | 125 ± 1.2 | 164 ± 3.2 * | 151 ± 2.8 ** | 131 ± 4.1 *** | 106 ± 2.3 **** |
5 | 123 ± 0.6 | 163 ± 3.1 * | 161 ± 2.3 | 128 ± 5.1 *** | 98 ± 3.2 **** |
6 | 125 ± 1.0 | 165 ± 2.4 * | 164 ± 1.4 | 120 ± 6.3 *** | 91 ± 1.9 **** |
7 | 124 ± 1.9 | 166 ± 1.8 * | 166 ± 3.1 | 138 ± 3.9 | 88 ± 3.2 **** |
8 | 126 ± 1.4 | 167 ± 4.2 * | 167 ± 4.5 | 149 ± 1.3 | 101 ± 6.3 **** |
10 | 122 ± 1.7 | 167 ± 2.3 * | 166 ± 2.6 | 165 ± 4.1 | 109 ± 6.4 **** |
12 | 125 ± 1.7 | 168 ± 3.1 * | 169 ± 1.6 | 166 ± 1.9 | 116 ± 7.2 **** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uthumansha, U.; Prabahar, K.; Gajapathy, D.B.; El-Sherbiny, M.; Elsherbiny, N.; Qushawy, M. Optimization and In Vitro Characterization of Telmisartan Loaded Sodium Alginate Beads and Its In Vivo Efficacy Investigation in Hypertensive Induced Animal Model. Pharmaceutics 2023, 15, 709. https://doi.org/10.3390/pharmaceutics15020709
Uthumansha U, Prabahar K, Gajapathy DB, El-Sherbiny M, Elsherbiny N, Qushawy M. Optimization and In Vitro Characterization of Telmisartan Loaded Sodium Alginate Beads and Its In Vivo Efficacy Investigation in Hypertensive Induced Animal Model. Pharmaceutics. 2023; 15(2):709. https://doi.org/10.3390/pharmaceutics15020709
Chicago/Turabian StyleUthumansha, Ubaidulla, Kousalya Prabahar, Dilli Bhai Gajapathy, Mohamed El-Sherbiny, Nehal Elsherbiny, and Mona Qushawy. 2023. "Optimization and In Vitro Characterization of Telmisartan Loaded Sodium Alginate Beads and Its In Vivo Efficacy Investigation in Hypertensive Induced Animal Model" Pharmaceutics 15, no. 2: 709. https://doi.org/10.3390/pharmaceutics15020709
APA StyleUthumansha, U., Prabahar, K., Gajapathy, D. B., El-Sherbiny, M., Elsherbiny, N., & Qushawy, M. (2023). Optimization and In Vitro Characterization of Telmisartan Loaded Sodium Alginate Beads and Its In Vivo Efficacy Investigation in Hypertensive Induced Animal Model. Pharmaceutics, 15(2), 709. https://doi.org/10.3390/pharmaceutics15020709