Solid Lipid Nanoparticles Hydroquinone-Based for the Treatment of Melanoma: Efficacy and Safety Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instrumentation
2.3. Hydroquinone Protection Reaction
2.4. Synthesis of Hydroquinone Monostearate
2.5. Deprotection of Hydroquinone Monostearate
2.6. Preparation of SLNs by the Microemulsification Method
2.7. Characterization of SLN
2.8. Cell Lines and Culture Conditions
2.9. Cell Viability Assay
2.10. Protein Extraction and Western Blot Analysis
2.11. Wound-Healing Scratch Assay
2.12. Transmigration Assay
2.13. Neutral Red Uptake Assay
2.14. h-CLAT Activation Test
2.15. Evaluation of Antioxidant Activity
2.16. Inhibition of Nitroxide Production on the RAW 264.7 Cell Line
2.17. Statistical Analysis
3. Results
3.1. Synthesis and Characterization of Esters
3.2. Preparation and Characterization of Solid Lipid Nanoparticles Based on Hydroquinone Monostearate
3.3. Inhibition of Cell Proliferation in SLN-Treated COLO-38 Melanoma Cells
3.4. SLN Treatment of COLO-38 Melanoma Cells Causes Death by Apoptosis In Vitro
3.5. Up-Regulation of p53 and p21 Expression in SLN-Treated COLO-38 Melanoma Tumour Cells
3.6. SLNs Induce Increased Motility in COLO-38 Melanoma Cells
3.7. Evaluation of Cytotoxicity: Neutral Red Uptake (NRU)
3.8. In Vitro Analysis of Pro-Sensitising Potential (h-CLAT)
3.9. Evaluation of Antioxidant Activity
3.10. Inhibition of Nitroxide Production on the RAW 264.7 Cell Line
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saginala, K.; Barsouk, A.; Aluru, J.S.; Rawla, P.; Barsouk, A. Epidemiology of Melanoma. Med. Sci. 2021, 9, 63. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Li, J.; Hou, K.; Wu, Y.; Chen, H.; Ning, Z. Melanoma and Nanotechnology-Based Treatment. Front. Oncol. 2022, 12, 858185. [Google Scholar] [CrossRef]
- Crocetti, E.; Mallone, S.; Robsahm, T.E.; Gavin, A.; Agius, D.; Ardanaz, E.; Lopez, M.C.; Innos, K.; Minicozzi, P.; Borgognoni, L.; et al. EUROCARE-5 Working Group: Survival of patients with skin melanoma in Europe increases further: Results of the EUROCARE-5 study. Eur. J. Cancer 2015, 51, 2179–2190. [Google Scholar] [CrossRef] [PubMed]
- Arnold, M.; de Vries, E.; Whiteman, D.C.; Jemal, A.; Bray, F.; Parkin, D.M.; Soerjomataram, I. Global burden of cutaneous melanoma attributable to ultraviolet radiation in 2012. Int. J. Cancer 2018, 143, 1305–1314. [Google Scholar] [CrossRef] [PubMed]
- González Maglio, D.H.; Paz, M.L.; Leoni, J. Sunlight Effects on Immune System: Is There Something Else in addition to UV-Induced Immunosuppression? BioMed Res. Int. 2016, 2016, 1934518. [Google Scholar] [CrossRef]
- Moustafa, D.; Blundell, A.R.; Hawryluk, E.B. Congenital melanocytic nevi. Curr. Opin. Pediatr. 2020, 32, 491–497. [Google Scholar] [CrossRef]
- Smith, L.K.; Arabi, S.; Lelliott, E.J.; McArthur, G.A.; Sheppard, K.E. Obesity and the Impact on Cutaneous Melanoma: Friend or Foe? Cancers 2020, 12, 1583. [Google Scholar] [CrossRef]
- Friedman, E.B.; Scolyer, R.A.; Williams, G.J.; Thompson, J.F. Melanoma In Situ: A Critical Review and Re-Evaluation of Current Excision Margin Recommendations. Adv. Ther. 2021, 38, 3506–3530. [Google Scholar] [CrossRef] [PubMed]
- Mishra, H.; Mishra, P.K.; Ekielski, A.; Jaggi, M.; Iqbal, Z.; Talegaonkar, S. Melanoma treatment: From conventional to nanotechnology. J. Cancer Res. Clin. Oncol. 2018, 144, 2283–2302. [Google Scholar] [CrossRef] [PubMed]
- Di Franco, S.; Turdo, A.; Todaro, M.; Stassi, G. Role of Type I and II Interferons in Colorectal Cancer and Melanoma. Front. Immunol. 2017, 8, 878. [Google Scholar] [CrossRef]
- Borzillo, V.; Muto, P. Radiotherapy in the Treatment of Subcutaneous Melanoma. Cancers 2021, 13, 5859. [Google Scholar] [CrossRef]
- Davis, L.E.; Shalin, S.C.; Tackett, A.J. Current state of melanoma diagnosis and treatment. Cancer Biol. Ther. 2019, 20, 1366–1379. [Google Scholar] [CrossRef] [PubMed]
- Attia, M.F.; Anton, N.; Wallyn, J.; Omran, Z.; Vandamme, T.F. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J. Pharm. Pharmacol. 2019, 71, 1185–1198. [Google Scholar] [CrossRef] [PubMed]
- Cassano, R.; Cuconato, M.; Calviello, G.; Serini, S.; Trombino, S. Recent Advances in Nanotechnology for the Treatment of Melanoma. Molecules 2021, 26, 785. [Google Scholar] [CrossRef]
- Zhu, D.; Li, Y.; Zhang, Z.; Xue, Z.; Hua, Z.; Luo, X.; Zhao, T.; Lu, C.; Liu, Y. Recent advances of nanotechnology-based tumor vessel-targeting strategies. J. Nanobiotechnol. 2021, 19, 435. [Google Scholar] [CrossRef]
- Song, M.; Liu, C.; Chen, S.; Zhang, W. Nanocarrier-Based Drug Delivery for Melanoma Therapeutics. Int. J. Mol. Sci. 2021, 22, 1873. [Google Scholar] [CrossRef] [PubMed]
- Trombino, S.; Curcio, F.; Poerio, T.; Piacentini, E.; Cassano, R.; Filice, L. α-Tocopherol-loaded nanoparticles based on chitosan as potential tools in psoriasis treatment. Procedia CIRP 2022, 110, 277–281. [Google Scholar] [CrossRef]
- Nordlund, J.J.; Grimes, P.E.; Ortonne, J.P. The safety of hydroquinone. J. Eur. Acad. Dermatol. Venereol. 2006, 20, 781–787. [Google Scholar] [CrossRef]
- Banodkar, P.D.; Banodkar, K. History of hydroquinone. History 2022, 88, 696–699. [Google Scholar] [CrossRef]
- Serini, S.; Cassano, R.; Trombino, S.; Calviello, G. Nanomedicine-based formulations containing ω-3 polyunsaturated fatty acids: Potential application in cardiovascular and neoplastic diseases. Int. J. Nanomed. 2019, 14, 2809–2828. [Google Scholar] [CrossRef]
- Serini, S.; Cassano, R.; Corsetto, P.A.; Rizzo, A.M.; Calviello, G.; Trombino, S. Omega-3 PUFA Loaded in Resveratrol-Based Solid Lipid Nanoparticles: Physicochemical Properties and Antineoplastic Activities in Human Colorectal Cancer Cells In Vitro. Int. J. Mol. Sci. 2018, 19, 586. [Google Scholar] [CrossRef]
- Cassano, R.; Di Gioia, M.L.; Mellace, S.; Picci, N.; Trombino, S. Hemostatic gauze based on chitosan and hydroquinone: Preparation, characterization and blood coagulation evaluation. J. Mater. Sci. Mater. Med. 2017, 28, 190. [Google Scholar] [CrossRef]
- Cassano, R.; Curcio, F.; Procopio, D.; Fiorillo, M.; Trombino, S. Multifunctional Microspheres Based on D-Mannose and Resveratrol for Ciprofloxacin Release. Materials 2022, 15, 7293. [Google Scholar] [CrossRef]
- Cassano, R.; Serini, S.; Curcio, F.; Trombino, S.; Calviello, G. Preparation and Study of Solid Lipid Nanoparticles Based on Curcumin, Resveratrol and Capsaicin Containing Linolenic Acid. Pharmaceutics 2022, 14, 1593. [Google Scholar] [CrossRef] [PubMed]
- Bossio, S.; Perri, A.; Malivindi, R.; Giordano, F.; Rago, V.; Mirabelli, M.; Salatino, A.; Brunetti, A.; Greco, E.A.; Aversa, A. OleuropeinCounteractsBoth the Proliferation and Migration of Intra- and Extragonadal Seminoma Cells. Nutrients 2022, 14, 2323. [Google Scholar] [CrossRef]
- Panza, S.; Gelsomino, L.; Malivindi, R.; Rago, V.; Barone, I.; Giordano, C.; Giordano, F.; Leggio, A.; Comandè, A.; Liguori, A.; et al. Leptin Receptor as a Potential Target to Inhibit Human Testicular Seminoma Growth. Am. J. Pathol. 2019, 189, 687–698. [Google Scholar] [CrossRef]
- Giordano, C.; Barone, I.; Vircillo, V.; Panza, S.; Malivindi, R.; Gelsomino, L.; Pellegrino, M.; Rago, V.; Mauro, L.; Lanzino, M.; et al. Activated FXR Inhibits Leptin Signaling and Counteracts Tumor-promoting Activities of Cancer-Associated Fibroblasts in Breast Malignancy. Sci. Rep. 2016, 6, 21782. [Google Scholar] [CrossRef]
- Stokes, W.S.; Casati, S.; Strickland, J.; Paris, M. Neutral Red Uptake Cytotoxicity Tests for Estimating Starting Doses for AcuteOral Toxicity Tests. Curr. Protoc. Toxicol. 2008, 36, 20–24. [Google Scholar] [CrossRef] [PubMed]
- OECD. Test No. 442E. In Vitro Skin Sensitisation: In Vitro Skin Sensitisation Assays Addressing the Key Event on Activation of Dendritic Cells on the Adverse Outcome Pathway for Skin Sensitisation. Available online: https://www.oecd.org/env/test-no-442e-in-vitro-skin-sensitisation-9789264264359-en.htm (accessed on 30 June 2022).
- Ruffo, M.; Parisi, O.I.; Dattilo, M.; Patitucci, F.; Malivindi, R.; Pezzi, V.; Tzanov, T.; Puoci, F. Synthesis and evaluation of wound healing properties of hydro-diabhydrogel loaded with green-synthetized AGNPS: In vitro and in ex vivo studies. Drug Deliv. Transl. Res. 2022, 8, 1881–1894. [Google Scholar] [CrossRef] [PubMed]
- Trombino, S.; Cassano, R.; Bloise, E.; Muzzalupo, R.; Leta, S.; Puoci, F.; Picci, N. Design and synthesis of cellulose derivates with antioxidant activity. Macromol. Biosci. 2008, 8, 86–95. [Google Scholar] [CrossRef]
- Marrelli, M.; Statti GAMenichini, F.; Conforti, F. Echinophora tenuifolia L. inflorescences: Phytochemistry and in vitro antioxidant and anti-inflammatory properties in LPS-stimulated RAW 264.7 macrophages. Plant Biosyst. 2017, 151, 1073–1081. [Google Scholar] [CrossRef]
- Parisi, O.I.; Scrivano, L.; Amone, F.; Malivindi, R.; Ruffo, M.; Vattimo, A.F.; Pezzi, V.; Puoci, F. Interconnected PolymerSTeChnology (IPSTiC): An effective approach for the modulation of 5α-reductase activity in hair loss conditions. J. Funct. Biomater. 2018, 9, 44. [Google Scholar] [CrossRef] [PubMed]
Ester (g) | Tween 20 (mL) | Butanol (mL) | Sodium Taurocholate (g) |
---|---|---|---|
0.05 | 0.044 | 0.018 | 0.023 |
Formulation | Size (nm) | Polydispersion Index (PI) |
---|---|---|
hydroquinone monostearate SLN | 289 ± 5.3 | 0.005 |
Grade | Reactivity | Condition of All Cultures |
---|---|---|
0 | None | No detectable areas around or under the sample |
1 | Slight | Some malformed or degenerated cells under the sample |
2 | Mild | Limited area under the sample |
3 | Moderate | Area under the sample extending up to 1.0 cm |
4 | Severe | Area extending more than 1.0 cm outside the sample |
Sample | Biological Reactivity |
---|---|
Control | 0 |
0.125 μL/mL SLN | 0 |
0.25 μL/mL SLN | 0 |
0.5 μL/mL SLN | 1 |
0.75 μL/mL SLN | 2 |
Control + (SDS 10%) | 4 |
Samples | CD54 * | CD86 * |
---|---|---|
0.25 μL/mL SLN | 46.37 | 57.17 |
0.5 μL/mL SLN | 51.23 | 66.12 |
0.75 μL/mL SLN | 59.62 | 69.12 |
Control | 38 | 57 |
Control + (NISO4) | 180 | 221 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trombino, S.; Malivindi, R.; Barbarossa, G.; Sole, R.; Curcio, F.; Cassano, R. Solid Lipid Nanoparticles Hydroquinone-Based for the Treatment of Melanoma: Efficacy and Safety Studies. Pharmaceutics 2023, 15, 1375. https://doi.org/10.3390/pharmaceutics15051375
Trombino S, Malivindi R, Barbarossa G, Sole R, Curcio F, Cassano R. Solid Lipid Nanoparticles Hydroquinone-Based for the Treatment of Melanoma: Efficacy and Safety Studies. Pharmaceutics. 2023; 15(5):1375. https://doi.org/10.3390/pharmaceutics15051375
Chicago/Turabian StyleTrombino, Sonia, Rocco Malivindi, Giuseppe Barbarossa, Roberta Sole, Federica Curcio, and Roberta Cassano. 2023. "Solid Lipid Nanoparticles Hydroquinone-Based for the Treatment of Melanoma: Efficacy and Safety Studies" Pharmaceutics 15, no. 5: 1375. https://doi.org/10.3390/pharmaceutics15051375
APA StyleTrombino, S., Malivindi, R., Barbarossa, G., Sole, R., Curcio, F., & Cassano, R. (2023). Solid Lipid Nanoparticles Hydroquinone-Based for the Treatment of Melanoma: Efficacy and Safety Studies. Pharmaceutics, 15(5), 1375. https://doi.org/10.3390/pharmaceutics15051375