Pharmacologic Management of Monogenic and Very Early Onset Inflammatory Bowel Diseases
Abstract
:1. Introduction
2. Methods
3. Monogenic Inflammatory Bowel Diseases
4. Diagnosing Monogenic Inflammatory Bowel Disease
5. Targeted Therapies for Monogenic IBD
5.1. Anti-TNF Antibodies
5.1.1. Pharmacologic Considerations and Therapeutic Drug Monitoring for Anti-TNFα Therapy
5.1.2. Time to Therapeutic Effect
5.2. Vedolizumab
5.2.1. Pharmacologic Considerations and Therapeutic Drug Monitoring for Vedolizumab
5.2.2. Time to Therapeutic Effect
5.3. Ustekinumab
Pharmacologic Considerations and Therapeutic Drug Monitoring for Ustekinumab
5.4. Janus Kinase Inhibitors
Pharmacologic Considerations and Therapeutic Drug Monitoring for JAK Inhibitors
5.5. IL-1 Antagonists
Pharmacologic Considerations and Therapeutic Drug Monitoring for IL-1 Inhibitors
5.6. Abatacept
Pharmacologic Considerations and Therapeutic Drug Monitoring for Abatacept
5.7. IL-18 Antagonists
6. Empiric Therapies
6.1. Immunomodulators
6.1.1. Pharmacologic Considerations and Therapeutic Drug Monitoring for Immunomodulators
6.1.2. Time to Therapeutic Effect
6.2. Calcineurin Inhibitors
6.2.1. Pharmacologic Considerations and Therapeutic Drug Monitoring for Calcineurin Inhibitors
6.2.2. Time to Therapeutic Effect
7. Non-Pharmacologic Therapies
8. Conclusions
Funding
Conflicts of Interest
References
- Uhlig, H.H.; Schwerd, T.; Koletzko, S.; Shah, N.; Kammermeier, J.; Elkadri, A.; Ouahed, J.; Wilson, D.C.; Travis, S.P.; Turner, D.; et al. The diagnostic approach to monogenic very early onset inflammatory bowel disease. Gastroenterology 2014, 147, 990–1007.e3. [Google Scholar] [CrossRef] [Green Version]
- Worthey, E.A.; Mayer, A.N.; Syverson, G.D.; Helbling, D.; Bonacci, B.B.; Decker, B.; Serpe, J.M.; Dasu, T.; Tschannen, M.R.; Veith, R.L.; et al. Making a definitive diagnosis: Successful clinical application of whole exome sequencing in a child with intractable inflammatory bowel disease. Genet. Med. 2011, 13, 255–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ouahed, J.; Spencer, E.; Kotlarz, D.; Shouval, D.S.; Kowalik, M.; Peng, K.; Field, M.; Grushkin-Lerner, L.; Pai, S.Y.; Bousvaros, A.; et al. Very Early Onset Inflammatory Bowel Disease: A Clinical Approach With a Focus on the Role of Genetics and Underlying Immune Deficiencies. Inflamm. Bowel Dis. 2020, 26, 820–842. [Google Scholar] [CrossRef] [PubMed]
- Charbit-Henrion, F.; Parlato, M.; Hanein, S.; Duclaux-Loras, R.; Nowak, J.; Begue, B.; Rakotobe, S.; Bruneau, J.; Fourrage, C.; Alibeu, O.; et al. Diagnostic Yield of Next-generation Sequencing in Very Early-onset Inflammatory Bowel Diseases: A Multicentre Study. J. Crohns Colitis 2018, 12, 1104–1112. [Google Scholar] [CrossRef] [PubMed]
- Benchimol, E.I.; Fortinsky, K.J.; Gozdyra, P.; Van den Heuvel, M.; Van Limbergen, J.; Griffiths, A.M. Epidemiology of pediatric inflammatory bowel disease: A systematic review of international trends. Inflamm. Bowel Dis. 2011, 17, 423–439. [Google Scholar] [CrossRef]
- Sykora, J.; Pomahacova, R.; Kreslova, M.; Cvalinova, D.; Stych, P.; Schwarz, J. Current global trends in the incidence of pediatric-onset inflammatory bowel disease. World J. Gastroenterol. 2018, 24, 2741–2763. [Google Scholar] [CrossRef]
- Azabdaftari, A.; Jones, K.D.J.; Kammermeier, J.; Uhlig, H.H. Monogenic inflammatory bowel disease-genetic variants, functional mechanisms and personalised medicine in clinical practice. Hum. Genet. 2022. [Google Scholar] [CrossRef]
- Bolton, C.; Smillie, C.S.; Pandey, S.; Elmentaite, R.; Wei, G.; Argmann, C.; Aschenbrenner, D.; James, K.R.; McGovern, D.P.B.; Macchi, M.; et al. An Integrated Taxonomy for Monogenic Inflammatory Bowel Disease. Gastroenterology 2022, 162, 859–876. [Google Scholar] [CrossRef]
- Conrad, M.A.; Kelsen, J.R. Genomic and Immunologic Drivers of Very Early-Onset Inflammatory Bowel Disease. Pediatr. Dev. Pathol. 2019, 22, 183–193. [Google Scholar] [CrossRef]
- Kelsen, J.R.; Sullivan, K.E.; Rabizadeh, S.; Singh, N.; Snapper, S.; Elkadri, A.; Grossman, A.B. North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition Position Paper on the Evaluation and Management for Patients With Very Early-onset Inflammatory Bowel Disease. J. Pediatr. Gastroenterol. Nutr. 2020, 70, 389–403. [Google Scholar] [CrossRef]
- Levine, A.E.; Zheng, H.B.; Suskind, D.L. Linking Genetic Diagnosis to Therapeutic Approach in Very Early Onset Inflammatory Bowel Disease: Pharmacologic Considerations. Paediatr. Drugs 2022, 24, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.B.; de la Morena, M.T.; Suskind, D.L. The Growing Need to Understand Very Early Onset Inflammatory Bowel Disease. Front. Immunol. 2021, 12, 675186. [Google Scholar] [CrossRef] [PubMed]
- Schappi, M.G.; Smith, V.V.; Goldblatt, D.; Lindley, K.J.; Milla, P.J. Colitis in chronic granulomatous disease. Arch. Dis. Child. 2001, 84, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Alimchandani, M.; Lai, J.P.; Aung, P.P.; Khangura, S.; Kamal, N.; Gallin, J.I.; Holland, S.M.; Malech, H.L.; Heller, T.; Miettinen, M.; et al. Gastrointestinal histopathology in chronic granulomatous disease: A study of 87 patients. Am. J. Surg. Pathol. 2013, 37, 1365–1372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Agata, I.D.; Paradis, K.; Chad, Z.; Bonny, Y.; Seidman, E. Leucocyte adhesion deficiency presenting as a chronic ileocolitis. Gut 1996, 39, 605–608. [Google Scholar] [CrossRef] [PubMed]
- Uzel, G.; Kleiner, D.E.; Kuhns, D.B.; Holland, S.M. Dysfunctional LAD-1 neutrophils and colitis. Gastroenterology 2001, 121, 958–964. [Google Scholar] [CrossRef]
- van de Vijver, E.; Maddalena, A.; Sanal, O.; Holland, S.M.; Uzel, G.; Madkaikar, M.; de Boer, M.; van Leeuwen, K.; Koker, M.Y.; Parvaneh, N.; et al. Hematologically important mutations: Leukocyte adhesion deficiency (first update). Blood Cells Mol. Dis. 2012, 48, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Roifman, C.M.; Zhang, J.; Atkinson, A.; Grunebaum, E.; Mandel, K. Adenosine deaminase deficiency can present with features of Omenn syndrome. J. Allergy Clin. Immunol. 2008, 121, 1056–1058. [Google Scholar] [CrossRef]
- Rohr, J.; Pannicke, U.; Doring, M.; Schmitt-Graeff, A.; Wiech, E.; Busch, A.; Speckmann, C.; Muller, I.; Lang, P.; Handgretinger, R.; et al. Chronic inflammatory bowel disease as key manifestation of atypical ARTEMIS deficiency. J. Clin. Immunol. 2010, 30, 314–320. [Google Scholar] [CrossRef]
- Grunebaum, E.; Bates, A.; Roifman, C.M. Omenn syndrome is associated with mutations in DNA ligase IV. J. Allergy Clin. Immunol. 2008, 122, 1219–1220. [Google Scholar] [CrossRef]
- Chan, A.Y.; Punwani, D.; Kadlecek, T.A.; Cowan, M.J.; Olson, J.L.; Mathes, E.F.; Sunderam, U.; Fu, S.M.; Srinivasan, R.; Kuriyan, J.; et al. A novel human autoimmune syndrome caused by combined hypomorphic and activating mutations in ZAP-70. J. Exp. Med. 2016, 213, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, N.; Matsumoto, K.; Saito, H.; Nanki, T.; Miyasaka, N.; Kobata, T.; Azuma, M.; Lee, S.K.; Mizutani, S.; Morio, T. Impaired CD4 and CD8 effector function and decreased memory T cell populations in ICOS-deficient patients. J. Immunol. 2009, 182, 5515–5527. [Google Scholar] [CrossRef] [Green Version]
- Catucci, M.; Castiello, M.C.; Pala, F.; Bosticardo, M.; Villa, A. Autoimmunity in wiskott-Aldrich syndrome: An unsolved enigma. Front. Immunol. 2012, 3, 209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maekawa, K.; Yamada, M.; Okura, Y.; Sato, Y.; Yamada, Y.; Kawamura, N.; Ariga, T. X-linked agammaglobulinemia in a 10-year-old boy with a novel non-invariant splice-site mutation in Btk gene. Blood Cells Mol. Dis. 2010, 44, 300–304. [Google Scholar] [CrossRef] [PubMed]
- Bennett, C.L.; Christie, J.; Ramsdell, F.; Brunkow, M.E.; Ferguson, P.J.; Whitesell, L.; Kelly, T.E.; Saulsbury, F.T.; Chance, P.F.; Ochs, H.D. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet. 2001, 27, 20–21. [Google Scholar] [CrossRef]
- Barzaghi, F.; Passerini, L.; Bacchetta, R. Immune dysregulation, polyendocrinopathy, enteropathy, x-linked syndrome: A paradigm of immunodeficiency with autoimmunity. Front. Immunol. 2012, 3, 211. [Google Scholar] [CrossRef] [Green Version]
- Zeissig, S.; Petersen, B.S.; Tomczak, M.; Melum, E.; Huc-Claustre, E.; Dougan, S.K.; Laerdahl, J.K.; Stade, B.; Forster, M.; Schreiber, S.; et al. Early-onset Crohn’s disease and autoimmunity associated with a variant in CTLA-4. Gut 2015, 64, 1889–1897. [Google Scholar] [CrossRef]
- Lopez-Herrera, G.; Tampella, G.; Pan-Hammarstrom, Q.; Herholz, P.; Trujillo-Vargas, C.M.; Phadwal, K.; Simon, A.K.; Moutschen, M.; Etzioni, A.; Mory, A.; et al. Deleterious mutations in LRBA are associated with a syndrome of immune deficiency and autoimmunity. Am. J. Hum. Genet. 2012, 90, 986–1001. [Google Scholar] [CrossRef] [Green Version]
- Gambineri, E.; Ciullini Mannurita, S.; Hagin, D.; Vignoli, M.; Anover-Sombke, S.; DeBoer, S.; Segundo, G.R.S.; Allenspach, E.J.; Favre, C.; Ochs, H.D.; et al. Clinical, Immunological, and Molecular Heterogeneity of 173 Patients With the Phenotype of Immune Dysregulation, Polyendocrinopathy, Enteropathy, X-Linked (IPEX) Syndrome. Front. Immunol. 2018, 9, 2411. [Google Scholar] [CrossRef]
- Caudy, A.A.; Reddy, S.T.; Chatila, T.; Atkinson, J.P.; Verbsky, J.W. CD25 deficiency causes an immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like syndrome, and defective IL-10 expression from CD4 lymphocytes. J. Allergy Clin. Immunol. 2007, 119, 482–487. [Google Scholar] [CrossRef] [PubMed]
- Latour, S.; Aguilar, C. XIAP deficiency syndrome in humans. Semin. Cell Dev. Biol. 2015, 39, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, C.; Latour, S. X-linked inhibitor of apoptosis protein deficiency: More than an X-linked lymphoproliferative syndrome. J. Clin. Immunol. 2015, 35, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Glocker, E.O.; Frede, N.; Perro, M.; Sebire, N.; Elawad, M.; Shah, N.; Grimbacher, B. Infant colitis--it’s in the genes. Lancet 2010, 376, 1272. [Google Scholar] [CrossRef] [PubMed]
- Glocker, E.O.; Kotlarz, D.; Boztug, K.; Gertz, E.M.; Schaffer, A.A.; Noyan, F.; Perro, M.; Diestelhorst, J.; Allroth, A.; Murugan, D.; et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N. Engl. J. Med. 2009, 361, 2033–2045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neven, B.; Mamessier, E.; Bruneau, J.; Kaltenbach, S.; Kotlarz, D.; Suarez, F.; Masliah-Planchon, J.; Billot, K.; Canioni, D.; Frange, P.; et al. A Mendelian predisposition to B-cell lymphoma caused by IL-10R deficiency. Blood 2013, 122, 3713–3722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conrad, M.A.; Carreon, C.K.; Dawany, N.; Russo, P.; Kelsen, J.R. Distinct Histopathological Features at Diagnosis of Very Early Onset Inflammatory Bowel Disease. J. Crohns Colitis 2019, 13, 615–625. [Google Scholar] [CrossRef]
- Nambu, R.; Muise, A.M. Advanced Understanding of Monogenic Inflammatory Bowel Disease. Front. Pediatr. 2020, 8, 618918. [Google Scholar] [CrossRef]
- Voskuil, M.D.; Spekhorst, L.M.; van der Sloot, K.W.J.; Jansen, B.H.; Dijkstra, G.; van der Woude, C.J.; Hoentjen, F.; Pierik, M.J.; van der Meulen, A.E.; de Boer, N.K.H.; et al. Genetic Risk Scores Identify Genetic Aetiology of Inflammatory Bowel Disease Phenotypes. J. Crohns Colitis 2021, 15, 930–937. [Google Scholar] [CrossRef]
- Gettler, K.; Levantovsky, R.; Moscati, A.; Giri, M.; Wu, Y.; Hsu, N.Y.; Chuang, L.S.; Sazonovs, A.; Venkateswaran, S.; Korie, U.; et al. Common and Rare Variant Prediction and Penetrance of IBD in a Large, Multi-ethnic, Health System-based Biobank Cohort. Gastroenterology 2021, 160, 1546–1557. [Google Scholar] [CrossRef]
- Kelsen, J.R.; Conrad, M.A.; Dawany, N.; Patel, T.; Shraim, R.; Merz, A.; Maurer, K.; Sullivan, K.E.; Devoto, M. The Unique Disease Course of Children with Very Early onset-Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2020, 26, 909–918. [Google Scholar] [CrossRef]
- Castagnoli, R.; Delmonte, O.M.; Calzoni, E.; Notarangelo, L.D. Hematopoietic Stem Cell Transplantation in Primary Immunodeficiency Diseases: Current Status and Future Perspectives. Front. Pediatr. 2019, 7, 295. [Google Scholar] [CrossRef] [Green Version]
- Fusco, F.; Pescatore, A.; Conte, M.I.; Mirabelli, P.; Paciolla, M.; Esposito, E.; Lioi, M.B.; Ursini, M.V. EDA-ID and IP, two faces of the same coin: How the same IKBKG/NEMO mutation affecting the NF-kappaB pathway can cause immunodeficiency and/or inflammation. Int. Rev. Immunol. 2015, 34, 445–459. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, K.J.; Parisi, X.; Shelman, N.R.; Merideth, M.A.; Introne, W.J.; Heller, T.; Gahl, W.A.; Malicdan, M.C.V.; Gochuico, B.R. Inflammatory bowel disease in Hermansky-Pudlak syndrome: A retrospective single-centre cohort study. J. Intern. Med. 2021, 290, 129–140. [Google Scholar] [CrossRef]
- Mizukami, T.; Obara, M.; Nishikomori, R.; Kawai, T.; Tahara, Y.; Sameshima, N.; Marutsuka, K.; Nakase, H.; Kimura, N.; Heike, T.; et al. Successful treatment with infliximab for inflammatory colitis in a patient with X-linked anhidrotic ectodermal dysplasia with immunodeficiency. J. Clin. Immunol. 2012, 32, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, J.; Mizuochi, T.; Uchida, T.; Takaki, Y.; Konishi, K.I.; Joo, M.; Takahashi, Y.; Yoshioka, S.; Kusano, H.; Sasahara, Y.; et al. Infantile-onset inflammatory bowel disease in a patient with Hermansky-Pudlak syndrome: A case report. BMC Gastroenterol. 2019, 19, 9. [Google Scholar] [CrossRef] [Green Version]
- Boschetti, G.; Sarfati, M.; Fabien, N.; Flourie, B.; Lachaux, A.; Nancey, S.; Coury, F. Infliximab induces clinical resolution of sacroiliitis that coincides with increased circulating FOXP3(+) T cells in a patient with IPEX syndrome. Jt. Bone Spine 2020, 87, 483–486. [Google Scholar] [CrossRef]
- Uzel, G.; Orange, J.S.; Poliak, N.; Marciano, B.E.; Heller, T.; Holland, S.M. Complications of tumor necrosis factor-alpha blockade in chronic granulomatous disease-related colitis. Clin. Infect. Dis. 2010, 51, 1429–1434. [Google Scholar] [CrossRef]
- Hyams, J.; Crandall, W.; Kugathasan, S.; Griffiths, A.; Olson, A.; Johanns, J.; Liu, G.; Travers, S.; Heuschkel, R.; Markowitz, J.; et al. Induction and maintenance infliximab therapy for the treatment of moderate-to-severe Crohn’s disease in children. Gastroenterology 2007, 132, 863–873, quiz 1165–1166. [Google Scholar] [CrossRef]
- van Rheenen, P.F.; Aloi, M.; Assa, A.; Bronsky, J.; Escher, J.C.; Fagerberg, U.L.; Gasparetto, M.; Gerasimidis, K.; Griffiths, A.; Henderson, P.; et al. The Medical Management of Paediatric Crohn’s Disease: An ECCO-ESPGHAN Guideline Update. J. Crohns Colitis 2020, 15, 171–194. [Google Scholar] [CrossRef]
- Bolia, R.; Rosenbaum, J.; Schildkraut, V.; Hardikar, W.; Oliver, M.; Cameron, D.; Alex, G. Secondary Loss of Response to Infliximab in Pediatric Crohn Disease: Does It Matter How and When We Start? J. Pediatr. Gastroenterol. Nutr. 2018, 66, 637–640. [Google Scholar] [CrossRef] [PubMed]
- Legeret, C.; Furlano, R.; Kohler, H. Therapy Strategies for Children Suffering from Inflammatory Bowel Disease (IBD)-A Narrative Review. Children 2022, 9, 617. [Google Scholar] [CrossRef] [PubMed]
- Kelsen, J.R.; Grossman, A.B.; Pauly-Hubbard, H.; Gupta, K.; Baldassano, R.N.; Mamula, P. Infliximab therapy in pediatric patients 7 years of age and younger. J. Pediatr. Gastroenterol. Nutr. 2014, 59, 758–762. [Google Scholar] [CrossRef] [Green Version]
- Bramuzzo, M.; Arrigo, S.; Romano, C.; Filardi, M.C.; Lionetti, P.; Agrusti, A.; Dipasquale, V.; Paci, M.; Zuin, G.; Aloi, M.; et al. Efficacy and safety of infliximab in very early onset inflammatory bowel disease: A national comparative retrospective study. United Eur. Gastroenterol. J. 2019, 7, 759–766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Assa, A.; Dorfman, L.; Shouval, D.S.; Shamir, R.; Cohen, S. Therapeutic Drug Monitoring-guided High-dose Infliximab for Infantile-onset Inflammatory Bowel Disease: A Case Series. J. Pediatr. Gastroenterol. Nutr. 2020, 71, 516–520. [Google Scholar] [CrossRef]
- Chi, L.Y.; Zitomersky, N.L.; Liu, E.; Tollefson, S.; Bender-Stern, J.; Naik, S.; Snapper, S.; Bousvaros, A. The Impact of Combination Therapy on Infliximab Levels and Antibodies in Children and Young Adults With Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2018, 24, 1344–1351. [Google Scholar] [CrossRef] [PubMed]
- Colman, R.J.; Lawton, R.C.; Dubinsky, M.C.; Rubin, D.T. Methotrexate for the Treatment of Pediatric Crohn’s Disease: A Systematic Review and Meta-analysis. Inflamm. Bowel Dis. 2018, 24, 2135–2141. [Google Scholar] [CrossRef]
- Aardoom, M.A.; Veereman, G.; de Ridder, L. A Review on the Use of Anti-TNF in Children and Adolescents with Inflammatory Bowel Disease. Int. J. Mol. Sci. 2019, 20, 2529. [Google Scholar] [CrossRef] [Green Version]
- Kolho, K.L. Therapeutic Drug Monitoring and Outcome of Infliximab Therapy in Pediatric Onset Inflammatory Bowel Disease. Front. Pediatr. 2020, 8, 623689. [Google Scholar] [CrossRef]
- Clarkston, K.; Tsai, Y.T.; Jackson, K.; Rosen, M.J.; Denson, L.A.; Minar, P. Development of Infliximab Target Concentrations During Induction in Pediatric Crohn Disease Patients. J. Pediatr. Gastroenterol. Nutr. 2019, 69, 68–74. [Google Scholar] [CrossRef]
- deBruyn, J.C.C.; Jacobson, K.; El-Matary, W.; Wine, E.; Carroll, M.W.; Goedhart, C.; Panaccione, R.; Wrobel, I.T.; Huynh, H.Q. Early Serum Infliximab Levels in Pediatric Ulcerative Colitis. Front. Pediatr. 2021, 9, 668978. [Google Scholar] [CrossRef]
- Adedokun, O.J.; Xu, Z.; Padgett, L.; Blank, M.; Johanns, J.; Griffiths, A.; Ford, J.; Zhou, H.; Guzzo, C.; Davis, H.M.; et al. Pharmacokinetics of infliximab in children with moderate-to-severe ulcerative colitis: Results from a randomized, multicenter, open-label, phase 3 study. Inflamm. Bowel Dis. 2013, 19, 2753–2762. [Google Scholar] [CrossRef] [PubMed]
- Colman, R.J.; Dhaliwal, J.; Rosen, M.J. Predicting Therapeutic Response in Pediatric Ulcerative Colitis-A Journey Towards Precision Medicine. Front. Pediatr. 2021, 9, 634739. [Google Scholar] [CrossRef] [PubMed]
- Rinawi, F.; Ricciuto, A.; Church, P.C.; Frost, K.; Crowley, E.; Walters, T.D.; Griffiths, A.M. Association of Early Postinduction Adalimumab Exposure With Subsequent Clinical and Biomarker Remission in Children with Crohn’s Disease. Inflamm. Bowel Dis. 2021, 27, 1079–1087. [Google Scholar] [CrossRef] [PubMed]
- Vedolizumab Package Insert. 2022. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/125476Orig1s046lbl.pdf (accessed on 10 February 2023).
- Vaughn, B.P.; Yarur, A.J.; Graziano, E.; Campbell, J.P.; Bhattacharya, A.; Lee, J.Y.; Gheysens, K.; Papamichael, K.; Osterman, M.T.; Cheifetz, A.S.; et al. Vedolizumab Serum Trough Concentrations and Response to Dose Escalation in Inflammatory Bowel Disease. J. Clin. Med. 2020, 9, 3142. [Google Scholar] [CrossRef]
- Aardoom, M.A.; Jongsma, M.M.E.; de Vries, A.; Wolthoorn, J.; de Ridder, L.; Escher, J.C. Vedolizumab Trough Levels in Children With Anti-Tumor Necrosis Factor Refractory Inflammatory Bowel Disease. J. Pediatr. Gastroenterol. Nutr. 2020, 71, 501–507. [Google Scholar] [CrossRef]
- Restellini, S.; Afif, W. Update on TDM (Therapeutic Drug Monitoring) with Ustekinumab, Vedolizumab and Tofacitinib in Inflammatory Bowel Disease. J. Clin. Med. 2021, 10, 1242. [Google Scholar] [CrossRef]
- Opréa, A.; Collardeau-Frachon, S.; Heissat, S.; Peretti, N.; Lachaux, A.; Duclaux-Loras, R. Therapeutic approach of very early-onset inflammatory bowel disease in a Loeys-Dietz Syndrome Child. JPGN Rep. 2021, 3, e139. [Google Scholar] [CrossRef]
- Soufflet, N.; Boschetti, G.; Roblin, X.; Cuercq, C.; Williet, N.; Charlois, A.L.; Duclaux-Loras, R.; Danion, P.; Mialon, A.; Faure, M.; et al. Concentrations of Ustekinumab During Induction Therapy Associate With Remission in Patients With Crohn’s Disease. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2019, 17, 2610–2612. [Google Scholar] [CrossRef]
- Adedokun, O.J.; Xu, Z.; Gasink, C.; Jacobstein, D.; Szapary, P.; Johanns, J.; Gao, L.L.; Davis, H.M.; Hanauer, S.B.; Feagan, B.G.; et al. Pharmacokinetics and Exposure Response Relationships of Ustekinumab in Patients With Crohn’s Disease. Gastroenterology 2018, 154, 1660–1671. [Google Scholar] [CrossRef] [Green Version]
- Turner, D.; Ruemmele, F.M.; Orlanski-Meyer, E.; Griffiths, A.M.; de Carpi, J.M.; Bronsky, J.; Veres, G.; Aloi, M.; Strisciuglio, C.; Braegger, C.P.; et al. Management of Paediatric Ulcerative Colitis, Part 2: Acute Severe Colitis-An Evidence-based Consensus Guideline From the European Crohn’s and Colitis Organization and the European Society of Paediatric Gastroenterology, Hepatology and Nutrition. J. Pediatr. Gastroenterol. Nutr. 2018, 67, 292–310. [Google Scholar] [CrossRef]
- Bousvaros, A.; Kirschner, B.S.; Werlin, S.L.; Parker-Hartigan, L.; Daum, F.; Freeman, K.B.; Balint, J.P.; Day, A.S.; Griffiths, A.M.; Zurakowski, D.; et al. Oral tacrolimus treatment of severe colitis in children. J. Pediatr. 2000, 137, 794–799. [Google Scholar] [CrossRef] [PubMed]
- Van Assche, G.; D’Haens, G.; Noman, M.; Vermeire, S.; Hiele, M.; Asnong, K.; Arts, J.; D’Hoore, A.; Penninckx, F.; Rutgeerts, P. Randomized, double-blind comparison of 4 mg/kg versus 2 mg/kg intravenous cyclosporine in severe ulcerative colitis. Gastroenterology 2003, 125, 1025–1031. [Google Scholar] [CrossRef] [PubMed]
- Nakase, H.; Yoshino, T.; Matsuura, M. Role in calcineurin inhibitors for inflammatory bowel disease in the biologics era: When and how to use. Inflamm. Bowel Dis. 2014, 20, 2151–2156. [Google Scholar] [CrossRef]
- Hait, E.J.; Bousvaros, A.; Schuman, M.; Shamberger, R.C.; Lillehei, C.W. Pouch outcomes among children with ulcerative colitis treated with calcineurin inhibitors before ileal pouch anal anastomosis surgery. J. Pediatr. Surg. 2007, 42, 31–34, discussion 34–35. [Google Scholar] [CrossRef] [PubMed]
- Bradley, G.M.; Oliva-Hemker, M. Pediatric ulcerative colitis: Current treatment approaches including role of infliximab. Biologics 2012, 6, 125–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Targan, S.R.; Hanauer, S.B.; van Deventer, S.J.; Mayer, L.; Present, D.H.; Braakman, T.; DeWoody, K.L.; Schaible, T.F.; Rutgeerts, P.J. A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor alpha for Crohn’s disease. Crohn’s Disease cA2 Study Group. N. Engl. J. Med. 1997, 337, 1029–1035. [Google Scholar] [CrossRef] [Green Version]
- Hanauer, S.B.; Feagan, B.G.; Lichtenstein, G.R.; Mayer, L.F.; Schreiber, S.; Colombel, J.F.; Rachmilewitz, D.; Wolf, D.C.; Olson, A.; Bao, W.; et al. Maintenance infliximab for Crohn’s disease: The ACCENT I randomised trial. Lancet 2002, 359, 1541–1549. [Google Scholar] [CrossRef]
- Vasudevan, A.; Gibson, P.R.; van Langenberg, D.R. Time to clinical response and remission for therapeutics in inflammatory bowel diseases: What should the clinician expect, what should patients be told? World J. Gastroenterol. 2017, 23, 6385–6402. [Google Scholar] [CrossRef]
- Rutgeerts, P.; Van Assche, G.; Sandborn, W.J.; Wolf, D.C.; Geboes, K.; Colombel, J.F.; Reinisch, W.; Investigators, E.; Kumar, A.; Lazar, A.; et al. Adalimumab induces and maintains mucosal healing in patients with Crohn’s disease: Data from the EXTEND trial. Gastroenterology 2012, 142, 1102–1111.e2. [Google Scholar] [CrossRef]
- Reinisch, W.; Sandborn, W.J.; Hommes, D.W.; D’Haens, G.; Hanauer, S.; Schreiber, S.; Panaccione, R.; Fedorak, R.N.; Tighe, M.B.; Huang, B.; et al. Adalimumab for induction of clinical remission in moderately to severely active ulcerative colitis: Results of a randomised controlled trial. Gut 2011, 60, 780–787. [Google Scholar] [CrossRef]
- Hyams, J.; Damaraju, L.; Blank, M.; Johanns, J.; Guzzo, C.; Winter, H.S.; Kugathasan, S.; Cohen, S.; Markowitz, J.; Escher, J.C.; et al. Induction and maintenance therapy with infliximab for children with moderate to severe ulcerative colitis. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2012, 10, 391–399.e391. [Google Scholar] [CrossRef]
- Choi, S.Y.; Kang, B. Adalimumab in Pediatric Inflammatory Bowel Disease. Front. Pediatr. 2022, 10, 852580. [Google Scholar] [CrossRef]
- Campbell, N.; Chapdelaine, H. Treatment of chronic granulomatous disease-associated fistulising colitis with vedolizumab. J. Allergy Clin. Immunol. Pract. 2017, 5, 1748–1749. [Google Scholar] [CrossRef] [PubMed]
- Kamal, N.; Marciano, B.; Curtin, B.; Strongin, A.; DeRavin, S.S.; Bousvaros, A.; Koh, C.; Malech, H.L.; Holland, S.M.; Zerbe, C.; et al. The response to vedolizumab in chronic granulomatous disease-related inflammatory bowel disease. Gastroenterol. Rep. 2020, 8, 404–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navarini, A.A.; Hruz, P.; Berger, C.T.; Hou, T.Z.; Schwab, C.; Gabrysch, A.; Higgins, R.; Frede, N.; Padberg Sgier, B.C.; Kampe, O.; et al. Vedolizumab as a successful treatment of CTLA-4-associated autoimmune enterocolitis. J. Allergy Clin. Immunol. 2017, 139, 1043–1046.e5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fabiszewska, S.; Derda, E.; Szymanska, E.; Osiecki, M.; Kierkus, J. Safety and Effectiveness of Vedolizumab for the Treatment of Pediatric Patients with Very Early Onset Inflammatory Bowel Diseases. J. Clin. Med. 2021, 10, 2997. [Google Scholar] [CrossRef]
- Nassar, I.O.; Cheesbrough, J.; Quraishi, M.N.; Sharma, N. Proposed pathway for therapeutic drug monitoring and dose escalation of vedolizumab. Front. Gastroenterol. 2022, 13, 430–435. [Google Scholar] [CrossRef]
- Jagt, J.Z.; Pothof, C.D.; Buiter, H.J.C.; van Limbergen, J.E.; van Wijk, M.P.; Benninga, M.A.; de Boer, N.K.H.; de Meij, T.G.J. Adverse Events of Thiopurine Therapy in Pediatric Inflammatory Bowel Disease and Correlations with Metabolites: A Cohort Study. Dig. Dis. Sci. 2022, 67, 241–251. [Google Scholar] [CrossRef]
- Ooi, C.Y.; Bohane, T.D.; Lee, D.; Naidoo, D.; Day, A.S. Thiopurine metabolite monitoring in paediatric inflammatory bowel disease. Aliment. Pharmacol. Ther. 2007, 25, 941–947. [Google Scholar] [CrossRef]
- Relling, M.V.; Schwab, M.; Whirl-Carrillo, M.; Suarez-Kurtz, G.; Pui, C.H.; Stein, C.M.; Moyer, A.M.; Evans, W.E.; Klein, T.E.; Antillon-Klussmann, F.G.; et al. Clinical Pharmacogenetics Implementation Consortium Guideline for Thiopurine Dosing Based on TPMT and NUDT15 Genotypes: 2018 Update. Clin. Pharmacol. Ther. 2019, 105, 1095–1105. [Google Scholar] [CrossRef] [Green Version]
- Ruemmele, F.M.; Veres, G.; Kolho, K.L.; Griffiths, A.; Levine, A.; Escher, J.C.; Amil Dias, J.; Barabino, A.; Braegger, C.P.; Bronsky, J.; et al. Consensus guidelines of ECCO/ESPGHAN on the medical management of pediatric Crohn’s disease. J. Crohns Colitis 2014, 8, 1179–1207. [Google Scholar] [CrossRef] [Green Version]
- Azathioprine. Glaxo Smith Kline (GSK): Prescribing Information/Insert for Azathioprine. 2022. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/016324s034s035lbl.pdf (accessed on 10 February 2023).
- Zvuloni, M.; Matar, M.; Levi, R.; Shouval, D.S.; Shamir, R.; Assa, A. High anti-TNFalpha Concentrations Are Not Associated With More Adverse Events in Pediatric Inflammatory Bowel Disease. J. Pediatr. Gastroenterol. Nutr. 2021, 73, 717–721. [Google Scholar] [CrossRef] [PubMed]
- Chebli, J.M.; Gaburri, P.D.; Chebli, L.A.; da Rocha Ribeiro, T.C.; Pinto, A.L.; Ambrogini Junior, O.; Damiao, A.O. A guide to prepare patients with inflammatory bowel diseases for anti-TNF-alpha therapy. Med. Sci. Monit. 2014, 20, 487–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ustekinumab Package Insert. 2022. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/125261s161lbl.pdf (accessed on 10 February 2023).
- Prograf (Tacrolimus) Package Insert. 2022. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/050708s054,050709s047,204096s010lbl.pdf (accessed on 10 February 2023).
- Cyclosporine (Neoral) Package Insert. 2022. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/021083s069s070,021110s087s088lbl.pdf (accessed on 10 February 2023).
- Anakinra Package Insert; Sobi Orphan Biovitrum: Stockholm, Sweden, 2012.
- Canakinumab Package Insert; Novartis Pharmaceuticals Corporation: East Hanover, NJ, USA, 2016.
- Abetacept. 2023. Available online: https://online.lexi.com/lco/action/doc/retrieve/docid/pdh_f/521853?cesid=5N3h7bKhudl&searchUrl=%2Flco%2Faction%2Fsearch%3Fq%3Dabatacept%26t%3Dname%26acs%3Dfalse%26acq%3Dabatacept#parentdoc-tab-content (accessed on 10 February 2023).
- Tofacitinib. 2023. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/203214s018lbl.pdf (accessed on 10 February 2023).
- Ruxolitinib Package Insert. 2023. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/202192s023lbl.pdf (accessed on 10 February 2023).
- Meserve, J.; Dulai, P. Predicting Response to Vedolizumab in Inflammatory Bowel Disease. Front. Med. 2020, 7, 76. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.; McDonald, D. Vedolizumab: An Emerging Treatment Option for Pediatric Inflammatory Bowel Disease. J Pediatr Pharmacol. Ther. 2021, 26, 795–801. [Google Scholar] [CrossRef]
- Present, D.H.; Korelitz, B.I.; Wisch, N.; Glass, J.L.; Sachar, D.B.; Pasternack, B.S. Treatment of Crohn’s disease with 6-mercaptopurine. A long-term, randomized, double-blind study. N. Engl. J. Med. 1980, 302, 981–987. [Google Scholar] [CrossRef]
- Kirk, A.P.; Lennard-Jones, J.E. Controlled trial of azathioprine in chronic ulcerative colitis. Br. Med. J. (Clin. Res. Ed.) 1982, 284, 1291–1292. [Google Scholar] [CrossRef] [Green Version]
- Gurram, B.; Patel, A.S. Recent advances in understanding and managing pediatric inflammatory bowel disease. F1000Res 2019, 8. [Google Scholar] [CrossRef] [Green Version]
- Cohen, R.D.; Tsang, J.F.; Hanauer, S.B. Infliximab in Crohn’s disease: First anniversary clinical experience. Am. J. Gastroenterol. 2000, 95, 3469–3477. [Google Scholar] [CrossRef]
- Laharie, D.; Bourreille, A.; Branche, J.; Allez, M.; Bouhnik, Y.; Filippi, J.; Zerbib, F.; Savoye, G.; Nachury, M.; Moreau, J.; et al. Ciclosporin versus infliximab in patients with severe ulcerative colitis refractory to intravenous steroids: A parallel, open-label randomised controlled trial. Lancet 2012, 380, 1909–1915. [Google Scholar] [CrossRef] [Green Version]
- Castro, M.; Papadatou, B.; Ceriati, E.; Knafelz, D.; De Angelis, P.; Ferretti, F.; Gambarara, M.; Diamanti, A.; De Peppo, F.; Rivosecchi, M. Role of cyclosporin in preventing or delaying colectomy in children with severe ulcerative colitis. Langenbecks Arch. Surg. 2007, 392, 161–164. [Google Scholar] [CrossRef]
- Conrad, M.A.; Kelsen, J.R. The Treatment of Pediatric Inflammatory Bowel Disease with Biologic Therapies. Curr. Gastroenterol. Rep. 2020, 22, 36. [Google Scholar] [CrossRef]
- Dayan, J.R.; Dolinger, M.; Benkov, K.; Dunkin, D.; Jossen, J.; Lai, J.; Phan, B.L.; Pittman, N.; Dubinsky, M.C. Real World Experience With Ustekinumab in Children and Young Adults at a Tertiary Care Pediatric Inflammatory Bowel Disease Center. J. Pediatr. Gastroenterol. Nutr. 2019, 69, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Rudra, S.; Shaul, E.; Conrad, M.; Patel, T.; Moore, A.; Dawany, N.; Canavan, M.C.; Sullivan, K.E.; Behrens, E.; Kelsen, J.R. Ruxolitinib: Targeted Approach for Treatment of Autoinflammatory Very Early Onset Inflammatory Bowel Disease. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2022, 20, 1408–1410.e2. [Google Scholar] [CrossRef]
- Parlato, M.; Charbit-Henrion, F.; Abi Nader, E.; Begue, B.; Guegan, N.; Bruneau, J.; Khater, S.; Macintyre, E.; Picard, C.; Frederic, R.L.; et al. Efficacy of Ruxolitinib Therapy in a Patient With Severe Enterocolitis Associated With a STAT3 Gain-of-Function Mutation. Gastroenterology 2019, 156, 1206–1210.e1. [Google Scholar] [CrossRef] [Green Version]
- Casanova, J.L.; Holland, S.M.; Notarangelo, L.D. Inborn errors of human JAKs and STATs. Immunity 2012, 36, 515–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kofoed, E.M.; Hwa, V.; Little, B.; Woods, K.A.; Buckway, C.K.; Tsubaki, J.; Pratt, K.L.; Bezrodnik, L.; Jasper, H.; Tepper, A.; et al. Growth hormone insensitivity associated with a STAT5b mutation. N. Engl. J. Med. 2003, 349, 1139–1147. [Google Scholar] [CrossRef] [PubMed]
- Joosse, M.E.; Charbit-Henrion, F.; Boisgard, R.; Raatgeep, R.H.C.; Lindenbergh-Kortleve, D.J.; Costes, L.M.M.; Nugteren, S.; Guegan, N.; Parlato, M.; Veenbergen, S.; et al. Duplication of the IL2RA locus causes excessive IL-2 signaling and may predispose to very early onset colitis. Mucosal Immunol. 2021, 14, 1172–1182. [Google Scholar] [CrossRef] [PubMed]
- Moore, H.; Dubes, L.; Fusillo, S.; Baldassano, R.; Stein, R. Tofacitinib Therapy in Children and Young Adults With Pediatric-onset Medically Refractory Inflammatory Bowel Disease. J. Pediatr. Gastroenterol. Nutr. 2021, 73, e57–e62. [Google Scholar] [CrossRef]
- O’Shea, J.J.; Gadina, M. Selective Janus kinase inhibitors come of age. Nat. Rev. Rheumatol. 2019, 15, 74–75. [Google Scholar] [CrossRef]
- Magnani, A.; Mahlaoui, N. Managing Inflammatory Manifestations in Patients with Chronic Granulomatous Disease. Paediatr. Drugs 2016, 18, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Pariano, M.; Pieroni, S.; De Luca, A.; Iannitti, R.G.; Borghi, M.; Puccetti, M.; Giovagnoli, S.; Renga, G.; D’Onofrio, F.; Bellet, M.M.; et al. Anakinra Activates Superoxide Dismutase 2 to Mitigate Inflammasome Activity. Int. J. Mol. Sci. 2021, 22, 6531. [Google Scholar] [CrossRef]
- de Luca, A.; Smeekens, S.P.; Casagrande, A.; Iannitti, R.; Conway, K.L.; Gresnigt, M.S.; Begun, J.; Plantinga, T.S.; Joosten, L.A.; van der Meer, J.W.; et al. IL-1 receptor blockade restores autophagy and reduces inflammation in chronic granulomatous disease in mice and in humans. Proc. Natl. Acad. Sci. USA 2014, 111, 3526–3531. [Google Scholar] [CrossRef] [Green Version]
- Hahn, K.J.; Ho, N.; Yockey, L.; Kreuzberg, S.; Daub, J.; Rump, A.; Marciano, B.E.; Quezado, M.; Malech, H.L.; Holland, S.M.; et al. Treatment With Anakinra, a Recombinant IL-1 Receptor Antagonist, Unlikely to Induce Lasting Remission in Patients With CGD Colitis. Am. J. Gastroenterol. 2015, 110, 938–939. [Google Scholar] [CrossRef]
- Peciuliene, S.; Burnyte, B.; Gudaitiene, R.; Rusoniene, S.; Drazdiene, N.; Liubsys, A.; Utkus, A. Perinatal manifestation of mevalonate kinase deficiency and efficacy of anakinra. Pediatr. Rheumatol. Online J. 2016, 14, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campanilho-Marques, R.; Brogan, P.A. Mevalonate kinase deficiency in two sisters with therapeutic response to anakinra: Case report and review of the literature. Clin. Rheumatol. 2014, 33, 1681–1684. [Google Scholar] [CrossRef]
- Shaul, E.; Conrad, M.A.; Dawany, N.; Patel, T.; Canavan, M.C.; Baccarella, A.; Weinbrom, S.; Aleynick, D.; Sullivan, K.E.; Kelsen, J.R. Canakinumab for the treatment of autoinflammatory very early onset- inflammatory bowel disease. Front. Immunol. 2022, 13, 972114. [Google Scholar] [CrossRef] [PubMed]
- Wlazlo, M.; Kierkus, J. Dual Biologic Therapy for the Treatment of Pediatric Inflammatory Bowel Disease: A Review of the Literature. J. Clin. Med. 2022, 11, 2004. [Google Scholar] [CrossRef]
- Goyal, A.; Bass, J. Safety and Efficacy of Combining Biologicals in Children with Inflammatory Bowel Disease. Gastroenterology 2020, 158, s122. [Google Scholar] [CrossRef]
- Kotlarz, D.; Beier, R.; Murugan, D.; Diestelhorst, J.; Jensen, O.; Boztug, K.; Pfeifer, D.; Kreipe, H.; Pfister, E.D.; Baumann, U.; et al. Loss of interleukin-10 signaling and infantile inflammatory bowel disease: Implications for diagnosis and therapy. Gastroenterology 2012, 143, 347–355. [Google Scholar] [CrossRef] [Green Version]
- Shouval, D.S.; Biswas, A.; Kang, Y.H.; Griffith, A.E.; Konnikova, L.; Mascanfroni, I.D.; Redhu, N.S.; Frei, S.M.; Field, M.; Doty, A.L.; et al. Interleukin 1beta Mediates Intestinal Inflammation in Mice and Patients With Interleukin 10 Receptor Deficiency. Gastroenterology 2016, 151, 1100–1104. [Google Scholar] [CrossRef] [Green Version]
- Lo, B.; Zhang, K.; Lu, W.; Zheng, L.; Zhang, Q.; Kanellopoulou, C.; Zhang, Y.; Liu, Z.; Fritz, J.M.; Marsh, R.; et al. AUTOIMMUNE DISEASE. Patients with LRBA deficiency show CTLA4 loss and immune dysregulation responsive to abatacept therapy. Science 2015, 349, 436–440. [Google Scholar] [CrossRef] [Green Version]
- Kiykim, A.; Ogulur, I.; Dursun, E.; Charbonnier, L.M.; Nain, E.; Cekic, S.; Dogruel, D.; Karaca, N.E.; Cogurlu, M.T.; Bilir, O.A.; et al. Abatacept as a Long-Term Targeted Therapy for LRBA Deficiency. J. Allergy Clin. Immunol. Pract. 2019, 7, 2790–2800.e15. [Google Scholar] [CrossRef]
- Kalaidina, E.; Utterson, E.C.; Mokshagundam, D.; He, M.; Shenoy, S.; Cooper, M.A. Case Report: “Primary Immunodeficiency”-Severe Autoimmune Enteropathy in a Pediatric Heart Transplant Recipient Treated With Abatacept and Alemtuzumab. Front. Immunol. 2022, 13, 863218. [Google Scholar] [CrossRef] [PubMed]
- Romberg, N.; Al Moussawi, K.; Nelson-Williams, C.; Stiegler, A.L.; Loring, E.; Choi, M.; Overton, J.; Meffre, E.; Khokha, M.K.; Huttner, A.J.; et al. Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation. Nat. Genet. 2014, 46, 1135–1139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canna, S.W.; de Jesus, A.A.; Gouni, S.; Brooks, S.R.; Marrero, B.; Liu, Y.; DiMattia, M.A.; Zaal, K.J.; Sanchez, G.A.; Kim, H.; et al. An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat. Genet. 2014, 46, 1140–1146. [Google Scholar] [CrossRef] [Green Version]
- Canna, S.W.; Girard, C.; Malle, L.; de Jesus, A.; Romberg, N.; Kelsen, J.; Surrey, L.F.; Russo, P.; Sleight, A.; Schiffrin, E.; et al. Life-threatening NLRC4-associated hyperinflammation successfully treated with IL-18 inhibition. J. Allergy Clin. Immunol. 2017, 139, 1698–1701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bedoui, Y.; Guillot, X.; Selambarom, J.; Guiraud, P.; Giry, C.; Jaffar-Bandjee, M.C.; Ralandison, S.; Gasque, P. Methotrexate an Old Drug with New Tricks. Int. J. Mol. Sci. 2019, 20, 5023. [Google Scholar] [CrossRef] [Green Version]
- Fagbemi, A.; Newman, W.G.; Tangye, S.G.; Hughes, S.M.; Cheesman, E.; Arkwright, P.D. Refractory very early-onset inflammatory bowel disease associated with cytosolic isoleucyl-tRNA synthetase deficiency: A case report. World J. Gastroenterol. 2020, 26, 1841–1846. [Google Scholar] [CrossRef]
- Gerards, A.H.; de Lathouder, S.; de Groot, E.R.; Dijkmans, B.A.; Aarden, L.A. Inhibition of cytokine production by methotrexate. Studies in healthy volunteers and patients with rheumatoid arthritis. Rheumatology 2003, 42, 1189–1196. [Google Scholar] [CrossRef] [Green Version]
- Willot, S.; Noble, A.; Deslandres, C. Methotrexate in the treatment of inflammatory bowel disease: An 8-year retrospective study in a Canadian pediatric IBD center. Inflamm. Bowel Dis. 2011, 17, 2521–2526. [Google Scholar] [CrossRef] [PubMed]
- Walker, R.; Kammermeier, J.; Vora, R.; Mutalib, M. Azathioprine dosing and metabolite measurement in pediatric inflammatory bowel disease: Does one size fit all? Ann. Gastroenterol. 2019, 32, 387–391. [Google Scholar] [CrossRef]
- Grossman, A.B.; Noble, A.J.; Mamula, P.; Baldassano, R.N. Increased dosing requirements for 6-mercaptopurine and azathioprine in inflammatory bowel disease patients six years and younger. Inflamm. Bowel Dis. 2008, 14, 750–755. [Google Scholar] [CrossRef] [PubMed]
- Treem, W.R.; Cohen, J.; Davis, P.M.; Justinich, C.J.; Hyams, J.S. Cyclosporine for the treatment of fulminant ulcerative colitis in children. Immediate response, long-term results, and impact on surgery. Dis. Colon Rectum 1995, 38, 474–479. [Google Scholar] [CrossRef]
- Kino, T.; Hatanaka, H.; Miyata, S.; Inamura, N.; Nishiyama, M.; Yajima, T.; Goto, T.; Okuhara, M.; Kohsaka, M.; Aoki, H.; et al. FK-506, a novel immunosuppressant isolated from a Streptomyces. II. Immunosuppressive effect of FK-506 in vitro. J. Antibiot. 1987, 40, 1256–1265. [Google Scholar] [CrossRef] [PubMed]
- Turner, D. Severe acute ulcerative colitis: The pediatric perspective. Dig. Dis. 2009, 27, 322–326. [Google Scholar] [CrossRef]
- Lekbua, A.; Ouahed, J.; O’Connell, A.E.; Kahn, S.A.; Goldsmith, J.D.; Imamura, T.; Duncan, C.N.; Kelsen, J.R.; Worthey, E.; Snapper, S.B.; et al. Risk-factors Associated With Poor Outcomes in VEO-IBD Secondary to XIAP Deficiency: A Case Report and Literature Review. J. Pediatr. Gastroenterol. Nutr. 2019, 69, e13–e18. [Google Scholar] [CrossRef]
- Hricik, D.E.; Dixit, A.; Knauss, T.C.; Donley, V.; Bartucci, M.R.; Schulak, J.A. Benefits of pre-emptive dose reduction for Sandimmune to Neoral conversion in stable renal transplant recipients. Clin. Transplant. 1998, 12, 575–578. [Google Scholar] [PubMed]
- Miot, C.; Imai, K.; Imai, C.; Mancini, A.J.; Kucuk, Z.Y.; Kawai, T.; Nishikomori, R.; Ito, E.; Pellier, I.; Dupuis Girod, S.; et al. Hematopoietic stem cell transplantation in 29 patients hemizygous for hypomorphic IKBKG/NEMO mutations. Blood 2017, 130, 1456–1467. [Google Scholar] [CrossRef] [Green Version]
- Critch, J.; Day, A.S.; Otley, A.; King-Moore, C.; Teitelbaum, J.E.; Shashidhar, H.; Committee, N.I. Use of enteral nutrition for the control of intestinal inflammation in pediatric Crohn disease. J. Pediatr. Gastroenterol. Nutr. 2012, 54, 298–305. [Google Scholar] [CrossRef] [Green Version]
- Heuschkel, R.B.; Menache, C.C.; Megerian, J.T.; Baird, A.E. Enteral nutrition and corticosteroids in the treatment of acute Crohn’s disease in children. J. Pediatr. Gastroenterol. Nutr. 2000, 31, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Miller, T.L.; Lee, D.; Giefer, M.; Wahbeh, G.; Suskind, D.L. Nutritional Therapy in Very Early-Onset Inflammatory Bowel Disease: A Case Report. Dig. Dis. Sci. 2017, 62, 2196–2200. [Google Scholar] [CrossRef]
- Aloi, M.; Lionetti, P.; Barabino, A.; Guariso, G.; Costa, S.; Fontana, M.; Romano, C.; Lombardi, G.; Miele, E.; Alvisi, P.; et al. Phenotype and disease course of early-onset pediatric inflammatory bowel disease. Inflamm. Bowel Dis. 2014, 20, 597–605. [Google Scholar] [CrossRef] [PubMed]
- Letai, A.; Bhola, P.; Welm, A.L. Functional precision oncology: Testing tumors with drugs to identify vulnerabilities and novel combinations. Cancer Cell 2022, 40, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Borg-Bartolo, S.P.; Boyapati, R.K.; Satsangi, J.; Kalla, R. Precision medicine in inflammatory bowel disease: Concept, progress and challenges. F1000Res 2020, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Type of Disorder | Representative Syndromes | Genes |
---|---|---|
Epithelial cell defects | TTC7A deficiency NEMO deficiency Dystrophic epidermolysis bullosa ADAM-17 deficiency | TTC7A IKBKG COL7A1 ADAM17 |
Phagocytic defects | Chronic granulomatous diseaseLeukocyte adhesion deficiency | CYBA, CYBB, NCF1, NCF2, NCF4 ITGB2 |
Defects of adaptive immunity (T and B cells) | Wiskott-Aldrich syndrome Bruton agammaglobulinemia Loeys-Dietz syndrome Severe Combined Immunodeficiency (SCID) | WAS BTK TGFBR1, TGFBR2 ZAP70, RAG2, 1L-2RG, LIG4, ADA |
T regulatory defects | IPEX IPEX-like syndrome CTLA4 deficiency LRBA deficiency | FOXP3 STAT1, STAT3, JAK1, IL-2RA CTLA4 LRBA |
IL-10 pathway defects | IL-10 IL-10R | IL10 IL10RA, IL10RB |
Hyperinflammatory or autoinflammatory defects | X-linked lymphoproliferative syndrome Hermansky-Pudlak syndrome Mevalonate kinase deficiency | XIAP HPS1, HPS4, HPS6 MVK |
Drug | Timing of Trough Levels | Goal Trough Level (mcg/mL) |
---|---|---|
Infliximab | Induction Phase (with 2nd and 3rd infusions) Maintenance Phase (prior to 4th infusion) | Pediatric General (Maintenance): >5 mcg/mL [49] Pediatric Perianal Fistulizing Disease (Maintenance): >12.7 mcg/mL [58] Pediatric Luminal Crohn’s Disease (Induction): Infusion two and Infusion three: trough level of ≥29 mcg/mL at the 2nd infusion and ≥18 mcg/mL at 3rd infusion were strongly associated with improve outcomes early on in therapy and higher levels during maintenance phase [59] Pediatric Luminal Crohn’s Disease (Induction/Maintenance): ≥25 mcg/mL at infusion two (week 2) and ≥15 mcg/mL at infusion three (week six) were associated with better outcomes [49] Pediatric Ulcerative Colitis (Induction): trough level of ≥33 mcg/mL prior to the second dose was associated with clinical remission at eight weeks of therapy [60]. PK analysis showed that a trough level of ≥41.1 mcg/mL at week eight was associated with higher clinical remission, mucosal healing, and clinical response based on Mayo scoring [61,62] |
Adalimumab | Maintenance Phase (prior to 3rd injection) | Pediatric General (Maintenance): >7.5 mcg/mL for endoscopic healing at week 8 [49] Pediatric Crohn’s Disease (Maintenance): levels of >22.5 mcg/mL at week four and trough levels > 12.5 mcg at week eight were associated with prediction of clinical remission at week 24 [63] |
Vedolizumab [64] | Lack of data to suggest optimal timing | Lack of data to suggest optimal goal trough levels [49] Vedolizumab trough concentrations are associated with clinical response and dose escalation may be required to maintain this response [65] Pediatric IBD: average trough levels of 32.1 mcg/mL at week 2 of therapy and 29.9 mcg/mL at week six were observed in a cohort of 22 pediatric patients.; when delineated by type of IBD, trough levels in patients with UC/IBD-U were higher than in those with CD [66] Dose escalation in adult IBD: vedolizumab trough level of <7.4 mcg/mL at eight weeks of therapy indicated probable response to dose escalation (dosing frequency of up to every four weeks) [65] Adult study (maintenance): trough level of 33–37 mcg/mL at week 6,15–20 mcg/mL after induction (week 14) and 10–15 mcg during maintenance phase was associated with improved clinical outcomes [67] |
Ustekinumab | Lack of data to suggest optimal timing | Single case report in which a VEO-IBD patient achieved clinical remission with a trough level of 6 mcg/mL after 18 months of treatment (therapy started at age seven yrs) [68] Adult studies: In one CD study: trough level of at least 2 mcg/mL at week eight was associated with clinical response to induction by week 16 of therapy [69]
|
Tacrolimus Cyclosporine | Tacrolimus (pediatric): for severe colitis in children: 0.1 mg/kg/dose q12 with goal trough of 10–15 ng/ ml for induction therapy; one study reported decreasing the goal trough to 8–10 ng/dL once frank blood was absent; initial response rate has been shown to be similar to that of cyclosporine treated patients. Some guidelines recommend decreasing to 5–7 ng/mL once remission achieved [71,72] CSA (adult): for UC in an RCT comparing 4 mg/kg/day via continuous infusion (goal trough range of 250–350 ng/mL) to 2 mg/kg/day of IV therapy (goal 150–250 ng/mL): high dose CSA was not shown to have additional clinical benefit compared to lower dosing [73,74] CSA IV (pediatric): goal trough during induction with 2 mg/kg/day continuous infusion: 150–300 ng/mL and once remission achieved, may decrease to 100–200 ng/mL [71] CSA PO (pediatric): goal trough of 150–300 ng/mL for 4–8 mg/kg/day of oral dosing in a retrospective study with 14 children, of which six were treated with CSA [75]; Second study with 28 patients started on 5 mg/kg/day of oral CSA while targeting goal trough levels of 150–250 ng/mL [76] |
Medication | Mechanism of Action | Screening/Baseline Labs | Black Box Warnings/Common ADRs/Monitoring |
---|---|---|---|
Azathioprine 6-MP [89,90,91,92,93] | Purine analog, blocks DNA replication and proliferation of T-cells; possible inhibition of CD28 T-cell co-stimulation | TPMT, NUDT15 prior to starting treatment LFTs, CBC + diff: check at baseline, then every one to two weeks during the first month, then every three months | BBW: Malignancy (hepatosplenic T cell lymphoma) Hematologic (leukopenia, thrombocytopenia, anemia) Pancreatitis (would warrant discontinuation of the drug) Gastrointestinal symptoms (nausea/vomiting), hepatotoxicity |
Infliximab Adalimumab [49,94,95] | Anti- TNFα | TB status, hepatitis B, varicella, vaccination status; creatinine, fecal calprotectin, CRP, LFTs prior to starting treatment | BBW: Malignancy, TB, infection Infliximab: infusion related reactions (cutaneous, psoriatic rash, elevated transaminases, infection Adalimumab: injection site reaction, infection |
Vedolizumab [49,64,88] | Anti-α4β7 integrin; blockade of MAdCAM-1 directed lymphocyte traffic to intestinal Peyer’s patches | TB status prior to therapy initiation, LFTs prior to starting treatment | BBW: N/A Low percentage of ADRs reported which have led to therapy discontinuation (5–10%) ADA production is uncommon Not associated with increased risk of malignancy or opportunistic infections Hypersensitivity reactions may occur during infusion |
Ustekinumab [96] | Anti-IL12 and IL-23 | TB, hepatitis B, hepatitis C, HIV screening prior to starting therapy, CBC with differential, CMP, reversible posterior leuko-encephalopathy syndrome, ADAs | BBW: N/A Hypersensitivity reactions may occur during infusion Increased risk of infection |
Tacrolimus Cyclosporine [71,72,76,97,98] | Suppression of IL-2, TNFα, and interferon-c production in T cells | Serum electrolytes (K, Mag, Phos), LFTs, renal function, blood pressure, glucose: should be checked three timesper week upon therapy initiation. Serum cholesterol recommended before starting treatment with CSA. Frequency of lab checks may be spaced once stability has been shown | BBW for Tacrolimus: increased risk of infection and malignancy BBW for CSA: increased infection, development of neoplasia Tacrolimus: infection, malignancy (lymphoma, skin related cancers) CSA: increased risk of infection, nephrotoxicity, and hypertension. Dosage forms may affect drug concentrations and bioavailability Tacrolimus and CSA: Nephrotoxicity, serum electrolyte derangements (K, Mag, Phos), immune suppression, azotemia, gingival hyperplasia, hirsutism, tremor DDIs: tacrolimus and cyclosporine metabolized by CYP3A enzymes (thorough drug interaction checking recommended when initiating or discontinuing medications for patients on calcineurin inhibitors) |
Anakinra [99] Canakinumab [100] | IL-1 antagonist | TB and hepatitis B status prior to starting therapy, CBC with differential, LFTs | BBW: N/A Increased risk of infection Signs of hypersensitivity reactions CBC with differential q3 months up to one year, renal function |
Abatacept [101] | Cytotoxic T lymphocyte antigen-4 (CTLA4) immunoglobulin fusion molecule | TB and hepatitis status prior to starting therapy | BBW: N/A Hypersensitivity reactions Increased risk of infection |
Tofactinib [102] Ruxolitinib [103] | JAK 1/2 and 1/3 inhibitor | Tofacitinib:
| BBW: malignancy (including solid tumors and lymphoma), higher infection risk, increased thrombotic risk Tofacitinib: lipid abnormalities (dose- dependent), renal and hepatic impairment.
DDIs: Tofacitinib and Ruxolitinib are major CYP3A4 substrates (thorough drug interaction checking recommended when initiating or discontinuing medications for patients on JAK inhibitors) |
Medication | Time to Full Therapeutic Effect/Clinical Remission |
---|---|
Azathioprine 6-MP | CD (adult): May take a minimum of eight weeks to achieve clinical remission; wide range reported ranging from two weeks to nine months [79,106] UC (adult): typical range of three to six months to see clinical and endoscopic response [79,107] UC and CD (pediatric): pediatric IBD network showed remission within 180 days of starting thiopurine therapy, with approximately 50% of patients reporting sustained steroid free remission at six months [108]. Range of eight to sixteen weeks has been reported to reach maximum effectiveness in CD [49] |
Infliximab Adalimumab | Infliximab: response is variable and patient dependent; requires monitoring of trough levels and ADAs. Many patients may require dose escalation within the first year of treatment [77,78,79] CD (adult): clinical response and remission for infliximab reported in one study to take eight to nine days, with up to 81% of patients with clinical response rates after four weeks of therapy [77,78,79,109]
|
Vedolizumab | Vedolizumab may be more effective in UC vs. CD. Lower percent of patients with mucosal healing shown in patients with CD compared to UC [49]
Patients without prior biologic exposure, less severe disease, and early response to vedolizumab may have higher rates of endoscopic and clinical remission [104] |
Ustekinumab | Some evidence to show better response and higher rate of clinical remission in patients who are biologic non-naïve In adult trials, clinical response was seen after eight weeks of treatment. Some studies suggest a timeframe of up to 14 weeks for clinical response, and up to six months for endoscopic remission Addition of immunomodulator therapy does not appear to affect immunogenicity |
Tacrolimus Cyclosporine | Tacrolimus:
CSA PO (pediatric): in a study of 28 children, clinical response was seen within seven to fifteen days after starting an enteral dose of 5 mg/kg/day with a goal target of 150–250 ng/ml [76,111] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Levine, A.E.; Mark, D.; Smith, L.; Zheng, H.B.; Suskind, D.L. Pharmacologic Management of Monogenic and Very Early Onset Inflammatory Bowel Diseases. Pharmaceutics 2023, 15, 969. https://doi.org/10.3390/pharmaceutics15030969
Levine AE, Mark D, Smith L, Zheng HB, Suskind DL. Pharmacologic Management of Monogenic and Very Early Onset Inflammatory Bowel Diseases. Pharmaceutics. 2023; 15(3):969. https://doi.org/10.3390/pharmaceutics15030969
Chicago/Turabian StyleLevine, Anne E., Dominique Mark, Laila Smith, Hengqi B. Zheng, and David L. Suskind. 2023. "Pharmacologic Management of Monogenic and Very Early Onset Inflammatory Bowel Diseases" Pharmaceutics 15, no. 3: 969. https://doi.org/10.3390/pharmaceutics15030969
APA StyleLevine, A. E., Mark, D., Smith, L., Zheng, H. B., & Suskind, D. L. (2023). Pharmacologic Management of Monogenic and Very Early Onset Inflammatory Bowel Diseases. Pharmaceutics, 15(3), 969. https://doi.org/10.3390/pharmaceutics15030969