Highlighted Advances in Therapies for Difficult-To-Treat Brain Tumours Such as Glioblastoma
Abstract
:1. Introduction
2. Treatment
2.1. Surgery
2.1.1. Preoperative Techniques
2.1.2. Intraoperative Techniques
2.1.3. Pseudoprogression
2.1.4. Recent Advances
2.2. Chemotherapy
2.2.1. Standard of Care
2.2.2. Nanomedicine in GBM Chemotherapy
2.3. Radiotherapy
2.4. Immunotherapy
2.5. Tumour Treating Fields
2.6. Photothermal and Photodynamic Therapy
2.7. Magnetic Thermotherapy
3. Clinical Studies and the Most Recent Developments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
5-ALA | 5-aminolevulinic acid |
AACID | Amine and amide concentration independent detection |
ACT | Adoptive cell therapy |
Ad+V | Adaoviral-rheoswitch therapeutic system-human interleukin 12 + Veledimex |
ALC | Absolute lymphocyte count |
AMF | Alternating magnetic field |
ASCO-SNO | American society of clinical oncology and the society for neuro-oncology |
BBB | Blood-brain barrier |
BOLD fMRI | Blood oxygenation level dependent functional magnetic resonance imaging |
CbV | Carbazol arylvinyl |
CED | Convection enhanced delivery |
CHC | Alpha-cyano-4-hydroxycinnamic acid |
CMV | Cytomegalovirus |
CNS | Central nervous system |
CT | Computed tomography |
CTLA-4 | Cytotoxic T-lymphocyte-associated protein 4 |
CTX | Cetuximab |
Cur | Curcumin |
CW | Carmustine wafer |
DCA | Dichloroacetate |
DESI-MS | Desorption electrospray ionisation mass spectrometry |
DNA | Deoxyribonucleic acid |
EANO | European association of neuro-oncology |
FA | Folic acid |
FDA | Food and drug administration |
FEP | Fluorinated ethylene propylene |
FET | 18Fluoro-O-(2) fluoroethyl-l-tyrosine |
Fn-14 | Fibroblast growth factor inducible 14 |
G3+L | Radiation induced grade 3+ lymphopenia |
GBM | Glioblastoma multiforme |
GSCs | Glioblastoma stem cells |
Gy | Gray |
HF RT | Hypofractionated radiotherapy |
HSP | Heat shock protein |
ICG | Indocyanine green |
IDH | Isocitrate dehydrogenase |
IDO | Indoleamine-pyrrole 2,3-dioxygenase |
IL | Interleukine |
iMRI | Intraoperative magnetic resonance imaging |
IMRT | Intensity-modulated radiotherapy |
IPI | Ipilimumab |
KPS | Karnofsky performance score |
MgDCA | Magnesium dichloroacetate |
MGMT | O6-methylguanine deoxyribonucleic acid methyl-transferase |
MNP | Magnetic nanoparticle |
MPC | 2-methacryloyloxyethyl phosphorylcholine |
MRgLITT | Magnetic resonance-guided laser-induced thermal therapy |
MRI | Magnetic resonance imaging |
MRS | Magnetic resonance spectroscopy |
NaDCA | Sodium dichloroacetate |
NIR | Near-infrared |
nivo | Nivolumab |
NK | Natural killer |
NPG | Nanoparticle gel |
OCT | Optical coherence tomography |
OS | Overall survival |
PARPi | Poly-(adenosine diphosphate ribose) polymerase inhibitor |
PBA | Poly(butylene adipate) |
PBNP | Prussian-blue nanoparticle |
PBRT | Proton beam radiation therapy |
PdI | Polydispersity index |
PDL1-siRNA | Programmed death-ligand 1-small interfering ribonucleic acid |
PDT | Photodynamic therapy |
PEGDA | Poly(ethylene-glycol) diacrylate |
PEGMA | Poly(ethylene-glycol) methacrylate |
PET | Positron emission tomography |
PFS | Progression-free survival |
PLGA | Poly(lactic-co-glycolic acid) |
pHi | Intracellular pH |
PROs | Patient reported outcomes |
PsP | Pseudoprogression |
PS | Photosensitizer |
PT | Photon therapy |
PTA | Photoabsorbing agent |
PTX | Paclitaxel |
RANO | Response assessment in neuro-oncology |
ROS | Reactive oxygen species |
SAR | Specific absorption rate |
SNA | Spherical nucleic acid |
SPION | Superparamagnetic iron oxide nanoparticles |
SRS | Stereotactic rradiosurgery |
TMZ | Temozolomide |
TP | Tumour progression |
TPN | Theranostic photonic nanoparticles |
TSPO | Translocator protein |
TTF | Tumour treating fields |
UCNPs | Upconversion nanoparticles |
USPIONs | Ultra-small iron oxide nanoparticles |
UV-Vis | Ultraviolet-visible |
VB-111 | Ofranergene obadenovec |
VEGF | Vascular endothelial growth factor |
WBMD | Whole-brain mean dose |
WHO | World health organization |
XRT | X-ray radiotherapy |
References
- Ostrom, Q.T.; Gittleman, H.; Liao, P.; Rouse, C.; Chen, Y.; Dowling, J.; Wolinsky, Y.; Kruchko, C.; Barnholtz-Sloan, J. CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2007–2011. Neuro Oncol. 2014, 16, iv1–iv63. [Google Scholar] [CrossRef] [PubMed]
- Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A Summary. Acta Neuropathol. 2016, 131, 803–820. [Google Scholar] [CrossRef] [PubMed]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A Summary. Neuro Oncol. 2021, 23, 1231–1251. [Google Scholar] [CrossRef] [PubMed]
- Alexander, B.M.; Cloughesy, T.F. Adult Glioblastoma. J. Clin. Oncol. 2017, 35, 2402–2409. [Google Scholar] [CrossRef]
- Omuro, A.; DeAngelis, L.M. Glioblastoma and Other Malignant Gliomas: A Clinical Review. JAMA J. Am. Med. Assoc. 2013, 310, 1842–1850. [Google Scholar] [CrossRef]
- Hottinger, A.F.; Abdullah, K.G.; Stupp, R. Current Standards of Care in Glioblastoma Therapy; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 9780323479745. [Google Scholar]
- Weller, M.; Le Rhun, E.; Preusser, M.; Tonn, J.C.; Roth, P. How We Treat Glioblastoma. ESMO Open 2019, 4, e000520. [Google Scholar] [CrossRef]
- Tamimi, A.F.; Juweid, M. Epidemiology and Outcome of Glioblastoma. Glioblastoma 2017, 143–153. [Google Scholar] [CrossRef]
- Davis, M.E. Glioblastoma: Overview of Disease and Treatment. Clin. J. Oncol. Nurs. 2016, 20, S2–S8. [Google Scholar] [CrossRef]
- Zalles, M.; Towner, R.A. Pre-Clinical Models and Potential Novel Therapies for Glioblastomas. In Gliomas; Exon Publications: Brisbane, QLD, Australia, 2021; Volume 12, pp. 1–14. ISBN 9780645001747. [Google Scholar]
- Fernandes, C.; Costa, A.; Osório, L.; Lago, R.C.; Linhares, P.; Carvalho, B.; Caeiro, C. Current Standards of Care in Glioblastoma Therapy; Codon Publications: Brisbane, QLD, Australia, 2017; ISBN 978-0-9944381-2-6. [Google Scholar]
- Urbanska, K.; Sokolowska, J.; Szmidt, M.; Sysa, P. Glioblastoma Multiforme—An Overview. Wspolczesna Onkol. 2014, 18, 307–312. [Google Scholar] [CrossRef]
- Geraldo, L.H.M.; Garcia, C.; da Fonseca, A.C.C.; Dubois, L.G.F.; de Sampaio e Spohr, T.C.L.; Matias, D.; de Camargo Magalhães, E.S.; do Amaral, R.F.; da Rosa, B.G.; Grimaldi, I.; et al. Glioblastoma Therapy in the Age of Molecular Medicine. Trends Cancer 2019, 5, 46–65. [Google Scholar] [CrossRef]
- Mohile, N.A.; Messersmith, H.; Gatson, N.T.N.; Hottinger, A.F.; Lassman, A.B.; Morton, J.; Ney, D.; Nghiemphu, P.L.; Olar, A.; Olson, J.; et al. Therapy for Diffuse Astrocytic and Oligodendroglial Tumors in Adults: ASCO-SNO Guideline. Neuro Oncol. 2022, 24, 358–383. [Google Scholar] [CrossRef]
- Weller, M.; van den Bent, M.; Preusser, M.; le Rhun, E.; Tonn, J.C.; Minniti, G.; Bendszus, M.; Balana, C.; Chinot, O.; Dirven, L.; et al. EANO Guidelines on the Diagnosis and Treatment of Diffuse Gliomas of Adulthood. Nat. Rev. Clin. Oncol. 2021, 18, 170–186. [Google Scholar] [CrossRef]
- Hart, M.G.; Grant, G.R.L.; Solyom, E.F.; Grant, R. Biopsy versus Resection for High-Grade Glioma. Cochrane Database Syst. Rev. 2019, 2019, CD002034. [Google Scholar] [CrossRef]
- Wirsching, H.G.; Galanis, E.; Weller, M. Glioblastoma. Handb. Clin. Neurol. 2016, 134, 381–397. [Google Scholar] [CrossRef]
- Young, R.M.; Jamshidi, A.; Davis, G.; Sherman, J.H. Current Trends in the Surgical Management and Treatment of Adult Glioblastoma. Ann. Transl. Med. 2015, 3, 121. [Google Scholar] [CrossRef]
- Weishaupt, D.; Köchli, V.D.; Marincek, B. How Does MRI Work? 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2006; ISBN 978-3-540-30067-0. [Google Scholar]
- Wen, P.Y.; Kesari, S. Malignant Gliomas in Adults. N. Engl. J. Med. 2008, 359, 492–507. [Google Scholar] [CrossRef]
- Caivano, R.; Lotumolo, A.; Rabasco, P.; Zandolino, A.; D’antuono, F.; Villonio, A.; Lancellotti, M.I.; Macarini, L.; Cammarota, A. 3 Tesla Magnetic Resonance Spectroscopy: Cerebral Gliomas vs. Metastatic Brain Tumors. Our Experience and Review of the Literature. Int. J. Neurosci. 2013, 123, 537–543. [Google Scholar] [CrossRef]
- Das, B.K. Positron Emission Tomography: An Overview. In Positron Emission Tomography; Springer India: New Delhi, India, 2015; pp. 1–6. ISBN 978-81-322-2098-5. [Google Scholar]
- Drake, L.R.; Hillmer, A.T.; Cai, Z. Approaches to PET Imaging of Glioblastoma. Molecules 2020, 25, 568. [Google Scholar] [CrossRef]
- Bailey, D.L.; Karp, J.S.; Surti, S. Physics and Instrumentation in PET. In Positron Emission Tomography; Springer: London, UK, 2005; pp. 13–39. [Google Scholar]
- Bailey, D.L. Data Acquisition and Performance Characterization in PET. In Positron Emission Tomography; Springer: London, UK, 2005; pp. 41–62. ISBN 978-1-84628-007-8. [Google Scholar]
- Götz, I.; Grosu, A.L. [18F]FET-PET Imaging for Treatment and Response Monitoring of Radiation Therapy in Malignant Glioma Patients—A Review. Front. Oncol. 2013, 3. [Google Scholar] [CrossRef]
- Lohmann, P.; Stavrinou, P.; Lipke, K.; Bauer, E.K.; Ceccon, G.; Werner, J.-M.; Neumaier, B.; Fink, G.R.; Shah, N.J.; Langen, K.-J.; et al. FET PET Reveals Considerable Spatial Differences in Tumour Burden Compared to Conventional MRI in Newly Diagnosed Glioblastoma. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 591–602. [Google Scholar] [CrossRef]
- Bashir, A.; Mathilde Jacobsen, S.; Mølby Henriksen, O.; Broholm, H.; Urup, T.; Grunnet, K.; Andrée Larsen, V.; Møller, S.; Skjøth-Rasmussen, J.; Skovgaard Poulsen, H.; et al. Recurrent Glioblastoma versus Late Posttreatment Changes: Diagnostic Accuracy of O-(2-[18F]Fluoroethyl)-L-Tyrosine Positron Emission Tomography (18F-FET PET). Neuro Oncol. 2019, 21, 1595–1606. [Google Scholar] [CrossRef] [PubMed]
- Lohmann, P.; Elahmadawy, M.A.; Gutsche, R.; Werner, J.-M.; Bauer, E.K.; Ceccon, G.; Kocher, M.; Lerche, C.W.; Rapp, M.; Fink, G.R.; et al. FET PET Radiomics for Differentiating Pseudoprogression from Early Tumor Progression in Glioma Patients Post-Chemoradiation. Cancers 2020, 12, 3835. [Google Scholar] [CrossRef] [PubMed]
- Poulsen, S.H.; Urup, T.; Grunnet, K.; Christensen, I.J.; Larsen, V.A.; Jensen, M.L.; af Rosenschöld, P.M.; Poulsen, H.S.; Law, I. The Prognostic Value of FET PET at Radiotherapy Planning in Newly Diagnosed Glioblastoma. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Carles, M.; Popp, I.; Starke, M.M.; Mix, M.; Urbach, H.; Schimek-Jasch, T.; Eckert, F.; Niyazi, M.; Baltas, D.; Grosu, A.L. FET-PET Radiomics in Recurrent Glioblastoma: Prognostic Value for Outcome after Re-Irradiation? Radiat. Oncol. 2021, 16, 46. [Google Scholar] [CrossRef] [PubMed]
- Muoio, B.; Giovanella, L.; Treglia, G. Recent Developments of 18F-FET PET in Neuro-Oncology. Curr. Med. Chem. 2017, 25, 3061–3073. [Google Scholar] [CrossRef]
- Bisdas, S.; Ritz, R.; Bender, B.; Braun, C.; Pfannenberg, C.; Reimold, M.; Naegele, T.; Ernemann, U. Metabolic Mapping of Gliomas Using Hybrid MR-PET Imaging. Investig. Radiol. 2013, 48, 295–301. [Google Scholar] [CrossRef]
- Song, S.; Cheng, Y.; Ma, J.; Wang, L.; Dong, C.; Wei, Y.; Xu, G.; An, Y.; Qi, Z.; Lin, Q.; et al. Simultaneous FET-PET and Contrast-Enhanced MRI Based on Hybrid PET/MR Improves Delineation of Tumor Spatial Biodistribution in Gliomas: A Biopsy Validation Study. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 1458–1467. [Google Scholar] [CrossRef]
- Tatekawa, H.; Hagiwara, A.; Uetani, H.; Yao, J.; Oughourlian, T.C.; Bahri, S.; Wang, C.; Raymond, C.; Lai, A.; Cloughesy, T.F.; et al. Multiparametric MR-PET Measurements in Hypermetabolic Regions Reflect Differences in Molecular Status and Tumor Grade in Treatment-Naïve Diffuse Gliomas. J. Neurooncol. 2020, 149, 337–346. [Google Scholar] [CrossRef]
- Chen, Z.; Jamadar, S.D.; Li, S.; Sforazzini, F.; Baran, J.; Ferris, N.; Shah, N.J.; Egan, G.F. From Simultaneous to Synergistic MR-PET Brain Imaging: A Review of Hybrid MR-PET Imaging Methodologies. Hum. Brain Mapp. 2018, 39, 5126–5144. [Google Scholar] [CrossRef]
- Chaudhry, A.; Badie, B.; Jandial, R.; Chen, M.; Korn, R.; Rahmanuddin, S. Utility of Functional MRI and 3D Tractography in Presurgical Planning in Patients with Glioblastoma. Clin. Med. Image Libr. 2018, 4, 7–8. [Google Scholar] [CrossRef]
- Caras, A.; Mugge, L.; Miller, W.K.; Mansour, T.R.; Schroeder, J.; Medhkour, A. Usefulness and Impact of Intraoperative Imaging for Glioma Resection on Patient Outcome and Extent of Resection: A Systematic Review and Meta-Analysis. World Neurosurg. 2020, 134, 98–110. [Google Scholar] [CrossRef]
- Essayed, W.I.; Zhang, F.; Unadkat, P.; Cosgrove, G.R.; Golby, A.J.; O’Donnell, L.J. White Matter Tractography for Neurosurgical Planning: A Topography-Based Review of the Current State of the Art. Neuroimage Clin. 2017, 15, 659–672. [Google Scholar] [CrossRef]
- Panesar, S.S.; Abhinav, K.; Yeh, F.C.; Jacquesson, T.; Collins, M.; Fernandez-Miranda, J. Tractography for Surgical Neuro-Oncology Planning: Towards a Gold Standard. Neurotherapeutics 2019, 16, 36–51. [Google Scholar] [CrossRef]
- Manrique-Guzmán, S.; Herrada-Pineda, T.; Revilla-Pacheco, F. Surgical Management of Glioblastoma. Glioblastoma 2017, 243–261. [Google Scholar] [CrossRef]
- Esteves, S.; Alves, M.; Castel-Branco, M.; Stummer, W. A Pilot Cost-Effectiveness Analysis of Treatments in Newly Diagnosed High-Grade Gliomas: The Example of 5-Aminolevulinic Acid Compared with White-Light Surgery. Neurosurgery 2015, 76, 552–562. [Google Scholar] [CrossRef]
- Stummer, W.; Pichlmeier, U.; Meinel, T.; Wiestler, O.D.; Zanella, F.; Reulen, H.J. Fluorescence-Guided Surgery with 5-Aminolevulinic Acid for Resection of Malignant Glioma: A Randomised Controlled Multicentre Phase III Trial. Lancet Oncol. 2006, 7, 392–401. [Google Scholar] [CrossRef]
- Jenkinson, M.D.; Barone, D.G.; Bryant, A.; Vale, L.; Bulbeck, H.; Lawrie, T.A.; Hart, M.G.; Watts, C. Intraoperative Imaging Technology to Maximise Extent of Resection for Glioma. Cochrane Database Syst. Rev. 2018, 2018. [Google Scholar] [CrossRef]
- Kubben, P.L.; ter Meulen, K.J.; Schijns, O.E.M.G.; ter Laak-Poort, M.P.; van Overbeeke, J.J.; van Santbrink, H. Intraoperative MRI-Guided Resection of Glioblastoma Multiforme: A Systematic Review. Lancet Oncol. 2011, 12, 1062–1070. [Google Scholar] [CrossRef]
- Golub, D.; Hyde, J.; Dogra, S.; Nicholson, J.; Kirkwood, K.A.; Gohel, P.; Loftus, S.; Schwartz, T.H. Intraoperative MRI versus 5-ALA in High-Grade Glioma Resection: A Network Meta-Analysis. J. Neurosurg. 2021, 134, 484–498. [Google Scholar] [CrossRef]
- Coburger, J.; Wirtz, C.R. Fluorescence Guided Surgery by 5-ALA and Intraoperative MRI in High Grade Glioma: A Systematic Review. J. Neurooncol. 2019, 141, 533–546. [Google Scholar] [CrossRef]
- Gessler, F.; Forster, M.T.; Duetzmann, S.; Mittelbronn, M.; Hattingen, E.; Franz, K.; Seifert, V.; Senft, C. Combination of Intraoperative Magnetic Resonance Imaging and Intraoperative Fluorescence to Enhance the Resection of Contrast Enhancing Gliomas. Neurosurgery 2015, 77, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Coburger, J.; Hagel, V.; Wirtz, C.R.; König, R. Surgery for Glioblastoma: Impact of the Combined Use of 5-Aminolevulinic Acid and Intraoperative MRI on Extent of Resection and Survival. PLoS ONE 2015, 10, e0154756. [Google Scholar] [CrossRef] [PubMed]
- Thust, S.C.; van den Bent, M.J.; Smits, M. Pseudoprogression of Brain Tumors. J. Magn. Reson. Imaging 2018, 48, 571–589. [Google Scholar] [CrossRef] [PubMed]
- Strauss, S.B.; Meng, A.; Ebani, E.J.; Chiang, G.C. Imaging Glioblastoma Posttreatment. Neuroimaging Clin. N. Am. 2021, 31, 103–120. [Google Scholar] [CrossRef] [PubMed]
- Young, R.J.; Gupta, A.; Shah, A.D.; Graber, J.J.; Chan, T.A.; Zhang, Z.; Shi, W.; Beal, K.; Omuro, A.M. MRI Perfusion in Determining Pseudoprogression in Patients with Glioblastoma. Clin. Imaging 2013, 37, 41–49. [Google Scholar] [CrossRef]
- Le Fèvre, C.; Lhermitte, B.; Ahle, G.; Chambrelant, I.; Cebula, H.; Antoni, D.; Keller, A.; Schott, R.; Thiery, A.; Constans, J.-M.; et al. Pseudoprogression versus true progression in glioblastoma patients: A multiapproach literature review: Part 1—Molecular, morphological and clinical features. Crit. Rev. Oncol. Hematol. 2021, 157, 103188. [Google Scholar] [CrossRef]
- Wen, P.Y.; Macdonald, D.R.; Reardon, D.A.; Cloughesy, T.F.; Sorensen, A.G.; Galanis, E.; DeGroot, J.; Wick, W.; Gilbert, M.R.; Lassman, A.B.; et al. Updated Response Assessment Criteria for High-Grade Gliomas: Response Assessment in Neuro-Oncology Working Group. J. Clin. Oncol. 2010, 28, 1963–1972. [Google Scholar] [CrossRef]
- Ellingson, B.M.; Wen, P.Y.; Cloughesy, T.F. Modified Criteria for Radiographic Response Assessment in Glioblastoma Clinical Trials. Neurotherapeutics 2017, 14, 307–320. [Google Scholar] [CrossRef]
- Chawla, S.; Bukhari, S.; Afridi, O.M.; Wang, S.; Yadav, S.K.; Akbari, H.; Verma, G.; Nath, K.; Haris, M.; Bagley, S.; et al. Metabolic and Physiologic Magnetic Resonance Imaging in Distinguishing True Progression from Pseudoprogression in Patients with Glioblastoma. NMR Biomed. 2022, 35. [Google Scholar] [CrossRef]
- Sidibe, I.; Tensaouti, F.; Roques, M.; Cohen-Jonathan-Moyal, E.; Laprie, A. Pseudoprogression in Glioblastoma: Role of Metabolic and Functional MRI-Systematic Review. Biomedicines 2022, 10, 285. [Google Scholar] [CrossRef]
- Le Fèvre, C.; Constans, J.-M.; Chambrelant, I.; Antoni, D.; Bund, C.; Leroy-Freschini, B.; Schott, R.; Cebula, H.; Noël, G. Pseudoprogression versus True Progression in Glioblastoma Patients: A Multiapproach Literature Review. Part 2—Radiological Features and Metric Markers. Crit. Rev. Oncol. Hematol. 2021, 159, 103230. [Google Scholar] [CrossRef]
- Denora, N.; Lee, C.; Iacobazzi, R.M.; Choi, J.Y.; Song, I.H.; Yoo, J.S.; Piao, Y.; Lopalco, A.; Leonetti, F.; Lee, B.C.; et al. TSPO-Targeted NIR-Fluorescent Ultra-Small Iron Oxide Nanoparticles for Glioblastoma Imaging. Eur. J. Pharm. Sci. 2019, 139, 105047. [Google Scholar] [CrossRef]
- Henderson, F.; Jones, E.; Denbigh, J.; Christie, L.; Chapman, R.; Hoyes, E.; Claude, E.; Williams, K.J.; Roncaroli, F.; McMahon, A. 3D DESI-MS Lipid Imaging in a Xenograft Model of Glioblastoma: A Proof of Principle. Sci. Rep. 2020, 10, 16512. [Google Scholar] [CrossRef]
- Sun, Y.-Z.; Yan, L.-F.; Han, Y.; Nan, H.-Y.; Xiao, G.; Tian, Q.; Pu, W.-H.; Li, Z.-Y.; Wei, X.-C.; Wang, W.; et al. Differentiation of Pseudoprogression from True Progressionin Glioblastoma Patients after Standard Treatment: A Machine Learning Strategy Combinedwith Radiomics Features from T1-Weighted Contrast-Enhanced Imaging. BMC Med. Imaging 2021, 21, 17. [Google Scholar] [CrossRef]
- Gerritsen, J.K.W.; Klimek, M.; Dirven, C.M.F.; de Hoop, E.O.; Wagemakers, M.; Rutten, G.J.M.; Kloet, A.; Hallaert, G.G.; Vincent, A.J.P.E. The SAFE-Trial: Safe Surgery for Glioblastoma Multiforme: Awake Craniotomy versus Surgery under General Anesthesia. Study Protocol for a Multicenter Prospective Randomized Controlled Trial. Contemp. Clin. Trials 2020, 88, 105876. [Google Scholar] [CrossRef]
- Dimou, J.; Beland, B.; Kelly, J. Supramaximal Resection: A Systematic Review of Its Safety, Efficacy and Feasibility in Glioblastoma. J. Clin. Neurosci. 2020, 72, 328–334. [Google Scholar] [CrossRef]
- Bettag, C.; Hussein, A.; Behme, D.; Maragkou, T.; Rohde, V.; Mielke, D. Endoscopic Fluorescence-Guided Resection Increases Radicality in Glioblastoma Surgery. Oper. Neurosurg. 2020, 18, 41–46. [Google Scholar] [CrossRef]
- Alifieris, C.; Trafalis, D.T. Glioblastoma Multiforme: Pathogenesis and Treatment. Pharm. Ther. 2015, 152, 63–82. [Google Scholar] [CrossRef]
- Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.B.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, R.; Yu, Y.; Liu, J.; Luo, T.; Fan, F. Glioblastoma Treatment Modalities besides Surgery. J. Cancer 2019, 10, 4793–4806. [Google Scholar] [CrossRef]
- Stupp, R.; Hegi, M.E.; Mason, W.P.; van den Bent, M.J.; Taphoorn, M.J.; Janzer, R.C.; Ludwin, S.K.; Allgeier, A.; Fisher, B.; Belanger, K.; et al. Effects of Radiotherapy with Concomitant and Adjuvant Temozolomide versus Radiotherapy Alone on Survival in Glioblastoma in a Randomised Phase III Study: 5-Year Analysis of the EORTC-NCIC Trial. Lancet Oncol. 2009, 10, 459–466. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y. Temozolomide Resistance in Glioblastoma Multiforme. Genes Dis. 2016, 3, 198–210. [Google Scholar] [CrossRef] [PubMed]
- Rajaratnam, V.; Islam, M.M.; Yang, M.; Slaby, R.; Ramirez, H.M.; Mirza, S.P. Glioblastoma: Pathogenesis and Current Status of Chemotherapy and Other Novel Treatments. Cancers 2020, 12, 937. [Google Scholar] [CrossRef] [PubMed]
- Rider, B.J. Carmustine. In xPharm: The Comprehensive Pharmacology Reference; Elsevier: Amsterdam, The Netherlands, 2007; pp. 1–4. ISBN 9780080552323. [Google Scholar]
- Chowdhary, S.A.; Ryken, T.; Newton, H.B. Survival Outcomes and Safety of Carmustine Wafers in the Treatment of High-Grade Gliomas: A Meta-Analysis. J. Neurooncol. 2015, 122, 367–382. [Google Scholar] [CrossRef]
- Anjum, K.; Shagufta, B.I.; Abbas, S.Q.; Patel, S.; Khan, I.; Shah, S.A.A.; Akhter, N.; ul Hassan, S.S. Current Status and Future Therapeutic Perspectives of Glioblastoma Multiforme (GBM) Therapy: A Review. Biomed. Pharmacother. 2017, 92, 681–689. [Google Scholar] [CrossRef]
- Bregy, A.; Shah, A.H.; Diaz, M.V.; Pierce, H.E.; Ames, P.L.; Diaz, D.; Komotar, R.J. The Role of Gliadel Wafers in the Treatment of High-Grade Gliomas. Expert. Rev. Anticancer. Ther. 2013, 13, 1453–1461. [Google Scholar] [CrossRef]
- Champeaux, C.; Weller, J. Implantation of Carmustine Wafers (Gliadel®®) for High-Grade Glioma Treatment. A 9-Year Nationwide Retrospective Study. J. Neurooncol. 2020, 147, 159–169. [Google Scholar] [CrossRef]
- Xiao, Z.Z.; Wang, Z.F.; Lan, T.; Huang, W.H.; Zhao, Y.H.; Ma, C.; Li, Z.Q. Carmustine as a Supplementary Therapeutic Option for Glioblastoma: A Systematic Review and Meta-Analysis. Front. Neurol. 2020, 11. [Google Scholar] [CrossRef]
- Tan, A.C.; Ashley, D.M.; López, G.Y.; Malinzak, M.; Friedman, H.S.; Khasraw, M. Management of Glioblastoma: State of the Art and Future Directions. CA Cancer J. Clin. 2020, 70, 299–312. [Google Scholar] [CrossRef]
- Antunes, A.F.; Pereira, P.; Reis, C.; Rijo, P.; Reis, C. Nanosystems for Skin Delivery: From Drugs to Cosmetics. Curr. Drug Metab. 2017, 18, 412–425. [Google Scholar] [CrossRef]
- Oliveira, A.; Simões, S.; Ascenso, A.; Reis, C.P. Therapeutic Advances in Wound Healing. J. Dermatol. Treat. 2022, 33, 2–22. [Google Scholar] [CrossRef]
- Reis, C.P.; Martinho, N.; Rosado, C.; Fernandes, A.S.; Roberto, A. Design of Polymeric Nanoparticles and Its Applications as Drug Delivery Systems for Acne Treatment. Drug Dev. Ind. Pharm. 2014, 40, 409–417. [Google Scholar] [CrossRef]
- Silva, C.O.; Petersen, S.B.; Reis, C.P.; Rijo, P.; Molpeceres, J.; Fernandes, A.S.; Gonçalves, O.; Gomes, A.C.; Correia, I.; Vorum, H.; et al. EGF Functionalized Polymer-Coated Gold Nanoparticles Promote EGF Photostability and EGFR Internalization for Photothermal Therapy. PLoS ONE 2016, 11, e0165419. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, R.; Zhou, L.; Zhao, H.; Lv, F.; Liu, L.; Huang, Y.; Zhang, H.W.; Yu, C.; Wang, S. Blood-Brain-Barrier Penetrable Thiolated Paclitaxel-Oligo (p-Phenylene Vinylene) Nanomedicine with Increased Drug Efficiency for Glioblastoma Treatment. Nano Today 2020, 35, 100969. [Google Scholar] [CrossRef]
- Ferreira, N.N.; Granja, S.; Boni, F.I.; Prezotti, F.G.; Ferreira, L.M.B.; Cury, B.S.F.; Reis, R.M.; Baltazar, F.; Gremião, M.P.D. Modulating Chitosan-PLGA Nanoparticle Properties to Design a Co-Delivery Platform for Glioblastoma Therapy Intended for Nose-to-Brain Route. Drug Deliv. Transl. Res. 2020. [Google Scholar] [CrossRef]
- Zheng, T.; Wang, W.; Ashley, J.; Zhang, M.; Feng, X.; Shen, J.; Sun, Y. Self-Assembly Protein Superstructures as a Powerful Chemodynamic Therapy Nanoagent for Glioblastoma Treatment. Nanomicro. Lett. 2020, 12. [Google Scholar] [CrossRef]
- Saha, S.; Yakati, V.; Shankar, G.; Jaggarapu, M.M.C.S.; Moku, G.; Madhusudana, K.; Banerjee, R.; Ramkrishna, S.; Srinivas, R.; Chaudhuri, A. Amphetamine Decorated Cationic Lipid Nanoparticles Cross the Blood-Brain Barrier: Therapeutic Promise for Combating Glioblastoma. J. Mater. Chem. B 2020, 8, 4318–4330. [Google Scholar] [CrossRef]
- Manju, C.A.; Jeena, K.; Ramachandran, R.; Manohar, M.; Ambily, A.M.; Sajesh, K.M.; Gowd, G.S.; Menon, K.; Pavithran, K.; Pillai, A.; et al. Intracranially Injectable Multi-SiRNA Nanomedicine for the Inhibition of Glioma Stem Cells. Neurooncol. Adv. 2021, 3. [Google Scholar] [CrossRef]
- Li, R.; Wang, H.; Liang, Q.; Chen, L.; Ren, J. Radiotherapy for Glioblastoma: Clinical Issues and Nanotechnology Strategies. Biomater. Sci. 2022, 10, 892–908. [Google Scholar] [CrossRef]
- Chédeville, A.L.; Madureira, P.A. The Role of Hypoxia in Glioblastoma Radiotherapy Resistance. Cancers 2021, 13, 542. [Google Scholar] [CrossRef]
- Minniti, G.; Niyazi, M.; Alongi, F.; Navarria, P.; Belka, C. Current Status and Recent Advances in Reirradiation of Glioblastoma. Radiat. Oncol. 2021, 16. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Klockow, J.L.; Zhang, M.; Lafortune, F.; Chang, E.; Jin, L.; Wu, Y.; Daldrup-Link, H.E. Glioblastoma Multiforme (GBM): An Overview of Current Therapies and Mechanisms of Resistance. Pharm. Res. 2021, 171. [Google Scholar] [CrossRef] [PubMed]
- Mann, J.; Ramakrishna, R.; Magge, R.; Wernicke, A.G. Advances in Radiotherapy for Glioblastoma. Front. Neurol. 2018, 8. [Google Scholar] [CrossRef] [PubMed]
- Goff, K.M.; Zheng, C.; Alonso-Basanta, M. Proton Radiotherapy for Glioma and Glioblastoma. Chin. Clin. Oncol. 2022, 11, 46. [Google Scholar] [CrossRef] [PubMed]
- Mohan, R.; Liu, A.Y.; Brown, P.D.; Mahajan, A.; Dinh, J.; Chung, C.; McAvoy, S.; McAleer, M.F.; Lin, S.H.; Li, J.; et al. Proton Therapy Reduces the Likelihood of High-Grade Radiation-Induced Lymphopenia in Glioblastoma Patients: Phase II Randomized Study of Protons vs. Photons. Neuro. Oncol. 2021, 23, 284–294. [Google Scholar] [CrossRef]
- Brown, P.D.; Chung, C.; Liu, D.D.; McAvoy, S.; Grosshans, D.; al Feghali, K.; Mahajan, A.; Li, J.; McGovern, S.L.; McAleer, M.F.; et al. A Prospective Phase II Randomized Trial of Proton Radiotherapy vs. Intensity-Modulated Radiotherapy for Patients with Newly Diagnosed Glioblastoma. Neuro. Oncol. 2021, 23, 1337–1347. [Google Scholar] [CrossRef]
- Jiapaer, S.; Furuta, T.; Tanaka, S.; Kitabayashi, T.; Nakada, M. Potential Strategies Overcoming the Temozolomide Resistance for Glioblastoma. Neurol. Med. Chir. 2018, 58, 405–421. [Google Scholar] [CrossRef]
- Zanders, E.D.; Svensson, F.; Bailey, D.S. Therapy for Glioblastoma: Is It Working? Drug. Discov. Today 2019, 24, 1193–1201. [Google Scholar] [CrossRef]
- Adhikaree, J.; Moreno-Vicente, J.; Kaur, A.P.; Jackson, A.M.; Patel, P.M. Resistance Mechanisms and Barriers to Successful Immunotherapy for Treating Glioblastoma. Cells 2020, 9, 263. [Google Scholar] [CrossRef]
- McGranahan, T.; Therkelsen, K.E.; Ahmad, S.; Nagpal, S. Current State of Immunotherapy for Treatment of Glioblastoma. Curr. Treat. Options Oncol. 2019, 20, 24. [Google Scholar] [CrossRef]
- Šamec, N.; Zottel, A.; Videtič Paska, A.; Jovčevska, I. Nanomedicine and Immunotherapy: A Step Further towards Precision Medicine for Glioblastoma. Molecules 2020, 25, 490. [Google Scholar] [CrossRef]
- Marenco-Hillembrand, L.; Wijesekera, O.; Suarez-Meade, P.; Mampre, D.; Jackson, C.; Peterson, J.; Trifiletti, D.; Hammack, J.; Ortiz, K.; Lesser, E.; et al. Trends in Glioblastoma: Outcomes over Time and Type of Intervention: A Systematic Evidence Based Analysis. J. Neurooncol. 2020, 147, 297–307. [Google Scholar] [CrossRef]
- Youssef, G.; Dietrich, J. Ipilimumab: An Investigational Immunotherapy for Glioblastoma. Expert Opin. Investig. Drugs 2020, 29, 1187–1193. [Google Scholar] [CrossRef]
- Cloughesy, T.F.; Brenner, A.; de Groot, J.F.; Butowski, N.A.; Zach, L.; Campian, J.L.; Ellingson, B.M.; Freedman, L.S.; Cohen, Y.C.; Lowenton-Spier, N.; et al. A Randomized Controlled Phase III Study of VB-111 Combined with Bevacizumab vs. Bevacizumab Monotherapy in Patients with Recurrent Glioblastoma (GLOBE). Neuro Oncol. 2020, 22, 705–717. [Google Scholar] [CrossRef]
- Reardon, D.A.; Brandes, A.A.; Omuro, A.; Mulholland, P.; Lim, M.; Wick, A.; Baehring, J.; Ahluwalia, M.S.; Roth, P.; Bähr, O.; et al. Effect of Nivolumab vs. Bevacizumab in Patients with Recurrent Glioblastoma: The CheckMate 143 Phase 3 Randomized Clinical Trial. JAMA Oncol. 2020, 6, 1003–1010. [Google Scholar] [CrossRef]
- Haddad, A.F.; Young, J.S.; Aghi, M.K. Using Viral Vectors to Deliver Local Immunotherapy to Glioblastoma. Neurosurg. Focus 2021, 50, E4. [Google Scholar] [CrossRef]
- Wang, H.; Chao, Y.; Zhao, H.; Zhou, X.; Zhang, F.; Zhang, Z.; Li, Z.; Pan, J.; Wang, J.; Chen, Q.; et al. Smart Nanomedicine to Enable Crossing Blood–Brain Barrier Delivery of Checkpoint Blockade Antibody for Immunotherapy of Glioma. ACS Nano 2022, 16, 664–674. [Google Scholar] [CrossRef]
- Todo, T.; Ito, H.; Ino, Y.; Ohtsu, H.; Ota, Y.; Shibahara, J.; Tanaka, M. Intratumoral Oncolytic Herpes Virus G47∆ for Residual or Recurrent Glioblastoma: A Phase 2 Trial. Nat. Med. 2022, 28, 1630–1639. [Google Scholar] [CrossRef]
- Stupp, R.; Wong, E.T.; Kanner, A.A.; Steinberg, D.; Engelhard, H.; Heidecke, V.; Kirson, E.D.; Taillibert, S.; Liebermann, F.; Dbalý, V.; et al. NovoTTF-100A versus Physician’s Choice Chemotherapy in Recurrent Glioblastoma: A Randomised Phase III Trial of a Novel Treatment Modality. Eur. J. Cancer 2012, 48, 2192–2202. [Google Scholar] [CrossRef]
- Wenger, C.; Miranda, P.C.; Salvador, R.; Thielscher, A.; Bomzon, Z.; Giladi, M.; Mrugala, M.M.; Korshoej, A.R. A Review on Tumor-Treating Fields (TTFields): Clinical Implications Inferred from Computational Modeling. IEEE Rev. Biomed. Eng. 2018, 11, 195–207. [Google Scholar] [CrossRef]
- Kirson, E.D.; Dbalý, V.; Tovaryš, F.; Vymazal, J.; Soustiel, J.F.; Itzhaki, A.; Mordechovich, D.; Steinberg-Shapira, S.; Gurvich, Z.; Schneiderman, R.; et al. Alternating Electric Fields Arrest Cell Proliferation in Animal Tumor Models and Human Brain Tumors. Proc. Natl. Acad. Sci. USA 2007, 104, 10152–10157. [Google Scholar] [CrossRef] [PubMed]
- Lantos, J.; Young, R.J.; Miranda, P.C.; Wenger, C.; Wong, E.T. TTFields Therapy: Preclinical and Clinical Data, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 9780128011683. [Google Scholar]
- Ghiaseddin, A.P.; Shin, D.; Melnick, K.; Tran, D.D. Tumor Treating Fields in the Management of Patients with Malignant Gliomas. Curr. Treat. Options Oncol. 2020, 21. [Google Scholar] [CrossRef] [PubMed]
- Alphandéry, E. Glioblastoma Treatments: An Account of Recent Industrial Developments. Front. Pharm. 2018, 9, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Xu, S.; Dai, G.; Xiao, Z.; Chen, L.; Liu, Z. Tumor Treating Fields for High-Grade Gliomas. Biomed. Pharmacother. 2020, 127, 110193. [Google Scholar] [CrossRef]
- Wenger, C.; Giladi, M.; Bomzon, Z.; Salvador, R.; Basser, P.J.; Miranda, P.C. Modeling Tumor Treating Fields (TTFields) Application in Single Cells during Metaphase and Telophase. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Milan, Italy, 25–29 August 2015; pp. 6892–6895. [Google Scholar] [CrossRef]
- Wenger, C.; Salvador, R.; Basser, P.J.; Miranda, P.C. Modeling Tumor Treating Fields (TTFields) Application within a Realistic Human Head Model. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Milan, Italy, 25–29 August 2015; pp. 2555–2558. [Google Scholar] [CrossRef]
- Wenger, C.; Salvador, R.; Basser, P.J.; Miranda, P.C. Improving Tumor Treating Fields Treatment Efficacy in Patients with Glioblastoma Using Personalized Array Layouts. Int. J. Radiat. Oncol. Biol. Phys. 2016, 94, 1137–1143. [Google Scholar] [CrossRef]
- Gentilal, N.; Salvador, R.; Miranda, P.C. Temperature Control in TTFields Therapy of GBM: Impact on the Duty Cycle and Tissue Temperature. Phys. Med. Biol. 2019, 64. [Google Scholar] [CrossRef]
- Bastiancich, C.; da Silva, A.; Estève, M.-A. Photothermal Therapy for the Treatment of Glioblastoma: Potential and Preclinical Challenges. Front. Oncol. 2021, 10. [Google Scholar] [CrossRef]
- Cramer, S.W.; Chen, C.C. Photodynamic Therapy for the Treatment of Glioblastoma. Front. Surg. 2020, 6, 100161. [Google Scholar] [CrossRef]
- Gupta, R.; Sharma, D. Manganese-Doped Magnetic Nanoclusters for Hyperthermia and Photothermal Glioblastoma Therapy. ACS Appl. Nano Mater. 2020, 3, 2026–2037. [Google Scholar] [CrossRef]
- Pivetta, T.P.; Botteon, C.E.A.; Ribeiro, P.A.; Marcato, P.D.; Raposo, M. Nanoparticle Systems for Cancer Phototherapy: An Overview. Nanomaterials 2021, 11, 3132. [Google Scholar] [CrossRef]
- Amaral, M.; Charmier, A.J.; Afonso, R.A.; Catarino, J.; Faísca, P.; Carvalho, L.; Ascensão, L.; Coelho, J.M.P.; Manuela Gaspar, M.; Reis, C.P. Gold-Based Nanoplataform for the Treatment of Anaplastic Thyroid Carcinoma: A Step Forward. Cancers 2021, 13, 1242. [Google Scholar] [CrossRef]
- Kumari, S.; Sharma, N.; Sahi, S.V. Advances in Cancer Therapeutics: Conventional Thermal Therapy to Nanotechnology-Based Photothermal Therapy. Pharmaceutics 2021, 13, 1174. [Google Scholar] [CrossRef]
- Anand, S.; Chan, T.; Hasan, T.; Maytin, E. Current Prospects for Treatment of Solid Tumors via Photodynamic, Photothermal, or Ionizing Radiation Therapies Combined with Immune Checkpoint Inhibition (A Review). Pharmaceuticals 2021, 14, 447. [Google Scholar] [CrossRef]
- Ferreira-Gonçalves, T.; Gaspar, M.M.; Coelho, J.M.P.; Marques, V.; Viana, A.S.; Ascensão, L.; Carvalho, L.; Rodrigues, C.M.P.; Ferreira, H.A.; Ferreira, D.; et al. The Role of Rosmarinic Acid on the Bioproduction of Gold Nanoparticles as Part of a Photothermal Approach for Breast Cancer Treatment. Biomolecules 2022, 12, 71. [Google Scholar] [CrossRef]
- Ferreira-Gonçalves, T.; Iglesias-Mejuto, A.; Linhares, T.; Coelho, J.M.P.; Vieira, P.; Faísca, P.; Catarino, J.; Pinto, P.; Ferreira, D.; Ferreira, H.A.; et al. Biological Thermal Performance of Organic and Inorganic Aerogels as Patches for Photothermal Therapy. Gels 2022, 8, 485. [Google Scholar] [CrossRef]
- Kamath, A.A.; Friedman, D.D.; Akbari, S.H.A.; Kim, A.H.; Tao, Y.; Luo, J.; Leuthardt, E.C. Glioblastoma Treated with Magnetic Resonance Imaging-Guided Laser Interstitial Thermal Therapy. Neurosurgery 2019, 84, 836–843. [Google Scholar] [CrossRef]
- Patel, P.; Patel, N.v.; Danish, S.F. Intracranial MR-Guided Laser-Induced Thermal Therapy: Single-Center Experience with the Visualase Thermal Therapy System. J. Neurosurg. 2016, 125, 853–860. [Google Scholar] [CrossRef]
- Munoz-Casabella, A.; Alvi, M.A.; Rahman, M.; Burns, T.C.; Brown, D.A. Laser Interstitial Thermal Therapy for Recurrent Glioblastoma: Pooled Analyses of Available Literature. World Neurosurg. 2021, 153, 91–97.e1. [Google Scholar] [CrossRef]
- Montemurro, N.; Anania, Y.; Cagnazzo, F.; Perrini, P. Survival Outcomes in Patients with Recurrent Glioblastoma Treated with Laser Interstitial Thermal Therapy (LITT): A Systematic Review. Clin. Neurol. Neurosurg. 2020, 195, 105942. [Google Scholar] [CrossRef]
- Fadel, H.A.; Haider, S.; Pawloski, J.A.; Zakaria, H.M.; Macki, M.; Bartlett, S.; Schultz, L.; Robin, A.M.; Kalkanis, S.N.; Lee, I.Y. Laser Interstitial Thermal Therapy for First-Line Treatment of Surgically Accessible Recurrent Glioblastoma: Outcomes Compared with a Surgical Cohort. Neurosurgery 2022, 91, 701–709. [Google Scholar] [CrossRef]
- Kumthekar, P. A Phase 0 First-In-Human Study Using NU-0129: A Spherical Nucleic Acid (SNA) Gold Nanoparticle Targeting BCL2L12 in Recurrent Glioblastoma Multiforme or Gliosarcoma Patients. Available online: https://clinicaltrials.gov/ct2/show/record/NCT03020017 (accessed on 28 November 2022).
- Bonan, N.F.; Ledezma, D.K.; Tovar, M.A.; Balakrishnan, P.B.; Fernandes, R. Anti-Fn14-Conjugated Prussian Blue Nanoparticles as a Targeted Photothermal Therapy Agent for Glioblastoma. Nanomaterials 2022, 12, 2645. [Google Scholar] [CrossRef] [PubMed]
- Lopes, J.; Rodrigues, C.M.P.; Gaspar, M.M.; Reis, C.P. How to Treat Melanoma? The Current Status of Innovative Nanotechnological Strategies and the Role of Minimally Invasive Approaches like PTT and PDT. Pharmaceutics 2022, 14, 1817. [Google Scholar] [CrossRef] [PubMed]
- Bartusik-Aebisher, D.; Żołyniak, A.; Barnaś, E.; Machorowska-Pieniążek, A.; Oleś, P.; Kawczyk-Krupka, A.; Aebisher, D. The Use of Photodynamic Therapy in the Treatment of Brain Tumors—A Review of the Literature. Molecules 2022, 27, 6847. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, B.A.; Nazarkovsky, M.; Padilla-Chavarría, I.; Alejandra, E.; Mendivelso, C.; de Mello, H.L.; Nogueira, C.D.S.C.; Dos, R.; Carvalho, S.; Cremona, M.; et al. Novel Scintillating Nanoparticles for Potential Application in Photodynamic Cancer Therapy. Pharmaceutics 2022, 14, 2258. [Google Scholar] [CrossRef]
- Schipmann, S.; Müther, M.; Stögbauer, L.; Zimmer, S.; Brokinkel, B.; Holling, M.; Grauer, O.; Suero Molina, E.; Warneke, N.; Stummer, W. Combination of ALA-Induced Fluorescence-Guided Resection and Intraoperative Open Photodynamic Therapy for Recurrent Glioblastoma: Case Series on a Promising Dual Strategy for Local Tumor Control. J. Neurosurg. 2020, 134, 426–436. [Google Scholar] [CrossRef]
- Maier-Hauff, K.; Rothe, R.; Scholz, R.; Gneveckow, U.; Wust, P.; Thiesen, B.; Feussner, A.; von Deimling, A.; Waldoefner, N.; Felix, R.; et al. Intracranial Thermotherapy Using Magnetic Nanoparticles Combined with External Beam Radiotherapy: Results of a Feasibility Study on Patients with Glioblastoma Multiforme. J. Neurooncol. 2007, 81, 53–60. [Google Scholar] [CrossRef]
- Monnier, C.A.; Burnand, D.; Rothen-Rutishauser, B.; Lattuada, M.; Petri-Fink, A. Magnetoliposomes: Opportunities and Challenges. Eur. J. Nanomed. 2014, 6, 201–215. [Google Scholar] [CrossRef]
- Lal, S.; Verma, J.; van Noorden, C.J.F. Nanoparticles for Hyperthermic Therapy: Synthesis Strategies and Applications in Glioblastoma. Int. J. Nanomed. 2014, 9, 2863. [Google Scholar] [CrossRef]
- Grauer, O.; Jaber, M.; Hess, K.; Weckesser, M.; Schwindt, W.; Maring, S.; Wölfer, J.; Stummer, W. Combined Intracavitary Thermotherapy with Iron Oxide Nanoparticles and Radiotherapy as Local Treatment Modality in Recurrent Glioblastoma Patients. J. Neurooncol. 2019, 141, 83–94. [Google Scholar] [CrossRef]
- Gupta, R.; Sharma, D. Evolution of Magnetic Hyperthermia for Glioblastoma Multiforme Therapy. ACS Chem. Neurosci. 2019, 10, 1157–1172. [Google Scholar] [CrossRef]
- Mahmoudi, K.; Bouras, A.; Bozec, D.; Ivkov, R.; Hadjipanayis, C. Magnetic Hyperthermia Therapy for the Treatment of Glioblastoma: A Review of the Therapy’s History, Efficacy and Application in Humans. Int. J. Hyperth. 2018, 34, 1316–1328. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Wang, Y.; Zhu, W.; Li, G.; Ma, X.; Zhang, Y.; Chen, S.; Tiwari, S.; Shi, K.; et al. Comprehensive Understanding of Magnetic Hyperthermia for Improving Antitumor Therapeutic Efficacy. Theranostics 2020, 10, 3793–3815. [Google Scholar] [CrossRef]
- Minaei, S.E.; Khoei, S.; Khoee, S.; Mahdavi, S.R. Sensitization of Glioblastoma Cancer Cells to Radiotherapy and Magnetic Hyperthermia by Targeted Temozolomide-Loaded Magnetite Tri-Block Copolymer Nanoparticles as a Nanotheranostic Agent. Life Sci. 2022, 306, 120729. [Google Scholar] [CrossRef]
- Basina, G.; Diamantopoulos, G.; Devlin, E.; Psycharis, V.; Alhassan, S.M.; Pissas, M.; Hadjipanayis, G.; Tomou, A.; Bouras, A.; Hadjipanayis, C.; et al. LAPONITE®® Nanodisk-“Decorated” Fe 3 O 4 Nanoparticles: A Biocompatible Nano-Hybrid with Ultrafast Magnetic Hyperthermia and MRI Contrast Agent Ability. J. Mater. Chem. B 2022, 10, 4935–4943. [Google Scholar] [CrossRef]
- Chiocca, E.A.; Lukas, R.V.; Chen, C.C.; Rao, G.; Amidei, C.; Buck, J.Y.; Hadar, N.; Demars, N.A.; Miao, J.; Estupinan, T.; et al. Controlled IL-12 in Combination with a PD-1 Inhibitor Subjects with Recurrent Glioblastoma. J. Clin. Oncol. 2020, 38, 2510. [Google Scholar] [CrossRef]
- Nayak, L.; Molinaro, A.M.; Peters, K.; Clarke, J.L.; Jordan, J.T.; de Groot, J.; Nghiemphu, L.; Kaley, T.; Colman, H.; McCluskey, C.; et al. Randomized Phase II and Biomarker Study of Pembrolizumab plus Bevacizumab versus Pembrolizumab Alone for Patients with Recurrent Glioblastoma. Clin. Cancer Res. 2021, 27, 1048–1057. [Google Scholar] [CrossRef]
- Smith, C.; Lineburg, K.E.; Martins, J.P.; Ambalathingal, G.R.; Neller, M.A.; Morrison, B.; Matthews, K.K.; Rehan, S.; Crooks, P.; Panikkar, A.; et al. Autologous CMV-Specific T Cells Are a Safe Adjuvant Immunotherapy for Primary Glioblastoma Multiforme. J. Clin. Investig. 2020, 130, 6041–6053. [Google Scholar] [CrossRef]
- Duerinck, J.; Schwarze, J.K.; Awada, G.; Tijtgat, J.; Vaeyens, F.; Bertels, C.; Geens, W.; Klein, S.; Seynaeve, L.; Cras, L.; et al. Intracerebral Administration of CTLA-4 and PD-1 Immune Checkpoint Blocking Monoclonal Antibodies in Patients with Recurrent Glioblastoma: A Phase i Clinical Trial. J. Immunother. Cancer 2021, 9, e002296. [Google Scholar] [CrossRef]
- Teh, D.B.L.; Bansal, A.; Chai, C.; Toh, T.B.; Tucker, R.A.J.; Gammad, G.G.L.; Yeo, Y.; Lei, Z.; Zheng, X.; Yang, F.; et al. A Flexi-PEGDA Upconversion Implant for Wireless Brain Photodynamic Therapy. Adv. Mater. 2020, 32, 2001459. [Google Scholar] [CrossRef]
- Abdurashitov, A.; Tuchin, V.; Semyachkina-Glushkovskaya, O. Photodynamic Therapy of Brain Tumors and Novel Optical Coherence Tomography Strategies for in Vivo Monitoring of Cerebral Fluid Dynamics. J. Innov. Opt. Health Sci. 2020, 13, 2030004. [Google Scholar] [CrossRef]
- Singh, A.; Kim, W.; Kim, Y.; Jeong, K.; Kang, C.S.; Kim, Y.S.; Koh, J.; Mahajan, S.D.; Prasad, P.N.; Kim, S. Multifunctional Photonics Nanoparticles for Crossing the Blood–Brain Barrier and Effecting Optically Trackable Brain Theranostics. Adv. Funct. Mater. 2016, 26, 7057–7066. [Google Scholar] [CrossRef] [PubMed]
- Lesueur, P.; Chevalier, F.; El-Habr, E.A.; Junier, M.-P.; Chneiweiss, H.; Castera, L.; Müller, E.; Stefan, D.; Saintigny, Y. Radiosensitization Effect of Talazoparib, a Parp Inhibitor, on Glioblastoma Stem Cells Exposed to Low and High Linear Energy Transfer Radiation. Sci. Rep. 2018, 8, 3664. [Google Scholar] [CrossRef] [PubMed]
- Michelakis, E.D.; Sutendra, G.; Dromparis, P.; Webster, L.; Haromy, A.; Niven, E.; Maguire, C.; Gammer, T.L.; Mackey, J.R.; Fulton, D.; et al. Metabolic Modulation of Glioblastoma with Dichloroacetate. Sci. Transl. Med. 2010, 2. [Google Scholar] [CrossRef] [PubMed]
- Albatany, M.; Li, A.; Meakin, S.; Bartha, R. Dichloroacetate Induced Intracellular Acidification in Glioblastoma: In Vivo Detection Using AACID-CEST MRI at 9.4 Tesla. J. Neurooncol. 2018, 136, 255–262. [Google Scholar] [CrossRef]
- Stakišaitis, D.; Damanskienė, E.; Curkūnavičiūtė, R.; Juknevičienė, M.; Alonso, M.M.; Valančiūtė, A.; Ročka, S.; Balnytė, I. The Effectiveness of Dichloroacetate on Human Glioblastoma Xenograft Growth Depends on Na+ and Mg2+ Cations. Dose-Response 2021, 19, 1559325821990166. [Google Scholar] [CrossRef]
- Albayrak, G.; Konac, E.; Dere, U.A.; Emmez, H. Targeting Cancer Cell Metabolism with Metformin, Dichloroacetate and Memantine in Glioblastoma (GBM). Turk. Neurosurg. 2021, 31, 233–237. [Google Scholar] [CrossRef]
- Singh, A.; Lim, C.-K.; Lee, Y.-D.; Maeng, J.; Lee, S.; Koh, J.; Kim, S. Tuning Solid-State Fluorescence to the Near-Infrared: A Combinatorial Approach to Discovering Molecular Nanoprobes for Biomedical Imaging. ACS Appl. Mater. Interfaces 2013, 5, 8881–8888. [Google Scholar] [CrossRef]
Clinical Trials | ||
---|---|---|
Materials/Technique | Main Outcomes | Ref. |
Proton therapy (PT) X-ray radiotherapy (XRT) | Males and individuals treated with PT had lower incidence of radiation-induced grade 3+ lymphopenia (G3 + L) (15 and 14%, respectively) versus X-ray radiotherapy (XRT) (39%). Individuals treated with PT had lower a whole-brain mean dose (20.1 ± 5.7 Gy) compared to XRT (27.0 ± 6.1 Gy). | [93] |
Intensity-modulated radiotherapy (IMRT) Photon therapy (PT) | No statistical difference in OS (median 21.2 months in IMRT vs. 24.5 months in PT), PFS (8.9 months in IMRT vs. 6.6 months in PT), or rates of deterioration between the two arms at 6 months. Reduction in mean number of toxicities (1.15 IMRT vs. 0.35 PT) and patient-reported fatigue (58% IMRT vs. 24% PT). | [94] |
Ofranergene obadenovec (VB-111) + Bevacizumab Bevacizumab | No statistically significant improvement in OS was observed in recurrent GBM in VB-111 + bevacizumab versus bevacizumab monotherapy. Higher rate adverse events in the combination arm (67% vs. 40%). | [102] |
Nivolumab Bevacizumab | Median OS was comparable between nivolumab (9.8 months) and bevacizumab (10 months). Safety profile of nivolumab in patients with glioblastoma was consistent with that in other tumour types. | [103] |
Oncolytic herpes virus G47∆ | Median OS was 20.2 months and PFS was 4.7 months. All patients suffered from safe adverse effects related to immune responses. | [106] |
Spherical nucleic acid (SNA) gold nanoparticles (NU-0129) | NU-0129 was found to reach the tumour, incorporate into glioma cells, and induce reduction in BCL2L12 protein expression. Four out of eight patients experienced adverse effects related to NU-0129, but there were no serious adverse effects. | [132] |
Ad-RTS-hIL-12 (Ad) Veledimex (V) Nivolumab (nivo) | Treatment induced pseudoprogression with reduction of tumour size. Ad + V monotherapy increased peripheral T cells, unlike nivo monotherapy. Adverse effects consistent with their previous studies of Ad + V, being manageable and reversible. No OS data published yet. | [147] |
Pembrolizumab Bevacizumab | Monotherapy and combination therapy were well tolerated. Pembrolizumab was ineffective for GBM treatment both as monotherapy and when combined with bevacizumab. OS below 11 months for both cohorts. | [148] |
In vitro-expanded autologous CMV-specific T cells | No evidence of toxicity related to adoptive cell therapy (ACT). 10 of 25 patients alive at follow-up, 5 of which were progression-free. Median OS 21 months and PFS 10 months, increased to median 23 OS and 14 PFS if treated before recurrence. | [149] |
Ipilimumab (IPI) Nivolumab (nivo) | Infrequent and mild immune-related adverse effects. Median PFS of 11.7 weeks and OS 38 weeks (<10 months). Treatment after maximal safe resection of recurrent GBM was safe, and increased OS. | [150] |
Additional Developments | ||
---|---|---|
Materials | Main Outcomes | Ref. |
Core: poly(ethylene glycol) diacrylate (PEGDA) + Lanthanide-Silica Upconversion nanoparticles (UCNPs) Surface: fluorinated ethylene propylene (FEP) | Implants exhibited upconversion behaviour even when implanted in synthetic tissue. Increased apoptosis marker production (ROS and caspase 3/7) during PDT. Transdermal (wireless) capabilities confirmed on mouse model and on macaque brain. | [151] |
PDT induced opening of the blood–brain barrier permeability (Laser: 635 nm 10–40 J/cm2, 40–100 mV) | PDT can impair brain fluid drainage/promote leakage and oedema. The meningeal lymphatic system is recruited when the BBB is opened. Managing this can allow for PDT procedures with reduced oedema. Optical coherence tomography (OCT) can be used to monitor drainage. | [152] |
Pluronic (F-127) + curcumin (Cur) and/or CbV Theranostic photonic nanoparticles (TPNs) | Efficient BBB crossing of cur and CbV, attributed to the delivery by Pluronic-based TPNs. Efficient brain delivery and preferential targeting of GBM in a mouse model. 9-fold reduction of GBM proliferation and 1800-fold reduction of dose compared to free Cur. GBM regression. | [153] |
Talazoparib, a PARP inhibitor (PARPi) TMZ | PARPi + TMZ + 4 Gy caused 36,6% cell cycle arrest (G2/M transition) at 72 h. This combination also obtained greater reduction of cell proliferation, and eliminated up to 97% of GSCs. Talazoparib achieved comparable or higher radiosensitization compared to other PARPis. | [154] |
Dichloroacetate (DCA) | DCA increased mitochondrial ROS, induced apoptosis in GBM and GSCs, and depolarized mitochondria both in vitro and in vivo. Maximum dose (reversible neuropathy) induced no hematological, hepatic, renal, or cardiac toxicity. | [155] |
DCA | DCA injection increased amine and amide concentration-independent detection (AACID) activity, corresponding to reduced intracellular pH (pHi). A single dose of DCA (200 mg/kg) was enough of a pharmacological challenge to reduce pHi. | [156] |
NaDCA MgDCA | In vivo treatment with both NaDCA and MgDCA reduced tumour invasion. This reduction depended both on the concentration, the cation, and the glioma cell line (U87MG or PBT24). Xenograft growth and tumour vascularization were also dependent on concentration, cation, and cell line. NaDCA monotherapy was successful against the U87MG cell line, while MgDCA outperformed NaDCA against PBT24. These different performances may point towards relevant differences in the cell lines’ biology. | [157] |
Drug combination: Metformin DCA Memantine | All treatment combinations (memantine, DCA, metformin + DCA) induced dose-dependent cytotoxicity in both tested cell lines (T98G and U87MG). The Alzheimer’s disease drug memantine might be used as GBM therapy at lower doses (almost 10 times lower) than metformin. Clinical trials are necessary to validate its viability. | [158] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cruz, N.; Herculano-Carvalho, M.; Roque, D.; Faria, C.C.; Cascão, R.; Ferreira, H.A.; Reis, C.P.; Matela, N. Highlighted Advances in Therapies for Difficult-To-Treat Brain Tumours Such as Glioblastoma. Pharmaceutics 2023, 15, 928. https://doi.org/10.3390/pharmaceutics15030928
Cruz N, Herculano-Carvalho M, Roque D, Faria CC, Cascão R, Ferreira HA, Reis CP, Matela N. Highlighted Advances in Therapies for Difficult-To-Treat Brain Tumours Such as Glioblastoma. Pharmaceutics. 2023; 15(3):928. https://doi.org/10.3390/pharmaceutics15030928
Chicago/Turabian StyleCruz, Nuno, Manuel Herculano-Carvalho, Diogo Roque, Cláudia C. Faria, Rita Cascão, Hugo Alexandre Ferreira, Catarina Pinto Reis, and Nuno Matela. 2023. "Highlighted Advances in Therapies for Difficult-To-Treat Brain Tumours Such as Glioblastoma" Pharmaceutics 15, no. 3: 928. https://doi.org/10.3390/pharmaceutics15030928
APA StyleCruz, N., Herculano-Carvalho, M., Roque, D., Faria, C. C., Cascão, R., Ferreira, H. A., Reis, C. P., & Matela, N. (2023). Highlighted Advances in Therapies for Difficult-To-Treat Brain Tumours Such as Glioblastoma. Pharmaceutics, 15(3), 928. https://doi.org/10.3390/pharmaceutics15030928