Encapsulation of PI3K Inhibitor LY294002 within Polymer Nanoparticles Using Ion Pairing Flash Nanoprecipitation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Nanoparticle Formation
2.3. Dynamic Light Scattering (DLS)
2.4. Zeta Potential
2.5. UV/Vis Spectrophotometry
2.6. LY294002 Release
2.7. Statistical Analysis
3. Results
3.1. LY294002 Incorporation in PEO-PDLLA Nanoparticles without Ion Pairing
3.2. Ion Pairing Agents Increase the LY294002 Loading of PEO-PDLLA Nanoparticles
3.3. Release of LY from PEO-PDLLA-Salt Former Nanoparticles
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kalepu, S.; Nekkanti, V. Insoluble drug delivery strategies: Review of recent advances and business prospects. Acta Pharm. Sin. B 2015, 5, 442–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manisekaran, R.; GarcÍa-Contreras, R.; Chettia, A.-D.R.; Serrano-DÍaz, P.; Lopez-Ayuso, C.A.; Arenas-Arrocena, M.C.; Hernández-Padrón, G.; López-MarÍn, L.M.; Acosta-Torres, L.S. 2D Nanosheets—A New Class of Therapeutic Formulations against Cancer. Pharmaceutics 2021, 13, 1803. [Google Scholar] [CrossRef] [PubMed]
- Janku, F. Phosphoinositide 3-kinase (PI3K) pathway inhibitors in solid tumors: From Laboratory to patients. Cancer Treat. Rev. 2017, 59, 93–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fruman, D.A.; Chiu, H.; Hopkins, B.D.; Bagrodia, S.; Cantely, L.C.; Abraham, R.T. The PI3K Pathway in Humann Disease. Cell 2017, 170, 605–635. [Google Scholar] [CrossRef] [Green Version]
- Chambers, T.P.; Portalatin, G.M.; Paudel, I.; Robbins, C.J.; Chambers, J.W. Sub-chronic administration of LY294002 sensitizes cervical cancer cells to chemotherapy by enchancing mitochondrial JNK signaling. Biochem. Biophys. Res. Commun. 2015, 463, 538–544. [Google Scholar] [CrossRef]
- Fujiwara, Y.; Kawada, K.; Takano, D.; Tanimura, S.; Ozaki, K.-I.; Kohno, M. Inhibition of the PI3 kinase/Akt pathway enhances doxorubicin-induced apoptotic cell death in tumor cells in a p53-dependent manner. Biochem. Biophys. Res. Commun. 2006, 340, 560–566. [Google Scholar] [CrossRef]
- Santin, A.D.; Filiaci, V.; Bellone, S.; Ratner, E.S.; Mathews, C.A.; Cantuaria, G.; Gunderson, C.C.; Rutledge, T.; Buttin, B.M.; Lankes, H.A.; et al. Phase II evaluation of copanlisib, a selective inhibitor of Pi3kca, in patients with persistent or recurrent endometrial carcinoma harboring PIK3CA hotspot mutations: An NRG Oncology Study (NRG-GY008). Gynecol. Oncol. Rep. 2020, 31, 100532. [Google Scholar] [CrossRef]
- Rodrigues, D.A.; Sagrillo, F.S.; Fraga, C.A.M. Duvelisib: A 2018 Novel FDA-Approved Small Molecule Inhibiting Phosphionoxitide 3-Kinases. Pharmaceuticals 2019, 12, 69. [Google Scholar] [CrossRef] [Green Version]
- Harfouche, R.; Basu, S.; Soni, S.; Hentschel, D.M.; Mashelkar, R.A.; Sengupta, S. Nanoparticle-mediated targeting of phosphatidylinositol-3-kinase signaling inhibits angiogenesis. Angiogenesis 2009, 12, 325–338. [Google Scholar] [CrossRef]
- Xu, R.X.; Xu, J.S.; Zuo, T.; Shen, R.; Huang, T.H.; Tweedle, M.F. Drug-loaded biodegradalbe microspheres for image-guided combinatory epigenetic therapy in cells. J. Biomed. Opt. 2011, 16, 020507. [Google Scholar] [CrossRef]
- Saiyin, W.; Wang, D.; Li, L.; Zhu, L.; Liu, B.; Sheng, L.; Li, Y.; Zhu, B.; Mao, L.; Li, G.; et al. Sequential release of autophagy inhibitor and chemotherapeutic drug with polymeric delivery system for oral squamous cell carcinoma therapy. Mol. Pharm. 2014, 11, 1662–1675. [Google Scholar] [CrossRef]
- Feng, Y.; Gao, Y.; Wang, D.; Xu, Z.; Sun, W.; Ren, P. Autophagy Inhibitor (LY294002) and 5-fluorouracil (5-FU) Combination-Based Nanoliposome for Enhanced Efficacy Against Esophageal Squamous Cell Carcinoma. Nanoscale Res. Lett. 2018, 13, 325. [Google Scholar] [CrossRef] [Green Version]
- Cai, J.; Qian, K.; Zuo, X.; Yue, W.; Bian, Y.; Yang, J.; Wei, J.; Zhao, W.; Qian, H.; Liu, B. PLGA nanoparticle-based docetaxel/LY294002 drug delivery system enhances antitumor activities against gastric cancer. J. Biomater. Appl. 2019, 33, 1394–1406. [Google Scholar] [CrossRef] [PubMed]
- Allouche, J. Synthesis of Organic and Bioorganic Nanoparticles: An Overview of the Preparation Methods. In Nanomaterials: A Danger or a Promise? A Chemical and Biological Perspective; Brayner, R., Fiévet, F., Coradin, T., Eds.; Springer: London, UK, 2013; pp. 27–74. [Google Scholar] [CrossRef]
- Crucho, C.I.C.; Barros, M.T. Polymeric nanoparticles: A study on the preparation variables and characterization methods. Mater. Sci. Eng. C 2017, 80, 771–784. [Google Scholar] [CrossRef] [PubMed]
- Rao, J.P.; Geckeler, K.E. Polymer nanoparticles: Preparation techniques and size-control parameters. Prog. Polym. Sci. 2011, 36, 887–913. [Google Scholar] [CrossRef]
- Johnson, B.K.; Prud’homme, R.K. Chemical processing and micromixing in confined impinging jets. AIChE J. 2003, 49, 2264–2282. [Google Scholar] [CrossRef]
- D’Addio, S.M.; Prud’homme, R.K. Controlling drug nanoparticle formation by rapid precipitation. Adv. Drug Deliv. Rev. 2011, 63, 417–426. [Google Scholar] [CrossRef]
- Saad, W.S.; Prud’homme, R.K. Principles of nanoparticle formation by flash nanoprecipitation. Nano Today 2016, 11, 212–227. [Google Scholar] [CrossRef]
- Akbulut, M.; Ginart, P.; Gindy, M.E.; Theriault, C.; Chin, K.H.; Soboyejo, W.; Prud’homme, R.K. Generic Method of Preparing Multifunctional Fluorescent Nanoparticles Using Flash NanoPrecipitation. Adv. Funct. Mater. 2009, 19, 718–725. [Google Scholar] [CrossRef]
- Pinkerton, N.M.; Grandeury, A.; Fisch, A.; Brozio, J.; Riebesehl, B.U.; Prud’homme, R.K. Formation of Stable Nanocarriers by in Situ Ion Pairing during Block-Copolymer-Directed Rapid Precipitation. Mol. Pharm. 2013, 10, 319–328. [Google Scholar] [CrossRef] [Green Version]
- Ristroph, K.D.; Salim, M.; Wilson, B.K.; Clulow, A.J.; Boyd, B.J.; Prud’homme, R.K. Internal Liquid Crystal Structures in Nanocarriers Containing Drug Hydrophobic Ion Pairs Dictate Drug Release. J. Colloid Interface Sci. 2021, 582, 815–824. [Google Scholar] [CrossRef]
- Lobovkina, T.; Jacobson, G.B.; Gonzalez-Gonzalez, E.; Hickerson, R.P.; Leake, D.; Kaspar, R.L.; Contag, C.H.; Zare, R.N. In Vivo Sustained Release of siRNA from Solid Lipid Nanoparticles. ACS Nano 2011, 5, 9977–9983. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.D.; Rummaneethorn, P.; Ristroph, K.D.; Prud’homme, R.K. Hydrophobic Ion Pairing of Peptide Antibiotics for Processing into Controlled Release Nanocarrier Formulations. Mol. Pharm. 2018, 15, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.D.; Ristroph, K.D.; Dobrijevic, E.L.K.; Feng, J.; McManus, S.A.; Zhang, Y.; Mulhearn, W.D.; Ramachandruni, H.; Patel, A.; Prud’homme, R.K. Encapsulation of OZ439 into Nanoparticles for Supersaturated Drug Release in Oral Malaria Therapy. ACS Infect. Dis. 2018, 4, 970–979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, H.; Hu, X.Y.; Szymusiak, M.; Wang, Z.J.; Liu, Y. Orally Administered Nanocurcumin to Attenuate Morphine Tolerance: Comparison between Negatively Charged PLGA and Partially and Fully PEGylated Nanoparticles. Mol. Pharm. 2013, 10, 4546–4551. [Google Scholar] [CrossRef] [Green Version]
- Jo, A.; Zhang, R.; Allen, I.C.; Riffle, J.S.; Davis, R.M. Design and Fabrication of Streptavidin-Functionalized, Fluorescently Labeled Polymeric Nanocarriers. Langmuir 2018, 34, 15783–15794. [Google Scholar] [CrossRef]
- McDaniel, D.K.; Jo, A.; Ringel-Scaia, V.M.; Coutermarsh-Ott, S.; Rothschild, D.E.; Powell, M.D.; Zhang, R.; Long, T.E.; Oestreich, K.J.; Riffle, J.S.; et al. TIPS pentacene loaded PEO-PDLLA core-shell nanoparticles have similar cellular uptake dynamics in M1 and M2 macrophages and in corresponding in vivo microenvironments. Nanomedicine 2017, 13, 1255–1266. [Google Scholar] [CrossRef] [Green Version]
- D’Addio, S.M.; Saad, W.; Ansell, S.M.; Squiers, J.J.; Adamson, D.H.; Herrera-Alonso, M.; Wohl, A.R.; Hoye, T.R.; Macosko, C.W.; Mayer, L.D.; et al. Effects of block copolymer properties on nanocarrier protection from in vivo clearance. J. Control. Release 2012, 162, 208–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, J.; Zhu, Z.X.; Qian, H.T.; Wohl, A.R.; Beaman, C.J.; Hoye, T.R.; Macosko, C.W. A simple confined impingement jets mixer for flash nanoprecipitation. J. Pharm. Sci. 2012, 101, 4018–4023. [Google Scholar] [CrossRef]
- Meyer, J.D.; Manning, M.C. Hydrophobic Ion Pairing: Altering the Solubility Properties of Biomolecules. Pharm. Res. 1998, 15, 188–193. [Google Scholar] [CrossRef]
- Pagels, R.F.; Prud’homme, R.K. Polymeric nanoparticles and microparticles for the delivery of peptides, biologics, and soluble therapeutics. J. Control. Release 2015, 219, 519–535. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Michel, A.R.; Lee, H.S.; Kalscheuer, S.; Wohl, A.; Hoye, T.R.; McCormick, A.V.; Panyam, J.; Macosko, C.W. Nanoparticles Containing High Loads of Paclitaxel-Silicate Prodrugs: Formulation, Drug Release, and Anticancer Efficacy. Mol. Pharm. 2015, 12, 4329–4335. [Google Scholar] [CrossRef] [Green Version]
- Levit, S.L.; Yang, H.; Tang, C. Rapid Self-Assembly of Polymer Nanoparticles for Synergistic Codelivery of Paclitaxel and Lapatinib via Flash NanoPrecipitation. Nanomaterials 2020, 10, 561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bteich, J.; McManus, S.A.; Ernsting, M.J.; Mohammed, M.Z.; Prud’homme, R.K.; Sokoll, K.K. Using Flash Nanoprecipitation To Produce Highly Potent and Stable Cellax Nanoparticles from Amphiphilic Polymers Derived from Carboxymethyl Cellulose, Polyethylene Glycol, and Cabazitaxel. Mol. Pharm. 2017, 14, 3998–4007. [Google Scholar] [CrossRef] [PubMed]
Inhibitor | Target | IC50 6 | Log P 5 | FDA Approval | Administration Notes |
---|---|---|---|---|---|
Alpelisib | p110α | 5 nM 1 | 3.81 | Approved | Oral dosage in combination with fulvestrant 2 |
Idelalisib | p110δ | 2.5 nM 1 | 3.68 | Approved | Oral dosage 3 |
Copanlisib | p110α/δ | 0.5 nM, 0.7 nM [7] | 0.5 | Approved | 1-h intravenous infusion 4 |
Duvelisib | p110γ/δ | 27 nM, 2.5 nM [8] | 4.56 | Approved | Oral dosage |
Wortmannin | Pan-PI3K | 1 nM [3] | 1.84 | --- | |
LY294002 | Pan-PI3K | 1.4 μM [3] | 3.64 | --- |
Criterion | Discussion |
---|---|
Cell type(s) affected by drug (LY294002) | All human cells |
Mode of administration | Intravenous, intraperitoneal |
Drug dosage | IC50: 1.4 µM Mouse study: 20 mg/kg Human: unknown |
Location of therapeutic effect | Intracellular |
Cellular membrane transport limitation? | No |
Intracellular processing of NPs | Lysosomal release |
Polymer carrier | PDLLA-PEG |
Drug loading range | 10 (mg NP)/mL IP injection at 50 wt% LY loading to reach 20 mg/kg dosage |
Drug Log P at drug release pH | 3.64 (Log P) |
Drug pKa | 3.47 |
Hydrophobic ion pairing agent | HDPA (pKa: 1.81) PA (pKa: 4.95) |
Solvent(s) suitable for drug dissolution in FNP process | Tetrahydrofuran, dimethylformamide |
Drug release kinetics | Burst release phase followed by slow, sustained release |
Importance of triggered release | pH-triggered release below pH 6.5 |
Chemical Name | Structure | pKa | Log P |
---|---|---|---|
PDLLA-PEG | -- | -- | |
LY294002 (LY) | 3.47 | 3.34 | |
Palmitic Acid (PA) | 4.95 | 7.60 | |
Hexadecylphosphonic Acid (HDPA) | 1.81 | 5.13 | |
TIPS Pentacene | -- | 9.28 |
Case | Intensity Average Diameter (nm) | Polydispersity Index | Zeta Potential (mV) | LY294002 Loading (wt%) 2 | ||||
---|---|---|---|---|---|---|---|---|
THF | DMF | THF | DMF | THF | DMF | THF | DMF | |
LY-only Control | 260 ± 130 | 128 ± 30 | 0.35 ± 0.10 | 0.34 ± 0.13 | −33 ± 3 | −29 ± 2 | 3.8 ± 0.7 | 0.5 ± 0.2 |
1:1 LY:PA 1 | -- | 382 ± 78 64 ± 8 | -- | -- | −35 ± 2 | −41 ± 2 | 12 ± 1 | 4.1 ± 0.9 |
1:1 LY:HDPA | 335 ± 34 | 213 ± 16 | 0.32 ± 0.04 | 0.23 ± 0.04 | −38 ± 3 | −46 ± 2 | 11 ± 2 | 7.9 ± 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fergusson, A.D.; Zhang, R.; Riffle, J.S.; Davis, R.M. Encapsulation of PI3K Inhibitor LY294002 within Polymer Nanoparticles Using Ion Pairing Flash Nanoprecipitation. Pharmaceutics 2023, 15, 1157. https://doi.org/10.3390/pharmaceutics15041157
Fergusson AD, Zhang R, Riffle JS, Davis RM. Encapsulation of PI3K Inhibitor LY294002 within Polymer Nanoparticles Using Ion Pairing Flash Nanoprecipitation. Pharmaceutics. 2023; 15(4):1157. https://doi.org/10.3390/pharmaceutics15041157
Chicago/Turabian StyleFergusson, Austin D., Rui Zhang, Judy S. Riffle, and Richey M. Davis. 2023. "Encapsulation of PI3K Inhibitor LY294002 within Polymer Nanoparticles Using Ion Pairing Flash Nanoprecipitation" Pharmaceutics 15, no. 4: 1157. https://doi.org/10.3390/pharmaceutics15041157
APA StyleFergusson, A. D., Zhang, R., Riffle, J. S., & Davis, R. M. (2023). Encapsulation of PI3K Inhibitor LY294002 within Polymer Nanoparticles Using Ion Pairing Flash Nanoprecipitation. Pharmaceutics, 15(4), 1157. https://doi.org/10.3390/pharmaceutics15041157