Novel Therapeutic Approaches in Inherited Neuropathies: A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Compilation of List of Inherited Neuropathies
2.2. Literature and Clinical Trial Database Searches
2.3. Selection of Studies
2.4. Data Extraction and Analysis
3. Results
3.1. Identification of Studies That Assessed Treatments for Inherited Neuropathies
3.2. Treatments for Conditions Where Neuropathy Is the Sole or Predominant Feature of the Disease
3.2.1. Familial Dysautonomia
3.2.2. Hereditary Sensory and Autonomic Neuropathy Type 1 (HSAN1)
3.2.3. Charcot–Marie–Tooth 1A (CMT1A)
3.3. Treatments for Conditions Where Neuropathy Is One Symptom of the Disease
3.3.1. Hereditary Transthyretin Amyloidosis Polyneuropathy (ATTRv-PN)
3.3.2. Metachromatic Leukodystrophy (MLD)
3.3.3. Spinal and Bulbar Muscular Atrophy (SBMA or Kennedy Disease)
3.3.4. Adult Polyglucosan Body Disease (APBD)
3.3.5. Fabry Disease (FB)
3.3.6. Acute Intermittent Porphyria (AIP)
3.4. Treatments for Conditions Where Neuropathy Plays a Role in Ataxia
3.4.1. Spinocerebellar Ataxia Type 38 (SCA 38)
3.4.2. Spinocerebellar Ataxia Type 2 (SCA2)
3.4.3. Ataxia-Telangiectasia (A-T)
3.4.4. X-Linked Adrenoleukodystrophy (X-ALD)
3.4.5. Friedreich Ataxia (FRDA)
3.4.6. Fragile-X Associated Tremor/Ataxia Syndrome (FXTAS)
3.5. Treatments for Conditions Where Neuropathy Is Inconsistent and/or Subclinical
3.5.1. Acid Sphingomyelinase Deficiency (ASMD)
3.5.2. Mitochondrial Encephalomyopathy with Lactic Acidosis and Stroke-like Episodes (MELAS)
3.5.3. Gaucher Disease Type 1 (GD1)
3.5.4. Bile Acid Synthesis Disorder (BASD)
4. Discussion
4.1. Limitations of This Analysis
4.2. Added Value of This Analysis
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
Appendix A
Classification | Disease and Synonyms | Gene | UK Panel | USA Panel | France Panel | Literature | |
---|---|---|---|---|---|---|---|
Mechanism depending on the variant | Charcot–Marie–Tooth, also known as hereditary motor and sensory neuropathy, Dejerine-Sottas syndrome, and peroneal muscular atrophy | Several causative genes | X | X | X | [3,14] | |
Hereditary sensory and autonomic neuropathy (HSAN), also known as hereditary sensory neuropathy (HSN) | Several causative genes | X | X | X | [3,14] | ||
Hereditary motor neuropathy (HMN) | Several causative genes | X | X | X | [3,14] | ||
Spinocerebellar ataxia (SCA) (1–38) | Several causative genes | X | X | X | [1,3,14,122] | ||
Hereditary spastic paraplegia (HSP), also known as familial spastic paraparesis (1, 2, 3A, 4, 5A, 6, 7, 9A/B, 10, 11, 12, 14, 15, 17, 20, 25, 26, 27, 28, 30, 31, 36, 38, 39, 43, 46, 47, 49, 55, 56, 57, 61, 76) | Several causative genes | X | X | X | [1,3,14] | ||
Porphyria | Coproporphyria | CPOX | X | X | |||
Variegata | PPOX | X | X | ||||
Acute intermittent | HMBS | X | X | ||||
DOSS porphyria | ALAD1 | [14] | |||||
Peroxisomal | Zellweger spectrum disorder | PEX10, PXMP2 | X | ||||
Refsum disease | PHYH, PEX7 | X | X | ||||
X-linked adrenoleukodystrophy (X-ALD) | ABCD1 | X | |||||
Alpha-methylacyl-CoA racemase deficiency (AMACRD) | AMACR | X | |||||
Lysosomal | GM2-gangliosidose AB, also known as Tay-Sachs disease and Sandhoff disease | GM2A, HEXA, HEXB | X | ||||
Metachromatic leukodystrophy (MLD) | ARSA | X | X | ||||
DEGS1 insufficiency | DEGS1 | X | |||||
Krabbe disease, also known as globoid leukodystrophy | GALC | X | X | ||||
Fabry disease | GLA | X | X | X | |||
Chediak–Higashi syndrome | LYST | X | |||||
Kanzaki, also known as Schindler type II | NAGA | X | |||||
Acid sphingomyelinase deficiency (ASMD), also known as Niemann–Pick A, B | SMPD1 | [3,127,128] | |||||
B-mannosidosis | MANBA | [3,14] | |||||
Sialidosis type 1 | NEU1 | [129] | |||||
Salla disease | SLC17A | [130] | |||||
Acid ceramidase deficiency, also known as Farber disease | ASAH1 | [131] | |||||
Multiple sulfatase deficiency, also known as Austin disease | SUMF1 | [132] | |||||
Glucocerebrosidase deficiency, also known as Gaucher disease | GBA | [14,118] | |||||
Galactosialidosis | CTSA | [1,14] | |||||
Mitochondrial | Mitochondrial neurogastrointestinal encephalopathy (MNGIE) | RRM2B | X | ||||
POLG | X | X | X | ||||
TYMP | X | X | |||||
Neuropathy, ataxia, and retinitis pigmentosa (NARP) syndrome | MT-ATP6 | X | |||||
Mitochondrial encephalomyopathy lactic acidosis and stroke-like episodes (MELAS) | MT-TL1 | X | |||||
Sensory ataxic neuropathy, dysarthria, and ophthalmoparesis (SANDO) | POLG | X | X | X | |||
TWNK also known as C10ORF2 | X | X | |||||
Myoclonic epilepsy associated with ragged red fibres (MERRF) | MTTK | [1,3,14] | |||||
Infantile-onset spinocerebellar ataxia, ophthalmoplegia, hypotonia, ataxia, hypoacusis, and athetosis (IOSCA), also known as OHAHA syndrome | TWNK also known as C10ORF2 | X | X | ||||
Leigh Syndrome | SURF1 | X | X | ||||
Kearns–Sayre syndrome | deletion mtDNA | [1] | |||||
Friedreich ataxia (FRDA) | FXN | X | X | X | |||
Pyruvate carrier deficiency | MPC1 | X | |||||
Pyruvate dehydrogenase complex deficiency | PDHA1 | X | |||||
Trifunctional protein deficiency with myopathy and neuropathy (MTP), also known as LCHAD deficiency | HADHA/HADHB | X | X | ||||
Multiple Acyl-Coa Dehydrogenase Deficiency (MADD) | ETFHD | [2] | |||||
Infantile-onset multisystem neurologic, endocrine, and pancreatic disease (IMNEPD) | PTRH2 | X | |||||
Mitochondrial complex IV deficiency nuclear type 2 (Mc4dn2), also known as cardioencephalomyopathy, fatal infantile, due to cytochrome c oxidase deficiency (CEMCOX1) | SCO2 | X | |||||
Combined oxidative phosphorylation deficiency 3 (CoxPD3) | TSFM | X | |||||
Leucoencephalopathy with brain stem and spinal cord involvement and lactate elevation (LBSL) | DARS2 | X | |||||
Coenzyme Q10 deficiency primary, 8 | COQ7 | X | |||||
Cataract, growth hormone deficiency, sensory neuropathy and hearing loss, and skeletal dysplasia (CAGSSS) | IARS2 | X | X | ||||
Mitochondrial DNA depletion syndrome type 6 (MTDPS6), also known as Navajo neuropathy | MPV17 | X | X | X | |||
Mitochondrial DNA depletion syndrome type 3 (MTDPS3), also known as DGUOK deficiency | DGUOK | [1] | |||||
Mitochondrial DNA depletion syndrome type 5 (MTDPS5), also known as Booth–Haworth–Dilling Syndrome | SUCLA2 | X | |||||
Parkinsonism, deafness, and sensory-motor axonal neuropathy | MT-RNR1 | X | |||||
Dominant optic atrophy plus (DOA+), also known as Behr syndrome | OPA1 | X | X | ||||
Dominant optic atrophy (DOA), also known as Costeff syndrome | OPA3 | X | |||||
Mitochondrial Complex 4 deficiency, Nuclear Type 11 | COX20 | X | |||||
Mitochondrial Complex 5 deficiency | MTATP8 | [1] | |||||
Congenital disorder of deglycosylation 1 (CDDG1) | NGLY1 | [1] | |||||
Ornithine aminotransferase deficiency | MT-TK | [3] | |||||
Adult-Onset Chronic Progressive External Ophthalmoplegia with Mitochondrial Myopathy | RNASEH1 | X | |||||
DNA repair/replication | Ataxia-oculomotor apraxia 1 (OA1), also known as ataxia early-onset with oculomotor apraxia and hypoalbuminemia (EAOH) | APTX | X | X | |||
Ataxia-oculomotor apraxia 2 (AOA2), also known as spinocerebellar ataxia autosomal recessive 1 (SCAR1), and spinocerebellar ataxia autosomal recessive with axonal neuropathy 2 (SCAN2) | SETX | X | X | X | |||
Ataxia telangiectasia | ATM | X | X | ||||
Cockayne syndrome, also known as Neill–Dingwall Syndrome | ERCC6, ERCC8 | X | X | ||||
Xeroderma Pigmentosum | XPA | X | |||||
Aminoacidopathies | Homocysteine methylation disorders (cobalamin and methylenetetrahydrofolate reductase) | MMACHC | X | ||||
MTHFR | [2,3,14] | ||||||
Serine deficiency | PGDH | [3] | |||||
Tyrosinaemia type 1 | FAH | X | |||||
Inflammatory | CD59 deficiency | CD59 | X | ||||
Aicardi–Goutieres syndrome | RNASEH2A, RNASEH2B, RNASEH2C, TREX1, ADAR1, IFH1, SAMHD1 | [1] | |||||
Adenosine deaminase 2 deficiency (DADA2) | ADA2 | [133] | |||||
Vitamin-related disorders | Brown–Vialetto–Van Laere (BVVL), also known as riboflavin transporter deficiency (RTD) | SLC52A2, SLC52A3 | X | X | |||
Biotinidase deficiency | BTD | [2,3] | |||||
Abetalipoproteinemia | MTTP | X | X | ||||
Ataxia with isolated vitamin E deficiency (AVED) | TTPA | X | X | ||||
Cerebral folate deficiency (CFD) | FOLR1 | [2] | |||||
Thiamine metabolism dysfunction syndrome 4 (THMD4) | SLC25A19 | X | X | ||||
Amyloidosis | Familial amyloid polyneuropathy (FAP) type I-II | TTR | X | X | X | ||
Familial amyloid polyneuropathy (FAP) type III, also known as Van Allen or Iowa type | APOA1 | X | |||||
Familial amyloid polyneuropathy (FAP) type IV | GSN | X | |||||
Giant axonal neuropathy | Giant axonal neuropathy 2 | DCAF8 | X | ||||
Giant axonal neuropathy 1 | GAN | X | X | X | |||
Other | Tangier | ABCA1 | X | X | |||
Xanthomatosis cerebrotendinous (XCT) | CYP27A1 | X | X | ||||
Charlevoix–Saguenay Spastic Ataxia (ARSACS) | SACS | X | X | ||||
Chorea acanthocytosis, also known as choreoacanthocytosis | VPS13A | X | |||||
McLeod syndrome | XK | X | |||||
Spinal and bulbar muscular atrophy, also known as Kennedy disease | AR | [1] | |||||
X-fragile tremor and ataxia syndrome (FXTAS) | FMR1 | X | |||||
Cerebellar ataxia with neuropathy and vestibular areflexia syndrome (CANVAS) | RFC1 | [1,3,14] | |||||
Posterior column ataxia and retinitis pigmentosa (PCARP) | FLVCR1 | X | X | X | |||
Polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and cataract (PHARC) | ABHD12 | X | |||||
Pelizaeus–Merzbacher | GJC2 | X | |||||
PLP1 | X | ||||||
Waardenburg syndrome | SOX10 | X | X | X | |||
Adult polyglucosan body disease (APBD), also known as glycogenosis type IV, glycogen storage disorder type 4, and Andersen disease | GBE1 | X | |||||
Neurofibromatosis type II | NF2 | X | |||||
Agenesis of the corpus callosum with peripheral neuropathy (ACCPN), also known as Andermann syndrome | SLC12A6 | X | X | X | |||
Triple A syndrome | AAAS | X | |||||
Congenital disorder of glycosylation type 1A (CDG1A) | PMM2 | X | |||||
Congenital cataracts, facial dysmorphism, and neuropathy (CCFDN) | CTDP1 | X | X | X | |||
Leukodystrophy hypomyelination and congenital cataract (HLD5 HCC) | FAM126A | X | X | ||||
Myopathy congenital, deafness and neuropathy (CMND) | SPTBN4 | X | |||||
Congenital insensitivity to pain | CLTCL1 | X | X | ||||
Merosin-deficient congenital muscular dystrophy | LAMA2 | X | |||||
Neurodegeneration with brain iron accumulation 2A (NBI2A), also known as infantile neuroaxonal dystrophy (INAD) | PLA2G6 | X | |||||
Familial dysautonomia, also known as hereditary sensory autonomic neuropathy with intellectual disability (HSAN9) and hereditary spastic paraplegia 49 | TECPR2 | [1,14] | |||||
Hypomyelinating leukodystrophy 6, also known as TUBB4A-related leukodystrophy | TUBB4A | [1] | |||||
Pontocerebellar hypoplasia type 1B (PCH1B) | EXOSC3 | [1] | |||||
Pontocerebellar hypoplasia (PCH9) | AMPD2 | [1] | |||||
Action myoclonus–renal failure syndrome (AMRF) | SCARB2 | [1,14] | |||||
Kyphoscoliotic type of Ehlers–Danlos syndrome (EDS 6) | PLOD1 | [1] | |||||
Familial visceral amyloidosis | B2M | [1] |
Appendix B
Diseases for Which Trials Were Found | Gene | Inheritance | Physiopathology/Comments | Clinical Aspects | Type of Neuropathy | Standard of Care |
---|---|---|---|---|---|---|
Hereditary transthyretin amyloidosis- polyneuropathy (ATTRv-PN) | TTR | AD | Mutation changes the tetrameric structure of the TTR protein, leads to dissociation into misfolded monomer subunits, which then accumulate as amyloid deposits in different tissues including peripheral nerves [134]. | Systemic disease including cardiomyopathy, renal, and ocular involvement [134]. | Sensorimotor predominantly axonal, length-dependent and autonomic neuropathies [134] |
|
Spinocerebellar ataxia type 38 (SCA 38) | ELOVL5 | AD | More than 40 distinct subtypes have been identified: mechanism depends on the variant [136]. | Starts at around age 40 with cerebellar symptoms. As the disease progresses, patients may present with hyposmia, hearing loss and pes cavus without paresia [114]. | Predominantly sensorimotor axonal polyneuropathy [114] |
|
Spinocerebellar ataxia type 2 (SCA2) | CAG trinucleotide repeat expansion in the ATXN2 gene | AD | More than 40 distinct subtypes have been identified: mechanism depends on the variant [136]. | Slow saccades, ataxia, tremor, parkinsonism [1]. | Motor-predominant axonal neuropathy [1] |
|
Familial dysautonomia | ELP-1 | AR | Defect in baroreceptor neurons in cranial nerves IX and X [137]. | Variability in blood pressure among other dysautonomia symptoms [137]. | Small-fibre neuropathy [137] |
|
Hereditary sensory and autonomic neuropathy type 1 (HSAN1) | SPTLC1 and SPTLC2 | AD | Mutation reduces the affinity of the serine palmitoyltransferase enzyme for its normal substrate, serine and increases affinity for alanine and glycine, leading to the production of abnormal neurotoxic 1-deoxysphingolipids [138]. | Dysautonomia symptoms, skin ulcers, muscle weakness, sensory loss, and neuropathic pain [139]. | Small-fibre and sensory axonal neuropathy [139] |
|
Ataxia-Telangiectasia (A-T) | ATM | AR | Mutation of ATM gene impairs DNA repair [140]. | Ataxia and oculomotor apraxia beginning in early infancy, dystonia and/or chorea, conjunctival telangiectasia, susceptibility to infections and malignancies [1]. | Sensory axonal neuropathy [1,141] |
|
Charcot–Marie–Tooth 1A (CMT1A) | PMP22 | AD | Duplication of the PMP22 gene, leading to over-expression of PMP22 protein, and gain-of-function phenotype [142,143]. | Neuropathy is the sole or predominant clinical feature of the disease [4]. | Demyelinating sensorimotor neuropathy [4] |
|
Metachromatic leukodystrophy (MLD) | ASA | AR | Deficient activity of the lysosomal enzyme arylsulfatase A, results in accumulation of sulfatide in cells of both peripheral and central nervous systems [144]. | Three forms are commonly described depending on age of onset: late-infantile, around 2 years; juvenile, between 3 and 16 years; and adult, after 16 years. The younger onsets are the most severe forms, with clinical regression. Adults present with optic atrophia, cognitive impairment, ataxia, and paresia [144]. | Demyelinating neuropathy [1] |
|
X-linked adrenoleukodystrophy (X-ALD) | ABCD1 | X-linked | Mutation in protein involved in the transmembrane transport of very-long-chain fatty acids leads to accumulation of these fatty acids in different tissues [147]. | Very broad spectrum. Symptoms range from adrenocortical insufficiency only to cerebral adrenoleukodystrophy to adrenomyeloneuropathy (AMN). Most adult patients present with AMN, which involves myelopathy, neuropathy, and possible cerebral involvement [147]. | Sensorimotor axonal (sometimes demyelinating) neuropathy [1] |
|
Spinal and bulbar muscular atrophy (SBMA), also known as Kennedy disease | Expansion of CAG repeat in the AR gene | X-linked | Mutation of the receptor for androgen results in degeneration of lower motor neurons and skeletal muscles [148]. | Muscle weakness, atrophy, fasciculations, occasionally androgen insensitivity [1,148]. | Motor neuropathy [1] |
|
Adult polyglucosan body disease (APBD) | GBE1 | AR | Mutation of GBE1 results in glycogen branching enzyme deficiency, which causes polyglucosan body accumulation in various tissues including peripheral nerves and cerebral white matter [149]. | Cognitive impairment, spasticity, bladder dysfunction [149]. | Sensorimotor axonal-predominant neuropathy [1,3]. |
|
Fabry disease (FD) | GLA | X-linked | Mutation of GLA results in α-galactosidase A activity deficiency, leading to accumulation of globotriaosylceramide (Gb3) and its deacylated form globotriaosylsphingosine (lyso-Gb3) in plasma and different cell types. The severity of phenotype depends on the level of galactosidase A activity [150]. | Multisystemic disease including cardiomyopathy, renal failure, and angiokeratoma [150]. | Sensory axonal and small-fibre neuropathy [1,3] |
|
Acid sphingomyelinase deficiency (ASMD) | SMPD1 | AR | Mutation results in lysosomal enzyme acid sphingomyelinase activity deficiency, leading to sphingomyelin accumulation in various tissues, including the macrophage–monocyte system [152]. | Phenotypic spectrum ranges from severe infantile presentation with early death to subacute/chronic neurovisceral forms. Patients present with hepatosplenomegaly, thrombocytopenia, and interstitial lung disease [152]. | Mostly demyelinating polyneuropathy [127,128] |
|
Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) | MT-TL1 | Maternal inheritance | Mutation results in mitochondrial dysfunction [153]. | Stroke-like episodes [153]. | Subclinical polyneuropathy, predominantly sensory axonal [1,154] |
|
Gaucher disease type 1 (GD1) | GBA1 | AR | Mutation results in β-glucocerebrosidase enzyme activity deficiency, leading to lysosomal glucocerebroside accumulation in various tissues [155]. | Hepatosplenomegaly, thrombocytopenia, anaemia, bone disease, growth failure [155] | Sensorimotor axonal neuropathy [14,118] |
|
Acute intermittent porphyria (AIP) | HMBS | AD | Porphobilinogen deaminase enzyme activity deficiency results from HMBS mutation, leading to depletion of free heme. This results in up-regulation of the delta-aminolevulinic acid synthase and overproduction of toxic heme intermediates that are thought to cause disease manifestations [156]. | Acute neurovisceral attacks characterized by abdominal pain and mental status changes (seizures, psychosis) [157]. | Autonomic neuropathy and acute motor axonal neuropathy resembling Guillain–Barré syndrome during attacks. Subjects not treated promptly or with recurrent attacks may develop chronic neuropathies, typically motor axonal polyneuropathies [1,158]. | |
Friedreich ataxia (FRDA) | Trinucleotide (GAA) repeat expansions in the FXN gene | AR | Reduction in the amount of functional mitochondrial frataxin protein results from repeat expansion in FXN, leading to mitochondrial dysfunction and increased sensitivity to oxidative stress [160]. | Ataxia, cardiomyopathy, diabetes, and loss of visual and sensorineural hearing function [161]. | Sensory axonal neuropathy [1,3] |
|
Bile acid synthesis disorder (BASD) | Several causative genes | Depends on condition | Deficiency or lack of activity in enzymes that catalyse the conversion of cholesterol to bile acids (i.e., single enzyme defects) or defects in oxidation and shortening of the cholesterol side chain caused by generalized peroxisomal dysfunction (Zellweger spectrum disorder) [162]. | Liver dysfunction [162] | Neuropathies are seen in single-enzyme defects such as in patients with cerebrotendinous xanthomatosis (predominantly sensory axonal neuropathy), with alpha-methylacyl-CoA racemase deficiency (axonal or demyelinating neuropathy) [1] and in subjects with Zellweger spectrum disorder who survive into adulthood (mostly demyelinating neuropathies) [163]. |
|
Fragile-X associated tremor/ataxia syndrome (FXTAS) | Premutation expansion (59-199 CGG) in the FMR1 gene | X-linked | Expansion results in overproduction of FMR1 mRNA [164] | Late-onset intention tremor, ataxia, parkinsonism, cognitive decline [164] | Sensory axonal neuropathy [1,3,164] |
|
Appendix C
Reference of Study | JADAD Score | Reference of Study | JADAD Score | Reference of Study | JADAD Score | Reference of Study | JADAD Score |
---|---|---|---|---|---|---|---|
[18] | 1 | [42] | 5 | [65] | 5 | [85] | 1 |
[19] | 1 | [43] | 5 | [66] | 5 | [87] | 1 |
[20] | 1 | [44] | 1 | [67] | 1 | [88] | 2 |
[22] | 5 | [45] | 1 | [68] | 1 | [89] | 5 |
[23] | 5 | [46] | 1 | [69] | 1 | [90] | 5 |
[24] | 3 | [48] | 1 | [70] | 1 | [91] | 1 |
[25] | 1 | [49] | 4 | [71] | 1 | [92] | 1 |
[26] | 3 | [50] | 5 | [72] | 0 | [93] | 1 |
[27] | 1 | [51] | 1 | [73] | 1 | ||
[29] | 1 | [53] | 2 | [74] | 5 | ||
[31] | 4 | [54] | 1 | [75] | 1 | ||
[32] | 4 | [55] | 0 | [76] | 0 | ||
[33] | 4 | [57] | 0 | [77] | 4 | ||
[34] | 4 | [58] | 1 | [78] | 5 | ||
[35] | 1 | [59] | 1 | [79] | 5 | ||
[36] | 1 | [60] | 1 | [80] | 1 | ||
[37] | 1 | [61] | 1 | [81] | 5 | ||
[38] | 1 | [62] | 4 | [82] | 5 | ||
[40] | 1 | [63] | 1 | [83] | 5 | ||
[41] | 5 | [64] | 0 | [84] | 5 |
References
- Rossor, A.M.; Carr, A.S.; Devine, H.; Chandrashekar, H.; Pelayo-Negro, A.L.; Pareyson, D.; Shy, M.E.; Scherer, S.S.; Reilly, M.M. Peripheral neuropathy in complex inherited diseases: An approach to diagnosis. J. Neurol. Neurosurg. Psychiatry 2017, 88, 846–863. [Google Scholar] [CrossRef]
- Fernández-Eulate, G.; Carreau, C.; Benoist, J.-F.; Lamari, F.; Rucheton, B.; Shor, N.; Nadjar, Y. Diagnostic approach in adult-onset neurometabolic diseases. J. Neurol. Neurosurg. Psychiatry 2022, 93, 413–421. [Google Scholar] [CrossRef]
- Masingue, M.; Fernández-Eulate, G.; Debs, R.; Tard, C.; Labeyrie, C.; Leonard-Louis, S.; Dhaenens, C.-M.; Masson, M.; Latour, P.; Stojkovic, T. Strategy for genetic analysis in hereditary neuropathy. Rev. Neurol. 2023, 179, 10–29. [Google Scholar] [CrossRef]
- Bird, T.D. Charcot-Marie-Tooth Hereditary Neuropathy Overview; University of Washington: Seattle, DC, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK1358/ (accessed on 28 March 2023).
- Sargiannidou, I.; Kagiava, A.; Kleopa, K.A. Gene therapy approaches targeting Schwann cells for demyelinating neuropathies. Brain Res. 2020, 1728, 146572. [Google Scholar] [CrossRef]
- Timmerman, V.; Strickland, A.V.; Züchner, S. Genetics of Charcot-Marie-Tooth (CMT) Disease within the Frame of the Human Genome Project Success. Genes 2014, 5, 13–32. [Google Scholar] [CrossRef]
- Jennings, M.J.; Lochmüller, A.; Atalaia, A.; Horvath, R. Targeted Therapies for Hereditary Peripheral Neuropathies: Systematic Review and Steps Towards a ‘treatabolome’. J. Neuromuscul. Dis. 2021, 8, 383–400. [Google Scholar] [CrossRef]
- Pisciotta, C.; Saveri, P.; Pareyson, D. Challenges in Treating Charcot-Marie-Tooth Disease and Related Neuropathies: Current Management and Future Perspectives. Brain Sci. 2021, 11, 1447. [Google Scholar] [CrossRef] [PubMed]
- Hereditary Neuropathy (Version 1.462). Available online: https://panelapp.genomicsengland.co.uk/panels/85/ (accessed on 3 April 2023).
- Orphanet: Diagnostic Des Neuropathies Peripheriques Panel. Available online: https://www.orpha.net/consor/cgi-bin/ClinicalLabs_Search.php?lng=FR&data_id=118068&search=ClinicalLabs_Search_Simple&data_type=Test&title=Diagnostic-des-neuropathies-peripheriques--Panel-&MISSING%20CONTENT=Diagnostic-des-neuropathies-peripheriques--Panel- (accessed on 3 April 2023).
- PEPAN—Overview: Comprehensive Peripheral Neuropathy Gene Panel, Varies. Available online: https://www.mayocliniclabs.com/test-catalog/overview/617688#Clinical-and-Interpretive (accessed on 3 April 2023).
- Orphanet: Search a Disease. Available online: https://www.orpha.net/consor/cgi-bin/Disease_Search.php?lng=EN (accessed on 5 April 2023).
- GeneCards—Human Genes | Gene Database | Gene Search. Available online: https://www.genecards.org/ (accessed on 5 April 2023).
- Finsterer, J.; Löscher, W.N.; Wanschitz, J.; Iglseder, S. Orphan Peripheral Neuropathies. J. Neuromuscul. Dis. 2021, 8, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Ovid: Welcome to Ovid. Available online: https://ovidsp.ovid.com/ (accessed on 5 April 2023).
- Home—ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ (accessed on 5 April 2023).
- Brown, D. JADAD Scores. RCEMLearning India. Available online: https://www.rcemlearning.org/modules/critical-appraisal-appraising-a-treatment-early-goal-directed-therapy/lessons/methodology-jadad-scores/topic/jadad-scores/ (accessed on 3 April 2023).
- Waddington Cruz, M.; Amass, L.; Keohane, D.; Schwartz, J.; Li, H.; Gundapaneni, B. Early intervention with tafamidis provides long-term (5.5-year) delay of neurologic progression in transthyretin hereditary amyloid polyneuropathy. Amyloid Int. J. Exp. Clin. Investig. 2016, 23, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Merlini, G.; Coelho, T.; Waddington Cruz, M.; Li, H.; Stewart, M.; Ebede, B. Evaluation of Mortality During Long-Term Treatment with Tafamidis for Transthyretin Amyloidosis with Polyneuropathy: Clinical Trial Results up to 8.5 Years. Neurol. Ther. 2020, 9, 105–115. [Google Scholar] [CrossRef]
- Gundapaneni, B.K.; Sultan, M.B.; Keohane, D.J.; Schwartz, J.H. Tafamidis delays neurological progression comparably across Val30Met and non-Val30Met genotypes in transthyretin familial amyloid polyneuropathy. Eur. J. Neurol. 2018, 25, 464–468. [Google Scholar] [CrossRef] [PubMed]
- Verma, B.; Patel, P. Tafamidis; StatPearls Publishing: Tampa, FL, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK574508/ (accessed on 28 March 2023).
- Adams, D.; Gonzalez-Duarte, A.; O’Riordan, W.D.; Yang, C.-C.; Ueda, M.; Kristen, A.V.; Tournev, I.; Schmidt, H.H.; Coelho, T.; Berk, J.L.; et al. Patisiran, an RNAi Therapeutic, for Hereditary Transthyretin Amyloidosis. N. Engl. J. Med. 2018, 379, 11–21. [Google Scholar] [CrossRef]
- González-Duarte, A.; Berk, J.L.; Quan, D.; Mauermann, M.L.; Schmidt, H.H.; Polydefkis, M.; Waddington-Cruz, M.; Ueda, M.; Conceição, I.M.; Kristen, A.V.; et al. Analysis of autonomic outcomes in APOLLO, a phase III trial of the RNAi therapeutic patisiran in patients with hereditary transthyretin-mediated amyloidosis. J. Neurol. 2020, 267, 703–712. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Goel, V.; Attarwala, H.; Sweetser, M.T.; Clausen, V.A.; Robbie, G.J. Patisiran Pharmacokinetics, Pharmacodynamics, and Exposure-Response Analyses in the Phase 3 APOLLO Trial in Patients with Hereditary Transthyretin-Mediated (hATTR) Amyloidosis. J. Clin. Pharmacol. 2020, 60, 37–49. [Google Scholar] [CrossRef]
- Coelho, T.; Adams, D.; Conceição, I.; Waddington-Cruz, M.; Schmidt, H.H.; Buades, J.; Campistol, J.; Berk, J.L.; Polydefkis, M.; Wang, J.J.; et al. A phase II, open-label, extension study of long-term patisiran treatment in patients with hereditary transthyretin-mediated (hATTR) amyloidosis. Orphanet J. Rare Dis. 2020, 15, 179. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Merkel, M.; Hale, C.; Marantz, J.L. Experience of patisiran with transthyretin stabilizers in patients with hereditary transthyretin-mediated amyloidosis. Neurodegener. Dis. Manag. 2020, 10, 289–300. [Google Scholar] [CrossRef]
- Schmidt, H.H.; Wixner, J.; Planté-Bordeneuve, V.; Muñoz-Beamud, F.; Lladó, L.; Gillmore, J.D.; Mazzeo, A.; Li, X.; Arum, S.; Jay, P.Y.; et al. Patisiran treatment in patients with hereditary transthyretin-mediated amyloidosis with polyneuropathy after liver transplantation. Am. J. Transplant. 2022, 22, 1646–1657. [Google Scholar] [CrossRef]
- Hoy, S.M. Patisiran: First Global Approval. Drugs 2018, 78, 1625–1631. [Google Scholar] [CrossRef]
- Adams, D.; Tournev, I.L.; Taylor, M.S.; Coelho, T.; Planté-Bordeneuve, V.; Berk, J.L.; González-Duarte, A.; Gillmore, J.D.; Low, S.-C.; Sekijima, Y.; et al. Efficacy and safety of vutrisiran for patients with hereditary transthyretin-mediated amyloidosis with polyneuropathy: A randomized clinical trial. Amyloid Int. J. Exp. Clin. Investig. 2023, 30, 18–26. [Google Scholar] [CrossRef]
- Keam, S.J. Vutrisiran: First Approval. Drugs 2022, 82, 1419–1425. [Google Scholar] [CrossRef]
- Benson, M.D.; Waddington-Cruz, M.; Berk, J.L.; Polydefkis, M.; Dyck, P.J.; Wang, A.K.; Planté-Bordeneuve, V.; Barroso, F.A.; Merlini, G.; Obici, L.; et al. Inotersen Treatment for Patients with Hereditary Transthyretin Amyloidosis. N. Engl. J. Med. 2018, 379, 22–31. [Google Scholar] [CrossRef]
- Dyck, P.J.B.; Coelho, T.; Cruz, M.W.; Iii, T.H.B.; Khella, S.; Karam, C.; Berk, J.L.; Polydefkis, M.J.; Kincaid, J.C.; Wiesman, J.F.; et al. Neuropathy symptom and change: Inotersen treatment of hereditary transthyretin amyloidosis. Muscle Nerve 2020, 62, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Dyck, P.J.B.; Kincaid, J.C.; Wiesman, J.F.; Polydefkis, M.; Litchy, W.J.; Mauermann, M.L.; Ackermann, E.J.; Guthrie, S.; Pollock, M.; Jung, S.W.; et al. mNIS+7 and lower limb function in inotersen treatment of hereditary transthyretin-mediated amyloidosis. Muscle Nerve 2020, 62, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Coelho, T.; Yarlas, A.; Waddington-Cruz, M.; White, M.K.; Kessler, A.S.; Lovley, A.; Pollock, M.; Guthrie, S.; Ackermann, E.J.; Hughes, S.G.; et al. Inotersen preserves or improves quality of life in hereditary transthyretin amyloidosis. J. Neurol. 2020, 267, 1070–1079. [Google Scholar] [CrossRef]
- Brannagan, T.H.; Wang, A.K.; Coelho, T.; Cruz, M.W.; Polydefkis, M.J.; Dyck, P.J.; Plante-Bordeneuve, V.; Berk, J.L.; Barroso, F.; Merlini, G.; et al. Early data on long-term efficacy and safety of inotersen in patients with hereditary transthyretin amyloidosis: A 2-year update from the open-label extension of the NEURO-TTR trial. Eur. J. Neurol. 2020, 27, 1374–1381. [Google Scholar] [CrossRef]
- Brannagan, T.H.; Coelho, T.; Wang, A.K.; Polydefkis, M.J.; Dyck, P.J.; Berk, J.L.; Drachman, B.; Gorevic, P.; Whelan, C.; Conceição, I.; et al. Long-term efficacy and safety of inotersen for hereditary transthyretin amyloidosis: NEURO-TTR open-label extension 3-year update. J. Neurol. 2022, 269, 6416–6427. [Google Scholar] [CrossRef] [PubMed]
- Yarlas, A.; Lovley, A.; McCausland, K.; Brown, D.; Vera-Llonch, M.; Conceição, I.; Karam, C.; Khella, S.; Obici, L.; Waddington-Cruz, M. Early Data on Long-term Impact of Inotersen on Quality-of-Life in Patients with Hereditary Transthyretin Amyloidosis Polyneuropathy: Open-Label Extension of NEURO-TTR. Neurol. Ther. 2021, 10, 865–886. [Google Scholar] [CrossRef]
- Karam, C.; Brown, D.; Yang, M.; Done, N.; Zhu, J.J.; Greatsinger, A.; Bozas, A.; Vera-Llonch, M.; Signorovitch, J. Long-term treatment effects of inotersen on health-related quality of life in patients with hATTR amyloidosis with polyneuropathy: Analysis of the open-label extension of the NEURO-TTR trial. Muscle Nerve 2022, 66, 438–446. [Google Scholar] [CrossRef]
- Mahfouz, M.; Maruyama, R.; Yokota, T. Inotersen for the Treatment of Hereditary Transthyretin Amyloidosis. Methods Mol. Biol. Clifton N. J. 2020, 2176, 87–98. [Google Scholar] [CrossRef]
- Manes, M.; Alberici, A.; Di Gregorio, E.; Boccone, L.; Premi, E.; Mitro, N.; Pasolini, M.P.; Pani, C.; Paghera, B.; Orsi, L.; et al. Long-term efficacy of docosahexaenoic acid (DHA) for Spinocerebellar Ataxia 38 (SCA38) treatment: An open label extension study. Parkinsonism Relat. Disord. 2019, 63, 191–194. [Google Scholar] [CrossRef]
- Norcliffe-Kaufmann, L.; Palma, J.A.; Martinez, J.; Kaufmann, H. Carbidopa for Afferent Baroreflex Failure in Familial Dysautonomia: A Double-Blind Randomized Crossover Clinical Trial. Hypertens. Dallas Tex. 1979 2020, 76, 724–731. [Google Scholar] [CrossRef] [PubMed]
- Fridman, V.; Suriyanarayanan, S.; Novak, P.; David, W.; Macklin, E.A.; McKenna-Yasek, D.; Walsh, K.; Aziz-Bose, R.; Oaklander, A.L.; Brown, R.; et al. Randomized trial of l-serine in patients with hereditary sensory and autonomic neuropathy type 1. Neurology 2019, 92, e359–e370. [Google Scholar] [CrossRef] [PubMed]
- Attarian, S.; Young, P.; Brannagan, T.H.; Adams, D.; Van Damme, P.; Thomas, F.P.; Casanovas, C.; Tard, C.; Walter, M.C.; Péréon, Y.; et al. A double-blind, placebo-controlled, randomized trial of PXT3003 for the treatment of Charcot-Marie-Tooth type 1A. Orphanet J. Rare Dis. 2021, 16, 433. [Google Scholar] [CrossRef]
- Dali, C.; Groeschel, S.; Moldovan, M.; Farah, M.H.; Krägeloh-Mann, I.; Wasilewski, M.; Li, J.; Barton, N.; Krarup, C. Intravenous arylsulfatase A in metachromatic leukodystrophy: A phase 1/2 study. Ann. Clin. Transl. Neurol. 2021, 8, 66–80. [Google Scholar] [CrossRef] [PubMed]
- Dali, C.; Sevin, C.; Krägeloh-Mann, I.; Giugliani, R.; Sakai, N.; Wu, J.; Wasilewski, M. Safety of intrathecal delivery of recombinant human arylsulfatase A in children with metachromatic leukodystrophy: Results from a phase 1/2 clinical trial. Mol. Genet. Metab. 2020, 131, 235–244. [Google Scholar] [CrossRef]
- Fumagalli, F.; Calbi, V.; Sora, M.G.N.; Sessa, M.; Baldoli, C.; Rancoita, P.M.V.; Ciotti, F.; Sarzana, M.; Fraschini, M.; Zambon, A.A.; et al. Lentiviral haematopoietic stem-cell gene therapy for early-onset metachromatic leukodystrophy: Long-term results from a non-randomised, open-label, phase 1/2 trial and expanded access. Lancet 2022, 399, 372–383. [Google Scholar] [CrossRef]
- Public Health—European Commission. Union Register of Medicinal Products. Available online: https://ec.europa.eu/health/documents/community-register/html/h1493.htm (accessed on 3 April 2023).
- Casasnovas, C.; Ruiz, M.; Schlüter, A.; Naudí, A.; Fourcade, S.; Veciana, M.; Castañer, S.; Albertí, A.; Bargalló, N.; Johnson, M.; et al. Biomarker Identification, Safety, and Efficacy of High-Dose Antioxidants for Adrenomyeloneuropathy: A Phase II Pilot Study. Neurother. J. Am. Soc. Exp. Neurother. 2019, 16, 1167–1182. [Google Scholar] [CrossRef]
- Yamada, S.; Hashizume, A.; Hijikata, Y.; Inagaki, T.; Ito, D.; Kishimoto, Y.; Kinoshita, F.; Hirakawa, A.; Shimizu, S.; Nakamura, T.; et al. Mexiletine in spinal and bulbar muscular atrophy: A randomized controlled trial. Ann. Clin. Transl. Neurol. 2022, 9, 1702–1714. [Google Scholar] [CrossRef]
- Schiffmann, R.; Wallace, M.E.; Rinaldi, D.; Ledoux, I.; Luton, M.-P.; Coleman, S.; Akman, H.O.; Martin, K.; Hogrel, J.-Y.; Blankenship, D.; et al. A double-blind, placebo-controlled trial of triheptanoin in adult polyglucosan body disease and open-label, long-term outcome. J. Inherit. Metab. Dis. 2018, 41, 877–883. [Google Scholar] [CrossRef]
- Diep, J.K.; Yu, R.Z.; Viney, N.J.; Schneider, E.; Guo, S.; Henry, S.; Monia, B.; Geary, R.; Wang, Y. Population pharmacokinetic/pharmacodynamic modelling of eplontersen, an antisense oligonucleotide in development for transthyretin amyloidosis. Br. J. Clin. Pharmacol. 2022, 88, 5389–5398. [Google Scholar] [CrossRef]
- FDA Accepts Ionis NDA for Eplontersen in Rare Hereditary Disease | FDAnews. Available online: https://www.fdanews.com/articles/211422-fda-accepts-ionis-nda-for-eplontersen-in-rare-hereditary-disease (accessed on 20 March 2023).
- Gouverneur, C. Topline Results from Phase 3 ATTRibute-CM Study | BridgeBio. bridgebiowp. Published December 27, 2021. Available online: https://bridgebio.com/news/bridgebio-pharma-reports-month-12-topline-results-from-phase-3-attribute-cm-study/ (accessed on 20 March 2023).
- Gillmore, J.D.; Gane, E.; Taubel, J.; Kao, J.; Fontana, M.; Maitland, M.L.; Seitzer, J.; O’connell, D.; Walsh, K.R.; Wood, K.; et al. CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis. N. Engl. J. Med. 2021, 385, 493–502. [Google Scholar] [CrossRef]
- Gillmore, J.D.; Gane, E.; Taubel, J.; Kao, J.; Fontana, M.; Maitland, M.L.; Seitzer, J.; O’connell, D.; Walsh, K.R.; Wood, K.; et al. Transthyretin stabilization activity of the catechol-O-methyltransferase inhibitor tolcapone (SOM0226) in hereditary ATTR amyloidosis patients and asymptomatic carriers: Proof-of-concept study. Amyloid Int. J. Exp. Clin. Investig. 2019, 26, 74–84. [Google Scholar] [CrossRef]
- Pinheiro, F.; Varejão, N.; Esperante, S.; Santos, J.; Velázquez-Campoy, A.; Reverter, D.; Pallarès, I.; Ventura, S. Tolcapone, a potent aggregation inhibitor for the treatment of familial leptomeningeal amyloidosis. FEBS J. 2021, 288, 310–324. [Google Scholar] [CrossRef] [PubMed]
- Müntze, J.; Gensler, D.; Maniuc, O.; Liu, D.; Cairns, T.; Oder, D.; Hu, K.; Lorenz, K.; Frantz, S.; Wanner, C.; et al. Oral Chaperone Therapy Migalastat for Treating Fabry Disease: Enzymatic Response and Serum Biomarker Changes After 1 Year. Clin. Pharmacol. Ther. 2019, 105, 1224–1233. [Google Scholar] [CrossRef] [PubMed]
- Narita, I.; Ohashi, T.; Sakai, N.; Hamazaki, T.; Skuban, N.; Castelli, J.P.; Lagast, H.; Barth, J.A. Efficacy and safety of migalastat in a Japanese population: A subgroup analysis of the ATTRACT study. Clin. Exp. Nephrol. 2020, 24, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Feldt-Rasmussen, U.; Hughes, D.; Sunder-Plassmann, G.; Shankar, S.; Nedd, K.; Olivotto, I.; Ortiz, D.; Ohashi, T.; Hamazaki, T.; Skuban, N.; et al. Long-term efficacy and safety of migalastat treatment in Fabry disease: 30-month results from the open-label extension of the randomized, phase 3 ATTRACT study. Mol. Genet. Metab. 2020, 131, 219–228. [Google Scholar] [CrossRef]
- Germain, D.P.; Nicholls, K.; Giugliani, R.; Bichet, D.G.; Hughes, D.A.; Barisoni, L.M.; Colvin, R.B.; Jennette, J.C.; Skuban, N.; Castelli, J.P.; et al. Efficacy of the pharmacologic chaperone migalastat in a subset of male patients with the classic phenotype of Fabry disease and migalastat-amenable variants: Data from the phase 3 randomized, multicenter, double-blind clinical trial and extension study. Genet. Med. 2019, 21, 1987–1997. [Google Scholar] [CrossRef]
- Deegan, P.B.; Goker-Alpan, O.; Geberhiwot, T.; Hopkin, R.J.; Lukina, E.; Tylki-Szymanska, A.; Zaher, A.; Sensinger, C.; Gaemers, S.J.; Modur, V.; et al. Venglustat, an orally administered glucosylceramide synthase inhibitor: Assessment over 3 years in adult males with classic Fabry disease in an open-label phase 2 study and its extension study. Mol. Genet. Metab. 2023, 138, 106963. [Google Scholar] [CrossRef]
- Ramaswami, U.; Bichet, D.G.; Clarke, L.A.; Dostalova, G.; Fainboim, A.; Fellgiebel, A.; Forcelini, C.M.; Haack, K.A.; Hopkin, R.J.; Mauer, M.; et al. Low-dose agalsidase beta treatment in male pediatric patients with Fabry disease: A 5-year randomized controlled trial. Mol. Genet. Metab. 2019, 127, 86–94. [Google Scholar] [CrossRef]
- Hwang, S.M.; Lee, B.H.M.; Kim, W.-S.M.; Kim, D.-S.M.; Cheon, C.K.M.; Lee, C.H.M.; Choi, Y.; Choi, J.-H.M.; Kim, J.H.M.; Yoo, H.-W.M. A phase II, multicenter, open-label trial to evaluate the safety and efficacy of ISU303 (Agalsidase beta) in patients with Fabry disease. Medicine 2022, 101, e30345. [Google Scholar] [CrossRef]
- Schiffmann, R.; Goker-Alpan, O.; Holida, M.; Giraldo, P.; Barisoni, L.; Colvin, R.B.; Jennette, C.J.; Maegawa, G.; Boyadjiev, S.A.; Gonzalez, D.; et al. Pegunigalsidase alfa, a novel PEGylated enzyme replacement therapy for Fabry disease, provides sustained plasma concentrations and favorable pharmacodynamics: A 1-year Phase 1/2 clinical trial. J. Inherit. Metab. Dis. 2019, 42, 534–544. [Google Scholar] [CrossRef] [PubMed]
- Coarelli, G.; Heinzmann, A.; Ewenczyk, C.; Fischer, C.; Chupin, M.; Monin, M.-L.; Hurmic, H.; Calvas, F.; Calvas, P.; Goizet, C.; et al. Safety and efficacy of riluzole in spinocerebellar ataxia type 2 in France (ATRIL): A multicentre, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2022, 21, 225–233. [Google Scholar] [CrossRef]
- Rodriguez-Labrada, R.; Ortega-Sanchez, R.; Casaña, P.H.; Morales, O.S.; Padrón-Estupiñan, M.D.C.; Batista-Nuñez, M.; Rodríguez, D.J.; Canales-Ochoa, N.; Acosta, A.P.; Montero, J.M.; et al. Erythropoietin in Spinocerebellar Ataxia Type 2: Feasibility and Proof-of-Principle Issues from a Randomized Controlled Study. Mov. Disord. 2022, 37, 1516–1525. [Google Scholar] [CrossRef] [PubMed]
- Koga, Y.; Povalko, N.; Inoue, E.; Nakamura, H.; Ishii, A.; Suzuki, Y.; Yoneda, M.; Kanda, F.; Kubota, M.; Okada, H.; et al. Therapeutic regimen of L-arginine for MELAS: 9-year, prospective, multicenter, clinical research. J. Neurol. 2018, 265, 2861–2874. [Google Scholar] [CrossRef]
- Guerrero-Molina, M.P.; Morales-Conejo, M.; Delmiro, A.; Morán, M.; Domínguez-González, C.; Arranz-Canales, E.; Ramos-González, A.; Arenas, J.; Martín, M.A.; de la Aleja, J.G. High-dose oral glutamine supplementation reduces elevated glutamate levels in cerebrospinal fluid in patients with mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes syndrome. Eur. J. Neurol. 2023, 30, 538–547. [Google Scholar] [CrossRef]
- Ohsawa, Y.; Hagiwara, H.; Nishimatsu, S.-I.; Hirakawa, A.; Kamimura, N.; Ohtsubo, H.; Fukai, Y.; Murakami, T.; Koga, Y.; Goto, Y.-I.; et al. Taurine supplementation for prevention of stroke-like episodes in MELAS: A multicentre, open-label, 52-week phase III trial. J. Neurol. Neurosurg. Psychiatry 2019, 90, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Mistry, P.K.; Lukina, E.; Ben Turkia, H.; Shankar, S.P.; Feldman, H.B.; Ghosn, M.; Mehta, A.; Packman, S.; Lau, H.; Petakov, M.; et al. Clinical outcomes after 4.5 years of eliglustat therapy for Gaucher disease type 1: Phase 3 ENGAGE trial final results. Am. J. Hematol. 2021, 96, 1156–1165. [Google Scholar] [CrossRef]
- Lukina, E.; Watman, N.; Dragosky, M.; Lau, H.; Arreguin, E.A.; Rosenbaum, H.; Zimran, A.; Foster, M.C.; Gaemers, S.J.M.; Peterschmitt, M.J. Outcomes after 8 years of eliglustat therapy for Gaucher disease type 1: Final results from the Phase 2 trial. Am. J. Hematol. 2019, 94, 29–38. [Google Scholar] [CrossRef]
- Zimran, A.; Gonzalez-Rodriguez, D.E.; Abrahamov, A.; Cooper, P.A.; Varughese, S.; Giraldo, P.; Petakov, M.; Tan, E.S.; Chertkoff, R. Long-term safety and efficacy of taliglucerase alfa in pediatric Gaucher disease patients who were treatment-naive or previously treated with imiglucerase. Blood Cells Mol. Dis. 2018, 68, 163–172. [Google Scholar] [CrossRef]
- Kuter, D.J.; Wajnrajch, M.; Hernandez, B.; Wang, R.; Chertkoff, R.; Zimran, A. Open-label, expanded access study of taliglucerase alfa in patients with Gaucher disease requiring enzyme replacement therapy. Blood Cells Mol. Dis. 2020, 82, 102418. [Google Scholar] [CrossRef]
- Balwani, M.; Sardh, E.; Ventura, P.; Peiró, P.A.; Rees, D.C.; Stölzel, U.; Bissell, D.M.; Bonkovsky, H.L.; Windyga, J.; Anderson, K.E.; et al. Phase 3 Trial of RNAi Therapeutic Givosiran for Acute Intermittent Porphyria. N. Engl. J. Med. 2020, 382, 2289–2301. [Google Scholar] [CrossRef] [PubMed]
- Ventura, P.; Bonkovsky, H.L.; Gouya, L.; Aguilera-Peiró, P.; Bissell, D.M.; Stein, P.E.; Balwani, M.; Anderson, D.K.E.; Parker, C.; Kuter, D.J.; et al. Efficacy and safety of givosiran for acute hepatic porphyria: 24-month interim analysis of the randomized phase 3 ENVISION study. ENVISION Investigators, ed. Liver Int. 2022, 42, 161–172. [Google Scholar] [CrossRef]
- Wang, B.; Ventura, P.; Takase, K.-I.; Thapar, M.; Cassiman, D.; Kubisch, I.; Liu, S.; Sweetser, M.T.; Balwani, M. Disease burden in patients with acute hepatic porphyria: Experience from the phase 3 ENVISION study. Orphanet J. Rare Dis. 2022, 17, 327. [Google Scholar] [CrossRef] [PubMed]
- Sardh, E.; Harper, P.; Balwani, M.; Stein, P.; Rees, D.; Bissell, D.M.; Desnick, R.; Parker, C.; Phillips, J.; Bonkovsky, H.L.; et al. Phase 1 Trial of an RNA Interference Therapy for Acute Intermittent Porphyria. N. Engl. J. Med. 2019, 380, 549–558. [Google Scholar] [CrossRef]
- Lynch, D.R.; Hauser, L.; McCormick, A.; Wells, M.; Na Dong, Y.; McCormack, S.; Schadt, K.; Perlman, S.; Subramony, S.H.; Mathews, K.D.; et al. Randomized, double-blind, placebo-controlled study of interferon-gamma 1b in Friedreich Ataxia. Ann. Clin. Transl. Neurol. 2019, 6, 546–553. [Google Scholar] [CrossRef] [PubMed]
- Zesiewicz, T.; Salemi, J.; Perlman, S.; Sullivan, K.L.; Shaw, J.D.; Huang, Y.; Isaacs, C.; Gooch, C.; Lynch, D.R.; Klein, M.B. Double-blind, randomized and controlled trial of EPI-743 in Friedreich’s ataxia. Neurodegener. Dis. Manag. 2018, 8, 233–242. [Google Scholar] [CrossRef]
- Qureshi, M.Y.; Patterson, M.C.; Clark, V.; Johnson, J.N.; Moutvic, M.A.; Driscoll, S.W.; Kemppainen, J.L.; Huston, J.; Anderson, J.R.; Badley, A.D.; et al. Safety and efficacy of (+)-epicatechin in subjects with Friedreich’s ataxia: A phase II, open-label, prospective study. J. Inherit. Metab. Dis. 2021, 44, 502–514. [Google Scholar] [CrossRef]
- Wang, H.; Norton, J.; Xu, L.; DeMartinis, N.; Sen, R.; Shah, A.; Farmer, J.; Lynch, D. Results of a randomized double-blind study evaluating luvadaxistat in adults with Friedreich ataxia. Ann. Clin. Transl. Neurol. 2021, 8, 1343–1352. [Google Scholar] [CrossRef]
- Lynch, D.R.; Chin, M.P.; Delatycki, M.B.; Subramony, S.H.; Corti, M.; Hoyle, J.C.; Boesch, S.; Nachbauer, W.; Mariotti, C.; Mathews, K.D.; et al. Safety and Efficacy of Omaveloxolone in Friedreich Ataxia (MOXIe Study). Ann. Neurol. 2021, 89, 212–225. [Google Scholar] [CrossRef]
- Lynch, D.R.; Farmer, J.; Hauser, L.; Blair, I.A.; Wang, Q.Q.; Mesaros, C.; Snyder, N.; Boesch, S.; Chin, M.; Delatycki, M.B.; et al. Safety, pharmacodynamics, and potential benefit of omaveloxolone in Friedreich ataxia. Ann. Clin. Transl. Neurol. 2019, 6, 15–26. [Google Scholar] [CrossRef]
- Zesiewicz, T.; Heerinckx, F.; De Jager, R.; Omidvar, O.; Kilpatrick, M.; Shaw, J.; Shchepinov, M.S. Randomized, clinical trial of RT001: Early signals of efficacy in Friedreich’s ataxia. Mov. Disord. 2018, 33, 1000–1005. [Google Scholar] [CrossRef]
- Heubi, J.E.; Setchell, K.D.R. Open-label Phase 3 Continuation Study of Cholic Acid in Patients with Inborn Errors of Bile Acid Synthesis. J. Pediatr. Gastroenterol. Nutr. 2020, 70, 423–429. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration Approves Cholbam for the Treatment of Rare Bile Acid Synthesis Disorders and Grants Rare Pediatric Disease Priority Review Voucher | Travere Therapeutics, Inc. Available online: https://ir.travere.com/news-releases/news-release-details/us-food-and-drug-administration-approves-cholbam-treatment-rare (accessed on 28 March 2023).
- Hasegawa, S.; Kumada, S.; Tanuma, N.; Tsuji-Hosokawa, A.; Kashimada, A.; Mizuno, T.; Moriyama, K.; Sugawara, Y.; Shirai, I.; Miyata, Y.; et al. Long-Term Evaluation of Low-Dose Betamethasone for Ataxia Telangiectasia. Pediatr. Neurol. 2019, 100, 60–66. [Google Scholar] [CrossRef] [PubMed]
- EryDel Announces Top-Line Results from Phase3 ATTeST Trial Demonstrating Significant Clinical Benefit of EryDex in Ataxia Telangiectasia. Available online: https://assobiotec.federchimica.it/en/news/detail/2021/07/12/erydel-announces-top-line-results-from-phase3-attest-trial-demonstrating-significant-clinical-benefit-of-erydex-in-ataxia-telangiectasia (accessed on 28 March 2023).
- Köhler, W.; Engelen, M.; Eichler, F.; Lachmann, R.; Fatemi, A.; Sampson, J.; Salsano, E.; Gamez, J.; Molnar, M.J.; Pascual, S.; et al. Safety and efficacy of leriglitazone for preventing disease progression in men with adrenomyeloneuropathy (ADVANCE): A randomised, double-blind, multi-centre, placebo-controlled phase 2-3 trial. Lancet Neurol. 2023, 22, 127–136. [Google Scholar] [CrossRef]
- Grunseich, C.; Miller, R.; Swan, T.; Glass, D.J.; El Mouelhi, M.; Fornaro, M.; Petricoul, O.; Vostiar, I.; Roubenoff, R.; Meriggioli, M.N.; et al. Safety, tolerability, and preliminary efficacy of an IGF-1 mimetic in patients with spinal and bulbar muscular atrophy: A randomised, placebo-controlled trial. Lancet Neurol. 2018, 17, 1043–1052. [Google Scholar] [CrossRef]
- Diaz, G.A.; Jones, S.A.; Scarpa, M.; Mengel, K.E.; Giugliani, R.; Guffon, N.; Batsu, I.; Fraser, P.A.; Li, J.; Zhang, Q.; et al. One-year results of a clinical trial of olipudase alfa enzyme replacement therapy in pediatric patients with acid sphingomyelinase deficiency. Genet. Med. 2021, 23, 1543–1550. [Google Scholar] [CrossRef] [PubMed]
- Wasserstein, M.P.; Diaz, G.A.; Lachmann, R.H.; Jouvin, M.-H.; Nandy, I.; Ji, A.J.; Puga, A.C. Olipudase alfa for treatment of acid sphingomyelinase deficiency (ASMD): Safety and efficacy in adults treated for 30 months. J. Inherit. Metab. Dis. 2018, 41, 829–838. [Google Scholar] [CrossRef]
- Hall, D.A.; Robertson, E.E.; Leehey, M.; McAsey, A.; Ouyang, B.; Berry-Kravis, E.; O’keefe, J.A. Open-label pilot clinical trial of citicoline for fragile X-associated tremor/ataxia syndrome (FXTAS). PloS ONE 2020, 15, e0225191. [Google Scholar] [CrossRef]
- Attarian, S.; Vallat, J.-M.; Magy, L.; Funalot, B.; Gonnaud, P.-M.; Lacour, A.; Péréon, Y.; Dubourg, O.; Pouget, J.; Micallef, J.; et al. An exploratory randomised double-blind and placebo-controlled phase 2 study of a combination of baclofen, naltrexone and sorbitol (PXT3003) in patients with Charcot-Marie-Tooth disease type 1A. Orphanet J. Rare Dis. 2014, 9, 199. [Google Scholar] [CrossRef] [PubMed]
- Coelho, T.; Maia, L.F.; Da Silva, A.M.; Cruz, M.W.; Planté-Bordeneuve, V.; Suhr, O.B.; Conceiçao, I.; Schmidt, H.H.-J.; Trigo, P.; Kelly, J.W.; et al. Long-term effects of tafamidis for the treatment of transthyretin familial amyloid polyneuropathy. J. Neurol. 2013, 260, 2802–2814. [Google Scholar] [CrossRef]
- Carroll, A.; Dyck, P.J.; de Carvalho, M.; Kennerson, M.; Reilly, M.M.; Kiernan, M.C.; Vucic, S. Novel approaches to diagnosis and management of hereditary transthyretin amyloidosis. J. Neurol. Neurosurg. Psychiatry 2022, 93, 668–678. [Google Scholar] [CrossRef]
- Cantone, A.; Sanguettoli, F.; Dal Passo, B.; Serenelli, M.; Rapezzi, C. The treatment of amyloidosis is being refined. Eur. Heart J. Suppl. J. Eur. Soc. Cardiol. 2022, 24 (Suppl. SI), I131–I138. [Google Scholar] [CrossRef]
- Narayanan, P.; Curtis, B.R.; Shen, L.; Schneider, E.; Tami, J.A.; Paz, S.; Burel, S.A.; Tai, L.-J.; Machemer, T.; Kwoh, T.J.; et al. Underlying Immune Disorder May Predispose Some Transthyretin Amyloidosis Subjects to Inotersen-Mediated Thrombocytopenia. Nucleic Acid. Ther. 2020, 30, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Gorevic, P.; Franklin, J.; Chen, J.; Sajeev, G.; Wang, J.C.H.; Lin, H. Indirect treatment comparison of the efficacy of patisiran and inotersen for hereditary transthyretin-mediated amyloidosis with polyneuropathy. Expert. Opin. Pharmacother. 2021, 22, 121–129. [Google Scholar] [CrossRef]
- Planté-Bordeneuve, V.; Lin, H.; Gollob, J.; Agarwal, S.; Betts, M.; Fahrbach, K.; Chitnis, M.; Polydefkis, M. An indirect treatment comparison of the efficacy of patisiran and tafamidis for the treatment of hereditary transthyretin-mediated amyloidosis with polyneuropathy. Expert. Opin. Pharmacother. 2019, 20, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Araki, K.; Nakanishi, H.; Nakamura, T.; Atsuta, N.; Yamada, S.; Hijikata, Y.; Hashizume, A.; Suzuki, K.; Katsuno, M.; Sobue, G. Myotonia-like symptoms in a patient with spinal and bulbar muscular atrophy. Neuromuscul. Disord. NMD 2015, 25, 913–915. [Google Scholar] [CrossRef]
- Dainese, L.; Monin, M.-L.; Demeret, S.; Brochier, G.; Froissart, R.; Spraul, A.; Schiffmann, R.; Seilhean, D.; Mochel, F. Abnormal glycogen in astrocytes is sufficient to cause adult polyglucosan body disease. Gene 2013, 515, 376–379. [Google Scholar] [CrossRef]
- Godel, T.; Bäumer, P.; Pham, M.; Köhn, A.; Muschol, N.; Kronlage, M.; Kollmer, J.; Heiland, S.; Bendszus, M.; Mautner, V.-F. Human dorsal root ganglion in vivo morphometry and perfusion in Fabry painful neuropathy. Neurology 2017, 89, 1274–1282. [Google Scholar] [CrossRef]
- Hofmann, L.; Hose, D.; Grießhammer, A.; Blum, R.; Döring, F.; Dib-Hajj, S.; Waxman, S.; Sommer, C.; Wischmeyer, E.; Üçeyler, N. Characterization of small fiber pathology in a mouse model of Fabry disease. eLife 2018, 7, e39300. [Google Scholar] [CrossRef]
- Waltz, T.B.; Burand, A.J.; Sadler, K.E.; Stucky, C.L. Sensory-specific peripheral nerve pathology in a rat model of Fabry disease. Neurobiol. Pain. 2021, 10, 100074. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, A.; Germain, D.P.; Desnick, R.J.; Politei, J.; Mauer, M.; Burlina, A.; Eng, C.; Hopkin, R.J.; Laney, D.; Linhart, A.; et al. Fabry disease revisited: Management and treatment recommendations for adult patients. Mol. Genet. Metab. 2018, 123, 416–427. [Google Scholar] [CrossRef]
- Schiffmann, R.; Floeter, M.K.; Dambrosia, J.M.; Gupta, S.; Moore, D.F.; Sharabi, Y.; Khurana, R.K.; Brady, R.O. Enzyme replacement therapy improves peripheral nerve and sweat function in Fabry disease. Muscle Nerve 2003, 28, 703–710. [Google Scholar] [CrossRef] [PubMed]
- Hilz, M.J.; Brys, M.; Marthol, H.; Stemper, B.; Dütsch, M. Enzyme replacement therapy improves function of C-, Adelta-, and Abeta-nerve fibers in Fabry neuropathy. Neurology 2004, 62, 1066–1072. [Google Scholar] [CrossRef] [PubMed]
- Schiffmann, R.; Kopp, J.B.; Iii, H.A.A.; Sabnis, S.; Moore, D.F.; Weibel, T.; Balow, J.E.; Brady, R.O. Enzyme replacement therapy in Fabry disease: A randomized controlled trial. JAMA 2001, 285, 2743–2749. [Google Scholar] [CrossRef]
- Wu, X.; Katz, E.; Della Valle, M.C.; Mascioli, K.; Flanagan, J.J.; Castelli, J.P.; Schiffmann, R.; Boudes, P.; Lockhart, D.J.; Valenzano, K.J.; et al. A pharmacogenetic approach to identify mutant forms of α-galactosidase A that respond to a pharmacological chaperone for Fabry disease. Hum. Mutat. 2011, 32, 965–977. [Google Scholar] [CrossRef] [PubMed]
- EMA. Givlaari. European Medicines Agency. Published January 29, 2020. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/givlaari (accessed on 29 March 2023).
- Bonkowsky, H.L.; Schady, W. Neurologic Manifestations of Acute Porphyria. Semin. Liver Dis. 1982, 2, 108–124. [Google Scholar] [CrossRef]
- Di Gregorio, E.; Borroni, B.; Giorgio, E.; Lacerenza, D.; Ferrero, M.; Buono, N.L.; Ragusa, N.; Mancini, C.; Gaussen, M.; Calcia, A.; et al. ELOVL5 Mutations Cause Spinocerebellar Ataxia 38. Am. J. Hum. Genet. 2014, 95, 209–217. [Google Scholar] [CrossRef]
- Borroni, B.; Di Gregorio, E.; Orsi, L.; Vaula, G.; Costanzi, C.; Tempia, F.; Mitro, N.; Caruso, D.; Manes, M.; Pinessi, L.; et al. Clinical and neuroradiological features of spinocerebellar ataxia 38 (SCA38). Park. Relat. Disord. 2016, 28, 80–86. [Google Scholar] [CrossRef]
- Romano, S.; Coarelli, G.; Marcotulli, C.; Leonardi, L.; Piccolo, F.; Spadaro, M.; Frontali, M.; Ferraldeschi, M.; Vulpiani, M.C.; Ponzelli, F.; et al. Riluzole in patients with hereditary cerebellar ataxia: A randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2015, 14, 985–991. [Google Scholar] [CrossRef]
- Velázquez-Pérez, L.; Rodríguez-Labrada, R.; García-Rodríguez, J.C.; Almaguer-Mederos, L.E.; Cruz-Mariño, T.; Laffita-Mesa, J.M. A comprehensive review of spinocerebellar ataxia type 2 in Cuba. Cerebellum 2011, 10, 184–198. [Google Scholar] [CrossRef]
- Rey, F.; Balsari, A.; Giallongo, T.; Ottolenghi, S.; Di Giulio, A.M.; Samaja, M.; Carelli, S. Erythropoietin as a Neuroprotective Molecule: An Overview of Its Therapeutic Potential in Neurodegenerative Diseases. ASN Neuro 2019, 11, 1759091419871420. [Google Scholar] [CrossRef]
- Biegstraaten, M.; Mengel, E.; Maródi, L.; Petakov, M.; Niederau, C.; Giraldo, P.; Hughes, D.; Mrsic, M.; Mehta, A.; Hollak, C.E.M.; et al. Peripheral neuropathy in adult type 1 Gaucher disease: A 2-year prospective observational study. Brain 2010, 133, 2909–2919. [Google Scholar] [CrossRef]
- Lloyd-Evans, E.; Pelled, D.; Riebeling, C.; Bodennec, J.; De-Morgan, A.; Waller, H.; Schiffmann, R.; Futerman, A.H. Glucosylceramide and glucosylsphingosine modulate calcium mobilization from brain microsomes via different mechanisms. J. Biol. Chem. 2003, 278, 23594–23599. [Google Scholar] [CrossRef]
- Revel-Vilk, S.; Szer, J.; Mehta, A.; Zimran, A. How we manage Gaucher Disease in the era of choices. Br. J. Haematol. 2018, 182, 467–480. [Google Scholar] [CrossRef]
- Dyck, P.J.B.; González-Duarte, A.; Obici, L.; Polydefkis, M.; Wiesman, J.; Antonino, I.; Litchy, W. Development of measures of polyneuropathy impairment in hATTR amyloidosis: From NIS to mNIS + 7. J. Neurol. Sci. 2019, 405, 116424. [Google Scholar] [CrossRef]
- Corrà, M.F.; Warmerdam, E.; Vila-Chã, N.; Maetzler, W.; Maia, L. Wearable Health Technology to Quantify the Functional Impact of Peripheral Neuropathy on Mobility in Parkinson’s Disease: A Systematic Review. Sensors 2020, 20, 6627. [Google Scholar] [CrossRef] [PubMed]
- Brognara, L.; Mazzotti, A.; Di Martino, A.; Faldini, C.; Cauli, O. Wearable Sensor for Assessing Gait and Postural Alterations in Patients with Diabetes: A Scoping Review. Medicina 2021, 57, 1145. [Google Scholar] [CrossRef]
- Abdelnaby, R.; Elgenidy, A.; Sonbol, Y.T.; Dardeer, K.T.; Ebrahim, M.A.; Maallem, I.; Youssef, M.W.; Moawad, M.H.E.D.; Hassan, Y.G.; Rabie, S.A.; et al. Nerve Sonography in Charcot–Marie–Tooth Disease: A Systematic Review and Meta-analysis of 6061 Measured Nerves. Ultrasound Med. Biol. 2022, 48, 1397–1409. [Google Scholar] [CrossRef] [PubMed]
- Morrow, J.M.; Evans, M.R.; Grider, T.; Sinclair, C.D.; Thedens, D.; Shah, S.; Yousry, T.A.; Hanna, M.G.; Nopoulos, P.; Thornton, J.S.; et al. Validation of MRC Centre MRI calf muscle fat fraction protocol as an outcome measure in CMT1A. Neurology 2018, 91, e1125–e1129. [Google Scholar] [CrossRef] [PubMed]
- Sandelius, Å.; Zetterberg, H.; Blennow, K.; Adiutori, R.; Malaspina, A.; Laura, M.; Reilly, M.M.; Rossor, A.M. Plasma neurofilament light chain concentration in the inherited peripheral neuropathies. Neurology 2018, 90, e518–e524. [Google Scholar] [CrossRef]
- Landrieu, P.; Saïd, G. Peripheral neuropathy in type A Niemann-Pick disease. Acta Neuropathol. 1984, 63, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Gumbinas, M.; Larsen, M.; Liu, H.M. Peripheral neuropathy in classic Niemann-Pick disease: Ultrastructure of nerves and skeletal muscles. Neurology 1975, 25, 107. [Google Scholar] [CrossRef]
- Steinman, L.; Tharp, B.R.; Dorfman, L.J.; Forno, L.S.; Sogg, R.L.; Kelts, K.A.; O’Brien, J.S. Peripheral neuropathy in the cherry-red spot-myoclonus syndrome (sialidosis type I). Ann. Neurol. 1980, 7, 450–456. [Google Scholar] [CrossRef] [PubMed]
- Varho, T.; Jääskeläinen, S.; Tolonen, U.; Sonninen, P.; Vainionpaa, L.; Aula, P.; Sillanpaa, M. Central and peripheral nervous system dysfunction in the clinical variation of Salla disease. Neurology 2000, 55, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.P.S.; Amintas, S.; Levade, T.; Medin, J.A. Acid ceramidase deficiency: Farber disease and SMA-PME. Orphanet J. Rare Dis. 2018, 13, 121. [Google Scholar] [CrossRef]
- Ahrens-Nicklas, R.; Schlotawa, L.; Ballabio, A.; Brunetti-Pierri, N.; De Castro, M.; Dierks, T.; Eichler, F.; Ficicioglu, C.; Finglas, A.; Gaertner, J.; et al. Complex care of individuals with Multiple Sulfatase Deficiency: Clinical cases and consensus statement. Mol. Genet. Metab. 2018, 123, 337–346. [Google Scholar] [CrossRef]
- Carneiro, D.R.; Rebelo, O.; Matos, A.; Baldeiras, I.; Almendra, L.; Fernandes, C.; Negrão, L.; Almeida, M.R.; Matias, F.; Brás, J.; et al. Vasculitic peripheral neuropathy in deficiency of adenosine deaminase 2. Neuromuscul. Disord. NMD 2021, 31, 891–895. [Google Scholar] [CrossRef]
- Ando, Y.; Coelho, T.; Berk, J.L.; Cruz, M.W.; Ericzon, B.-G.; Ikeda, S.-i.; Lewis, W.D.; Obici, L.; Planté-Bordeneuve, V.; Rapezzi, C.; et al. Guideline of transthyretin-related hereditary amyloidosis for clinicians. Orphanet J. Rare Dis. 2013, 8, 31. [Google Scholar] [CrossRef]
- Adams, D. Recent advances in the treatment of familial amyloid polyneuropathy. Ther. Adv. Neurol. Disord. 2013, 6, 129–139. [Google Scholar] [CrossRef]
- Bhandari, J.; Thada, P.K.; Samanta, D. Spinocerebellar Ataxia; StatPearls Publishing: Tampa, FL, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK557816/ (accessed on 21 March 2023).
- Kaufmann, H.; Norcliffe-Kaufmann, L.; Palma, J.A. Baroreflex Dysfunction. N. Engl. J. Med. 2020, 382, 163–178. [Google Scholar] [CrossRef]
- Penno, A.; Reilly, M.M.; Houlden, H.; Laurá, M.; Rentsch, K.; Niederkofler, V.; Stoeckli, E.T.; Nicholson, G.; Eichler, F.; Brown, R.H.; et al. Hereditary sensory neuropathy type 1 is caused by the accumulation of two neurotoxic sphingolipids. J. Biol. Chem. 2010, 285, 11178–11187. [Google Scholar] [CrossRef] [PubMed]
- Houlden, H.; King, R.; Blake, J.; Groves, M.; Love, S.; Woodward, C.; Hammans, S.; Nicoll, J.; Lennox, G.; O’Donovan, D.G.; et al. Clinical, pathological and genetic characterization of hereditary sensory and autonomic neuropathy type 1 (HSAN I). Brain J. Neurol. 2006, 129 Pt. 2, 411–425. [Google Scholar] [CrossRef]
- Ambrose, M.; Gatti, R.A. Pathogenesis of ataxia-telangiectasia: The next generation of ATM functions. Blood 2013, 121, 4036–4045. [Google Scholar] [CrossRef] [PubMed]
- Storey, E. Genetic Cerebellar Ataxias. Semin. Neurol. 2014, 34, 280–292. [Google Scholar] [CrossRef] [PubMed]
- Rossor, A.; Tomaselli, P.; Reilly, M. Recent advances in the genetic neuropathies. Curr. Opin. Neurol. 2016, 29, 537–548. [Google Scholar] [CrossRef]
- Li, J.; Parker, B.; Martyn, C.; Natarajan, C.; Guo, J. The PMP22 Gene and Its Related Diseases. Mol. Neurobiol. 2013, 47, 673–698. [Google Scholar] [CrossRef]
- Gieselmann, V. Metachromatic leukodystrophy: Genetics, pathogenesis and therapeutic options. Acta Paediatr. 2008, 97 (Suppl. S457), 15–21. [Google Scholar] [CrossRef]
- Van den Broek, B.T.A.; Page, K.; Paviglianiti, A.; Hol, J.; Allewelt, H.; Volt, F.; Michel, G.; Diaz, M.A.; Bordon, V.; O’Brien, T.; et al. Early and late outcomes after cord blood transplantation for pediatric patients with inherited leukodystrophies. Blood Adv. 2018, 2, 49–60. [Google Scholar] [CrossRef]
- Boucher, A.A.; Miller, W.; Shanley, R.; Ziegler, R.; Lund, T.; Raymond, G.; Orchard, P.J. Long-term outcomes after allogeneic hematopoietic stem cell transplantation for metachromatic leukodystrophy: The largest single-institution cohort report. Orphanet J. Rare Dis. 2015, 10, 94. [Google Scholar] [CrossRef]
- Engelen, M.; Kemp, S.; De Visser, M.; Van Geel, B.M.; Wanders, R.J.A.; Aubourg, P. X-linked adrenoleukodystrophy (X-ALD): Clinical presentation and guidelines for diagnosis, follow-up and management. Orphanet J. Rare Dis. 2012, 7, 51. [Google Scholar] [CrossRef]
- Katsuno, M.; Tanaka, F.; Adachi, H.; Banno, H.; Suzuki, K.; Watanabe, H.; Sobue, G. Pathogenesis and therapy of spinal and bulbar muscular atrophy (SBMA). Prog. Neurobiol. 2012, 99, 246–256. [Google Scholar] [CrossRef]
- Akman, H.O.; Lossos, A.; Kakhlon, O. GBE1 Adult Polyglucosan Body Disease; University of Washington: Seattle, DC, USA, 2020. Available online: https://www.ncbi.nlm.nih.gov/books/NBK5300/ (accessed on 28 March 2023).
- Desnick, R.J.; Brady, R.; Barranger, J.; Collins, A.J.; Germain, D.P.; Goldman, M.; Grabowski, G.; Packman, S.; Wilcox, W.R. Fabry Disease, an Under-Recognized Multisystemic Disorder: Expert Recommendations for Diagnosis, Management, and Enzyme Replacement Therapy. Ann. Intern. Med. 2003, 138, 338–346. [Google Scholar] [CrossRef]
- Levine, H. Treatment Options for Fabry Disease. WebMD. Available online: https://www.webmd.com/children/fabry-disease-treat (accessed on 29 March 2023).
- Wasserstein, M.P.; Aron, A.; Brodie, S.E.; Simonaro, C.; Desnick, R.J.; McGovern, M.M. Acid sphingomyelinase deficiency: Prevalence and characterization of an intermediate phenotype of Niemann-Pick disease. J. Pediatr. 2006, 149, 554–559. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Momoi, M.Y.; Tominaga, K.; Momoi, T.; Nihei, K.; Yanagisawa, M.; Kagawa, Y.; Ohta, S. A point mutation in the mitochondrial tRNA(Leu)(UUR) gene in MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes). Biochem. Biophys. Res. Commun. 1990, 173, 816–822. [Google Scholar] [CrossRef]
- Luigetti, M.; Sauchelli, D.; Primiano, G.; Cuccagna, C.; Bernardo, D.; Monaco, M.L.; Servidei, S. Peripheral neuropathy is a common manifestation of mitochondrial diseases: A single-centre experience. Eur. J. Neurol. 2016, 23, 1020–1027. [Google Scholar] [CrossRef]
- Revel-Vilk, S.; Szer, J.; Zimran, A. Gaucher Disease and Related Lysosomal Storage Diseases. In Williams Hematology, 10th ed.; Kaushansky, K., Prchal, J.T., Burns, L.J., Lichtman, M.A., Levi, M., Linch, D.C., Eds.; McGraw-Hill Education: New York, NY, USA, 2021. [Google Scholar]
- Bissell, D.M.; Lai, J.C.; Meister, R.K.; Blanc, P.D. Role of delta-aminolevulinic acid in the symptoms of acute porphyria. Am. J. Med. 2015, 128, 313–317. [Google Scholar] [CrossRef]
- Silva, C.D.; Mateus, J.E.; Teles, C.; Vaio, T. Acute intermittent porphyria: Analgesia can be dangerous. BMJ Case Rep. 2019, 12, e231133. [Google Scholar] [CrossRef]
- Tracy, J.A.; Dyck, P.J.B. Porphyria and its neurologic manifestations. Handb. Clin. Neurol. 2014, 120, 839–849. [Google Scholar] [CrossRef]
- Stein, P.E.; Badminton, M.N.; Rees, D.C. Update review of the acute porphyrias. Br. J. Haematol. 2017, 176, 527–538. [Google Scholar] [CrossRef]
- Delatycki, M.B.; Bidichandani, S.I. Friedreich ataxia- pathogenesis and implications for therapies. Neurobiol. Dis. 2019, 132, 104606. [Google Scholar] [CrossRef]
- Lynch, D.R.; Farmer, J.M.; Balcer, L.J.; Wilson, R.B. Friedreich ataxia: Effects of genetic understanding on clinical evaluation and therapy. Arch. Neurol. 2002, 59, 743–747. [Google Scholar] [CrossRef] [PubMed]
- Sundaram, S.S.; Bove, K.E.; Lovell, M.A.; Sokol, R.J. Mechanisms of disease: Inborn errors of bile acid synthesis. Nat. Clin. Pract. Gastroenterol. Hepatol. 2008, 5, 456–468. [Google Scholar] [CrossRef] [PubMed]
- Berendse, K.; Engelen, M.; Ferdinandusse, S.; Majoie, C.B.L.M.; Waterham, H.R.; Vaz, F.; Koelman, J.H.T.M.; Barth, P.G.; Wanders, R.J.A.; Poll-The, B.T. Zellweger spectrum disorders: Clinical manifestations in patients surviving into adulthood. J. Inherit. Metab. Dis. 2016, 39, 93–106. [Google Scholar] [CrossRef]
- Hagerman, R.J.; Leehey, M.; Heinrichs, W.; Tassone, F.; Wilson, R.; Hills, J.; Grigsby, J.; Gage, B.; Hagerman, P.J. Intention tremor, parkinsonism, and generalized brain atrophy in male carriers of fragile, X. Neurology 2001, 57, 127–130. [Google Scholar] [CrossRef] [PubMed]
Disease | Compound | Dosing and Administration | Mechanism of Action | Clinical Trial Identifier | Biological/Histological Outcome | Clinical Outcome | Electrophysiological Outcome | Current Status |
---|---|---|---|---|---|---|---|---|
Hereditary transthyretin amyloidosis polyneuropathy (ATTRv-PN) | Tafamidis/ FX-1006 | 20 mg, 1x/d, O | TTR stabilizer | NCT00925002 (phase 3 LTE) [18,19], NCT00409175 (phase 1/2), NCT00630864 (phase 2) [20]. | / |
| / |
|
Patisiran/ALN-18328 | 0.3 mg/kg 1x/3 w, IV | siRNA targeting TTR mRNA | NCT01960348 (phase 3; APOLLO) [22,23,24], NCT01961921 (phase 2 OLE) [25,26], NCT03862807 (phase 3b) [27] |
|
| / |
| |
Vutrisiran/ ALN-TTRSC02 | 25 mg, 1x/3 monts, SC | siRNA targeting TTR mRNA | NCT03759379 (phase 3; HELIOS-A study) [29] |
|
| / |
| |
Inotersen/ IONIS-TTRRX or ISIS 420915 | 300 mg 1x/w, SC | Antisense oligonucleotide targeting TTR mRNA | NCT01737398 (phase 3; NEURO-TTR) [31,32,33,34], NCT02175004 (phase 3 OLE) [35,36,37,38] |
|
|
|
| |
Spinocerebellar ataxia type 38 (SCA 38) | Docosahexaenoic acid | 600 mg/d, O | Replenish low levels of serum docosahexaenoic acid caused by ELOVL5 gene mutation | NCT03109626 [40] |
|
|
|
|
Familial dysautonomia | Carbidopa | 300 or 600 mg/d, O | Selective dopa-decarboxylase inhibitor that suppresses catecholamine production outside the brain | NCT02553265 (phase 2) [41] |
|
| / |
|
Hereditary sensory and autonomic neuropathy (HSAN1) | L-serine | 400 mg/kg/d, O | Provides normal substrate of enzyme serine palmitoyltransferase | NCT01733407 (phase 1/2) [42] |
|
|
|
|
Charcot– Marie–Tooth 1A (CMT1A) | Combination of baclofen, naltrexone and sorbitol/ PXT3003 | 5 mL, 2x/d, O | Downregulation of PMP22 overexpression | NCT02579759 (phase 3) [43] | / |
|
|
|
Metachromatic Leuko-dystrophy (MLD) | rhASA; HGT-1111/ Metazym | 100 or 200 U/kg, EOW, IV | Enzyme replacement therapy | NCT00681811 (phase 1/2 OLE; Study-049) [44] |
|
|
|
|
rhASA/HGT-1110 | 10, 30, or 100 mg or 100 mg manufactured using a revised process, EOW, IT | Enzyme replacement therapy | NCT01510028 (phase 1) [45] |
|
|
|
| |
Atidarsagene autotemcel (arsa-cel)/ HSPC-GT | 1 delivery | Gene therapy | NCT01560182 (phase 1/2) [46] |
|
|
|
| |
X-adrenoleuko- dystrophy (X-ALD) | Combination of α-tocopherol (also known as vitamin E), N-acetyl-cysteine (NAC), and α-lipoic acid (LA). | Dose A: NAC (800 mg), LA (300 mg), and α-tocopherol (150 IU) or dose B: NAC (2400 mg), LA (600 mg), and α-tocopherol (300 IU) | Antioxidant | NCT01495260 (phase 2) [48] |
|
|
|
|
Spinal and bulbar muscular atrophy (SBMA) | Mexiletine | 100 mg, 3x/d, O | Sodium- channel inhibitor | UMIN000020426 (phase 2; MEXPRESS) [49] | / |
|
|
|
Adult polyglucosan body disease (APBD) | Triheptanoin | 1 mg/kg, 3–4x/d, O | Anaplerotic properties | NCT00947960 (phase 2) [50] | / |
|
|
|
Disease | Compound | Dosing and Administration | Mechanism of Action | Clinical Trial Identifier | Biomarker Outcome | Neurological Clinical Outcome | Current Status |
---|---|---|---|---|---|---|---|
ATTRv-PN | Eplontersen/ AKCEA-TTR-LRx/ ION-682884 | 45 mg, 1x/m, SC | Antisense oligonucleotide targeting TTR mRNA | NCT03728634 (phase 1), NCT04302064 (phase 1) [51] |
| / |
|
Acoramidis/ AG10 | 800 mg, 2x/d, O | TTR stabilizer | NCT03860935 (phase 3; ATTRibute-CM Study) [53] |
|
|
| |
NTLA-2001 | 0.1 mg/kg or 0.3 mg/kg, single dose, IV | CRISPR-Cas9- mediated editing of TTR | NCT04601051 (phase 1) [54] |
| / |
| |
Tolcapone/ SOM0226 | 100 mg 3x/d, O | TTR stabilizer | NCT02191826 (phase 2) [55] |
| / |
| |
Fabry Disease | Migalastat hydrochloride | 150 mg, EOD, O | Chaperone to enhance endogenous alpha-galactosidase A activity | NCT03362164 (HEALFABRY) [57], NCT02194985 (phase 3 OLE; AT1001-042) [58,59], NCT00925301 (phase 3; FACETS) [60] |
| / |
|
Venglustat | 15 mg, 1x/d, O | Substrate reduction therapy: inhibits glucosylceramide synthase-mediated conversion of ceramide to glucosylceramide-1 (GL-1), which is a precursor of Gb3 | NCT02489344 (phase 2 OLE) [61] |
|
|
| |
Agalsidase beta | 0.5 mg/kg/2 w or 1 mg/kg/4 w, IV | Enzyme replacement therapy | NCT00701415 (phase 3b) [62] |
| / |
| |
Agalsidase beta/ ISU303 | 1 mg/kg/2 w, IV | Enzyme replacement therapy | Open-label * (phase 2) [63]. |
|
|
| |
Pegunigalsidase alfa | Different doses, EOW, IV | PEGylated ERT | NCT01769001 (phase 1/2) [64] |
| / |
| |
Spino-cerebellar ataxia type 2 (SCA2) | Riluzole | 50 mg, 2x/d, O | Neuroprotective action resulting from enhanced synaptic reuptake of glutamate and decreased release | NCT03347344 (phase 3; ATRIL) [65] | / |
|
|
Human recombinant erythropoietin (NeuroEPO) | 1 mg, 3x/w | Neurotrophic factor | Cuban Public Registry of Clinical Trials: RPCEC00000187-Sp [66] | / |
|
| |
Mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) | L-arginine | 0.3–0.5 g/kg/day, O plus 0.5 g/kg IV, if ictus | NO-mediated vasodilatation | OL-MELAS study integrated the pooled data from JMACTRIIA00023 (phase 3) and JMACTR-IIA00025 (phase 3) [67] | / |
|
|
Glutamine | 6–18 g/24 h, O | Reduce excitotoxic glutamate levels | NCT04948138 [68] |
| / |
| |
Taurine | 9–12 g/d, O | Restores the taurine modification defect in mutant mitochondrial tRNALeu(UUR) and ameliorates mitochondrial dysfunction | UMIN000011908 (phase 3) [69] |
|
|
| |
Gaucher Disease type 1 (GD1) | Eliglustat | 50 or 100 mg, 2x/d, O | Substrate reduction therapy | NCT00891202 (phase 3; ENGAGE OLE) [70], NCT00358150 (phase 2 OLE) [71] |
| / |
|
Taliglucerase alfa | 30 or 60 U/kg, EOW, IV | Enzyme replacement therapy | NCT01411228 (phase 3; PB-06-006) [72], NCT00962260; phase 3; PB-06-004) [73] |
| / |
| |
Acute intermittent porphyria (AIP) | Givosiran | 1.25–2.5 mg/kg, 1x/month, SC | siRNA targeting ALAS1 mRNA | NCT03338816 (phase 3 OLE; ENVISION) [74,75,76], NCT02452372 (phase 1) [77] |
|
|
|
Friedreich ataxia (FRDA) | IFN-γ 1b/ACTIMMUNE | 10, 25, 50, 100 µg/m2, 3x/w, SC | Increases frataxin mRNA and protein levels in a variety of cell types | NCT02593773 (phase 3) [78] |
|
|
|
EPI-743/alpha- tocotrienolol quinone/vatiquinone | 200 or 400 mg, 3x/d, O | Targets oxidoreductase enzymes essential for redox control of metabolism | NCT01728064 (phase 2) [79] | / |
|
| |
(+)-Epicatechin | Escalation of total dose from 75 to 150 mg/d, O | Mitochondrial biogenesis | NCT02660112 (phase 2) [80] |
|
|
| |
Luvadaxistat/ TAK-831/ NBI-1065844 | 75 mg or 300 mg, 2x/d, O | Inhibitor of D-amino acid oxidase, which mediates D-serine breakdown. | NCT03214588 (phase 2) [81] |
|
|
| |
Omaveloxo- lone | 150, 160, or 300 mg/d, O | Nrf2 activator | NCT02255435 (phase 2) [82,83] | / |
|
| |
RT001/Stabilized Linoleic Acid (LA, ethyl ester) | 1.8 or 9 g/d, O | Inhibits lipid peroxidation | NCT04102501 (phase 1/2) [84] | / |
|
| |
Bile acid synthesis disorder (BASD) | Cholic acid | 10–15 mg/kg/d, O | Downregulates bile acid synthesis, thereby reducing the production of intermediates that lead to atypical bile acids | NCT01438411 (phase 3) [85] |
| / |
|
Ataxia- Telangiectasia (A-T) | Betamethasone | 0.02 mg/kg/d, O | Not described | UMIN000004109 [87] | / |
|
|
Intra-Erythrocyte Dexamethasone Sodium Phosphate/EDS-EP | Dose range of 5–10 mg or 14–22 mg/infusion, 1/month, IV | Ex-vivo encapsulation of the molecule into patient’s red blood cells, which are then re-infused, allowing a slower release | NCT02770807 (phase 3; ATTeST) [88] | / |
|
| |
X-adreno-leukodystrophy (X-ALD) | Leriglitazone/ MIN-102 | 150 mg starting dose then adjusted to achieve plasma concentrations of 200 μg·h/mL/d, O | Selective PPARγ agonist | NCT03231878 (phase 2/3; ADVANCE) [89] |
|
|
|
Spinal and bulbar muscular atrophy (SBMA) | IGF-1 mimetic/ BVS857 | 0.06 mg/kg, 1x/w, IV | Stimulates Akt-mediated phosphorylation of the mutant AR, which enhances its clearance | NCT02024932 [90] |
|
|
|
Acid sphingomyelinase deficiency (ASMD) | Olipudase alfa | Dose escalation from 0.03 mg/kg to 3 mg/kg, 1x/2 W, IV | ERT | NCT02292654 (phase 1/2; ASCEND-Ped) [91], NCT02004704 [92] |
| / |
|
Fragile-X tremor and ataxia syndrome (FXTAS) | Citicoline | 1000 mg, 1x/d, O | Endogenous nucleotide and intermediate in the biosynthesis of structural membrane phospholipid. | NCT0219710 (phase 2) [93] | / |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hustinx, M.; Shorrocks, A.-M.; Servais, L. Novel Therapeutic Approaches in Inherited Neuropathies: A Systematic Review. Pharmaceutics 2023, 15, 1626. https://doi.org/10.3390/pharmaceutics15061626
Hustinx M, Shorrocks A-M, Servais L. Novel Therapeutic Approaches in Inherited Neuropathies: A Systematic Review. Pharmaceutics. 2023; 15(6):1626. https://doi.org/10.3390/pharmaceutics15061626
Chicago/Turabian StyleHustinx, Manon, Ann-Marie Shorrocks, and Laurent Servais. 2023. "Novel Therapeutic Approaches in Inherited Neuropathies: A Systematic Review" Pharmaceutics 15, no. 6: 1626. https://doi.org/10.3390/pharmaceutics15061626
APA StyleHustinx, M., Shorrocks, A. -M., & Servais, L. (2023). Novel Therapeutic Approaches in Inherited Neuropathies: A Systematic Review. Pharmaceutics, 15(6), 1626. https://doi.org/10.3390/pharmaceutics15061626