Hyaluronic Acid Modified Metal Nanoparticles and Their Derived Substituents for Cancer Therapy: A Review
Abstract
:1. Introduction
2. Noble M-NPs Used for Cancer Therapy
2.1. Gold (Au-NPs)
2.2. Silver (Ag-NPs)
2.3. Platinum (Pt-NPs)
2.4. Palladium (Pd-NPs)
3. Non-Noble M-NPs Used for Cancer Therapy
3.1. Magnetic NPs
3.2. Zinc Oxide (Zn-NPs)
3.3. Cerium Oxide (Ce-NPs)
4. Mechanism of Cancer Targeting
Active or Passive Targeting of Tumor
5. Hyaluronic Acid (HA) in Cancer Therapy
5.1. Sources and Preparations
5.2. Structure and Physical-Chemical Properties
5.2.1. Chemistry Characteristics
5.2.2. Biological Characteristics
6. Application of HA-Modified Noble M-NPs and Other Substituents in Various Cancer Therapies
6.1. HA-Modified Au-M-NPs and Other Substituents
6.2. HA-Modified Ag-M-NPs and Other Substituents
6.3. HA-Modified Pt /Pd-M-NPs and Other Substituents
7. Application of HA-Modified Non-noble M-NPs and Other Substituents in Various Cancer Therapy
7.1. HA-Moadified Magnetic-M-NPs and Other Substituents
7.2. HA-Modified Zn-M-NPs and Other Substituents
7.3. HA-Modified Ce-M-NPs and Other Substituents
8. Potential Challenges Involved in Clinical Translations
- Scale-up process: Moving from laboratory-scale synthesis to large-scale production of HA-modified M-NPs requires optimization of manufacturing processes. Factors such as reproducibility, batch-to-batch consistency, and quality control need to be addressed. Scaling up the production process, while upholding the desired physicochemical properties and functionalization, is crucial for industrial applications.
- Cost: Industrial production regularly entails cost-effective strategies. The selection of raw materials, purification techniques, and synthesis methods should be optimized to minimize costs without compromising quality and performance. Further, economical scale-up processes need to be developed to ensure affordability for widespread cancer treatment.
- Stability and shelf-life: Ensuring the stability and extended shelf-life of HA-modified M-NPs is crucial for industrial applications. Stability studies should be conducted to evaluate the NPs’ physicochemical properties, such as size, surface charge, and drug-loading capacity, over time. The development of appropriate storage and transportation conditions is essential to preserve the therapeutic efficacy.
- Regulatory considerations: Regulatory guidelines and requirements play a vital role in the transition from clinical to industrial use. Comprehensive preclinical and clinical studies should be conducted to assess the safety, efficacy, and toxicity profiles of HA-modified M-NPs. Data on pharmacokinetics, biodistribution, and long-term effects are essential for regulatory approval. Furthermore, compliance with good manufacturing practices (GMPs) and other relevant protocols is necessary for industrial-scale productions.
- Quality Control and characterization: Industrial production requires stringent quality control measures to ensure consistency and reproducibility. Robust analytical methods should be established for accurate characterization, including size distribution, surface chemistry, and drug-loading efficiency. Furthermore, standardization of characterization techniques is essential for batch-to-batch consistency and comparability.
- Scalability of functionalization: HA-modified M-NPs can be functionalized with various ligands, targeting moieties, or therapeutic agents to enhance their specificity and efficacy. Thus, developing scalable methods for functionalization and achieving uniform surface handling are critical challenges. The biocompatibility of different functionalization strategies with large-scale production needs to be evaluated.
- Manufacturing partnerships and collaboration: Establishing collaborations between research institutions, pharmaceutical companies, and manufacturing facilities is crucial for the successful transition to industrial application. Collaboration can help leverage expertise, resources, and infrastructure required for large-scale production, quality control, and regulatory compliances.
9. Conclusions and Future Prospects
- Targeted drug delivery: HA modification of M-NPs and with other substituents enables targeted drug delivery to cancer cells. Future research can focus on developing multifunctional NPs that encapsulate other therapeutic agents, such as chemotherapeutic drugs and small interfering RNA (siRNA). The incorporation of targeting ligands or antibodies on the surface could enhance specificity towards cancer cells, minimizing off-target effects.
- Imaging and diagnosis: HA-modified M-NPs can serve as excellent imaging agents for cancer diagnosis. The unique optical, magnetic, and photoacoustic properties of M-NPs can be exploited to develop imaging probes for early cancer detection, precise tumor localization, and monitoring of therapeutic responses. Future research should explore the integration of imaging modalities with therapeutics, allowing simultaneous diagnosis and treatment.
- Photothermal therapy: M-NPs possess photothermal properties, converting light into heat, which can be utilized for targeted cancer therapy. HA modification enhances tumor accumulation and internalization of M-NPs, making them an ideal platform for photothermal therapy. Future studies can focus on optimizing NP design, selecting appropriate light sources, and investigating the synergistic effects of combining photothermal therapy with other treatment modalities.
- Immunotherapy developments: HA modification of M-NPs holds potential in modulating the tumor microenvironment and enhancing immunotherapy approaches. The immune response can be stimulated by incorporating immune modulators, such as cytokines or immunomodulatory agents, onto the surface of NPs. Moreover, M-NPs can act as adjuvants to promote antigen presentation and improve the efficacy of cancer vaccines. Future research can explore these strategies and investigate the immunomodulatory mechanisms to develop personalized cancer immunotherapies.
- Theranostic platforms: Integration of diagnosis and therapy into a single platform, known as theranostics, is a promising approach in cancer treatment. HA-modified M-NPs can serve as versatile theranostic agents by combining imaging capabilities, targeted drug delivery, and therapeutic modalities. Future research should focus on developing more multifunctional nanoplatforms that can be precisely controlled and optimized for personalized cancer therapy.
- Safety and toxicity considerations: As with any novel therapeutic approach, the safety and toxicity profiles of HA-modified M-NPs and other substituents must be thoroughly evaluated. Future research should investigate the long-term effects, biodistribution, and potential adverse reactions associated with the use of these systems in cancer therapy.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Koo, O.M.; Rubinstein, I.; Onyuksel, H. Role of nanotechnology in targeted drug delivery and imaging: A concise review. Nanomed. Nanotechnol. Biol. Med. 2005, 1, 193–212. [Google Scholar] [CrossRef]
- Uthappa, U.; Kurkuri, M.D.; Kigga, M. Nanotechnology advances for the development of various drug carriers. In Nanobiotechnology in Bioformulations; Springer: Cham, Switzerland, 2019; pp. 187–224. [Google Scholar]
- Rahimi, M.; Noruzi, E.B.; Sheykhsaran, E.; Ebadi, B.; Kariminezhad, Z.; Molaparast, M.; Mehrabani, M.G.; Mehramouz, B.; Yousefi, M.; Ahmadi, R. Carbohydrate polymer-based silver nanocomposites: Recent progress in the antimicrobial wound dressings. Carbohydr. Polym. 2020, 231, 115696. [Google Scholar] [CrossRef]
- Jeon, I.-Y.; Baek, J.-B. Nanocomposites derived from polymers and inorganic nanoparticles. Materials 2010, 3, 3654–3674. [Google Scholar] [CrossRef] [Green Version]
- Kango, S.; Kalia, S.; Celli, A.; Njuguna, J.; Habibi, Y.; Kumar, R. Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites—A review. Prog. Polym. Sci. 2013, 38, 1232–1261. [Google Scholar] [CrossRef]
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer 2021, 149, 778–789. [Google Scholar] [CrossRef]
- Kontomanolis, E.N.; Koutras, A.; Syllaios, A.; Schizas, D.; Kalagasidou, S.; Pagkalos, A.; Alatzidou, D.; Kantari, P.; Ntounis, T.; Fasoulakis, Z. Basic principles of molecular biology of cancer cell-Molecular cancer indicators. J. BU ON Off. J. Balk. Union Oncol. 2021, 26, 1723–1734. [Google Scholar]
- Cordani, M.; Somoza, Á. Targeting autophagy using metallic nanoparticles: A promising strategy for cancer treatment. Cell. Mol. Life Sci. 2019, 76, 1215–1242. [Google Scholar] [CrossRef] [Green Version]
- Chandra, H.; Kumari, P.; Bontempi, E.; Yadav, S. Medicinal plants: Treasure trove for green synthesis of metallic nanoparticles and their biomedical applications. Biocatal. Agric. Biotechnol. 2020, 24, 101518. [Google Scholar] [CrossRef]
- Yew, Y.P.; Shameli, K.; Miyake, M.; Khairudin, N.B.B.A.; Mohamad, S.E.B.; Naiki, T.; Lee, K.X. Green biosynthesis of superparamagnetic magnetite Fe3O4 nanoparticles and biomedical applications in targeted anticancer drug delivery system: A review. Arab. J. Chem. 2020, 13, 2287–2308. [Google Scholar] [CrossRef]
- Mansouri, F. Role of Telemedicine and Telegenetics Framework for the Management of Cancer Patients During the COVID-19 Pandemic. Biointerface Res. Appl. Chem. 2021, 11, 8773–8779. [Google Scholar]
- Ma, Y.; Huang, J.; Song, S.; Chen, H.; Zhang, Z. Cancer-targeted nanotheranostics: Recent advances and perspectives. Small 2016, 12, 4936–4954. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.-Y.; Cheng, R.; Yang, Z.; Tian, Z.-M. Nanotechnology for cancer therapy based on chemotherapy. Molecules 2018, 23, 826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.-J.; Zhang, W.-C.; Guo, Y.-W.; Chen, X.-Y.; Zhang, Y.-N. Metal nanoparticles as a promising technology in targeted cancer treatment. Drug Deliv. 2022, 29, 664–678. [Google Scholar] [CrossRef] [PubMed]
- Evans, E.R.; Bugga, P.; Asthana, V.; Drezek, R. Metallic nanoparticles for cancer immunotherapy. Mater. Today 2018, 21, 673–685. [Google Scholar] [CrossRef] [PubMed]
- Shang, L.; Zhou, X.; Zhang, J.; Shi, Y.; Zhong, L. Metal nanoparticles for photodynamic therapy: A potential treatment for breast cancer. Molecules 2021, 26, 6532. [Google Scholar] [CrossRef]
- Sharma, A.; Goyal, A.K.; Rath, G. Recent advances in metal nanoparticles in cancer therapy. J. Drug Target. 2018, 26, 617–632. [Google Scholar] [CrossRef]
- Sood, A.; Gupta, A.; Agrawal, G. Recent advances in polysaccharides based biomaterials for drug delivery and tissue engineering applications. Carbohydr. Polym. Technol. Appl. 2021, 2, 100067. [Google Scholar] [CrossRef]
- Khan, T.; Date, A.; Chawda, H.; Patel, K. Polysaccharides as potential anticancer agents—A review of their progress. Carbohydr. Polym. 2019, 210, 412–428. [Google Scholar] [CrossRef]
- Uthappa, U.; Bhat, S.; Kurkuri, M.D. Guar-Gum-Based Nanocarriers for Drug Delivery and Targeting Polymeric Nanosystems; Elsevier: Amsterdam, The Netherlands, 2023; pp. 441–457. [Google Scholar]
- Hussein, H.A.; Abdullah, M.A. Novel drug delivery systems based on silver nanoparticles, hyaluronic acid, lipid nanoparticles and liposomes for cancer treatment. Appl. Nanosci. 2022, 12, 3071–3096. [Google Scholar] [CrossRef]
- Luo, Z.; Dai, Y.; Gao, H. Development and application of hyaluronic acid in tumor targeting drug delivery. Acta Pharm. Sin. B 2019, 9, 1099–1112. [Google Scholar] [CrossRef]
- Kim, K.; Choi, H.; Choi, E.S.; Park, M.-H.; Ryu, J.-H. Hyaluronic acid-coated nanomedicine for targeted cancer therapy. Pharm. 2019, 11, 301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lei, C.; Liu, X.-R.; Chen, Q.-B.; Li, Y.; Zhou, J.-L.; Zhou, L.-Y.; Zou, T. Hyaluronic acid and albumin based nanoparticles for drug delivery. J. Control. Release 2021, 331, 416–433. [Google Scholar] [CrossRef]
- Hou, X.; Zhong, D.; Chen, H.; Gu, Z.; Gong, Q.; Ma, X.; Zhang, H.; Zhu, H.; Luo, K. Recent advances in hyaluronic acid-based nanomedicines: Preparation and application in cancer therapy. Carbohydr. Polym. 2022, 292, 119662. [Google Scholar] [CrossRef]
- Păduraru, D.N.; Ion, D.; Niculescu, A.-G.; Mu, F.; Andronic, O.; Grumezescu, A.M.; Bolocan, A. Recent developments in metallic nanomaterials for cancer therapy, diagnosing and imaging applications. Pharmaceutics 2022, 14, 435. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-H.; Xu, X.-D.; Jia, H.-Z.; Lei, Q.; Luo, G.-F.; Cheng, S.-X.; Zhuo, R.-X.; Zhang, X.-Z. Therapeutic nanomedicine based on dual-intelligent functionalized gold nanoparticles for cancer imaging and therapy in vivo. Biomaterials 2013, 34, 8798–8807. [Google Scholar] [CrossRef] [PubMed]
- Jain, N.; Jain, P.; Rajput, D.; Patil, U.K. Green synthesized plant-based silver nanoparticles: Therapeutic prospective for anticancer and antiviral activity. Micro Nano Syst. Lett. 2021, 9, 5. [Google Scholar] [CrossRef]
- De Matteis, V.; Malvindi, M.A.; Galeone, A.; Brunetti, V.; De Luca, E.; Kote, S.; Kshirsagar, P.; Sabella, S.; Bardi, G.; Pompa, P.P. Negligible particle-specific toxicity mechanism of silver nanoparticles: The role of Ag + ion release in the cytosol. Nanomed. Nanotechnol. Biol. Med. 2015, 11, 731–739. [Google Scholar] [CrossRef]
- Mochida, Y.; Cabral, H.; Kataoka, K. Polymeric micelles for targeted tumor therapy of platinum anticancer drugs. Expert Opin. Drug Deliv. 2017, 14, 1423–1438. [Google Scholar] [CrossRef]
- Jeyaraj, M.; Gurunathan, S.; Qasim, M.; Kang, M.-H.; Kim, J.-H. A comprehensive review on the synthesis, characterization, and biomedical application of platinum nanoparticles. Nanomaterials 2019, 9, 1719. [Google Scholar] [CrossRef] [Green Version]
- Edis, Z.; Wang, J.; Waqas, M.K.; Ijaz, M.; Ijaz, M. Nanocarriers-mediated drug delivery systems for anticancer agents: An overview and perspectives. Int. J. Nanomed. 2021, 16, 1313. [Google Scholar] [CrossRef]
- Mukherjee, S.; Liang, L.; Veiseh, O. Recent Advancements of Magnetic Nanomaterials in Cancer Therapy. Pharmaceutics 2020, 12, 147. [Google Scholar] [CrossRef] [Green Version]
- Sivakumar, P.; Lee, M.; Kim, Y.-S.; Shim, M.S. Photo-triggered antibacterial and anticancer activities of zinc oxide nanoparticles. J. Mater. Chem. B 2018, 6, 4852–4871. [Google Scholar] [CrossRef]
- Tang, J.L.Y.; Moonshi, S.S.; Ta, H.T. Nanoceria: An innovative strategy for cancer treatment. Cell Mol. Life Sci. 2023, 80, 46. [Google Scholar] [CrossRef]
- Pramanik, N.; De, T.; Sharma, P.; Alakesh, A.; Jagirdar, S.K.; Rangarajan, A.; Jhunjhunwala, S. Surface-Coated Cerium Nanoparticles to Improve Chemotherapeutic Delivery to Tumor Cells. ACS Omega 2022, 7, 31651–31657. [Google Scholar] [CrossRef]
- Reddy, K.R. Green synthesis, morphological and optical studies of CuO nanoparticles. J. Mol. Struct. 2017, 1150, 553–557. [Google Scholar] [CrossRef]
- Lok, C.N.; Zou, T.; Zhang, J.J.; Lin, I.W.; Che, C.M. Controlled-release systems for metal-based nanomedicine: Encapsulated/self-assembled nanoparticles of anticancer gold(III)/platinum(II) complexes and antimicrobial silver nanoparticles. Adv. Mater 2014, 26, 5550–5557. [Google Scholar] [CrossRef] [PubMed]
- Pissuwan, D.; Valenzuela, S.M.; Cortie, M.B. Therapeutic possibilities of plasmonically heated gold nanoparticles. Trends Biotechnol. 2006, 24, 62–67. [Google Scholar] [CrossRef] [Green Version]
- Wang, A.Z.; Langer, R.; Farokhzad, O.C. Nanoparticle delivery of cancer drugs. Annu. Rev. Med. 2012, 63, 185–198. [Google Scholar] [CrossRef] [PubMed]
- Sze, J.H.; Brownlie, J.C.; Love, C.A. Biotechnological production of hyaluronic acid: A mini review. 3 Biotech 2016, 6, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saharkhiz, S.; Babaeipour, V. Optimization Feed Composition on Hyaluronic Acid Production of in-Batch and Fed-Batch Cultures of Streptococcus zooepidemicus. Iran. J. Chem. Chem. Eng. 2022, 41, 2728–2734. [Google Scholar]
- Jabbari, F.; Babaeipour, V.; Saharkhiz, S. Comprehensive review on biosynthesis of hyaluronic acid with different molecular weights and its biomedical applications. Int. J. Biol. Macromol. 2023, 240, 124484. [Google Scholar] [CrossRef] [PubMed]
- Ucm, R.; Aem, M.; Lhb, Z.; Kumar, V.; Taherzadeh, M.J.; Garlapati, V.K.; Chandel, A.K. Comprehensive review on biotechnological production of hyaluronic acid: Status, innovation, market and applications. Bioengineered 2022, 13, 9645–9661. [Google Scholar] [CrossRef]
- Weigel, P.H.; DeAngelis, P.L. Hyaluronan synthases: A decade-plus of novel glycosyltransferases. J. Biol. Chem. 2007, 282, 36777–36781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, J.; Fu, J.; Li, R.; Zhang, F.; Ling, G.; Zhang, P. A potential carrier for anti-tumor targeted delivery-hyaluronic acid nanoparticles. Carbohydr. Polym. 2019, 208, 356–364. [Google Scholar] [CrossRef] [PubMed]
- Schanté, C.E.; Zuber, G.; Herlin, C.; Vandamme, T.F. Chemical modifications of hyaluronic acid for the synthesis of derivatives for a broad range of biomedical applications. Carbohydr. Polym. 2011, 85, 469–489. [Google Scholar] [CrossRef]
- Choi, K.Y.; Saravanakumar, G.; Park, J.H.; Park, K. Hyaluronic acid-based nanocarriers for intracellular targeting: Interfacial interactions with proteins in cancer. Colloids Surf. B Biointerfaces 2012, 99, 82–94. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.; Huang, H. Hyaluronic acid-based biopharmaceutical delivery and tumor-targeted drug delivery system. J. Control. Release 2018, 278, 122–126. [Google Scholar] [CrossRef]
- Payne, W.M.; Svechkarev, D.; Kyrychenko, A.; Mohs, A.M. The role of hydrophobic modification on hyaluronic acid dynamics and self-assembly. Carbohydr. Polym. 2018, 182, 132–141. [Google Scholar] [CrossRef]
- Corrie, L.; Gulati, M.; Awasthi, A.; Vishwas, S.; Kaur, J.; Khursheed, R.; Porwal, O.; Alam, A.; Parveen, S.R.; Singh, H. Harnessing the dual role of polysaccharides in treating gastrointestinal diseases: As therapeutics and polymers for drug delivery. Chem.-Biol. Interact. 2022, 368, 110238. [Google Scholar] [CrossRef]
- Tzianabos, A.O. Polysaccharide immunomodulators as therapeutic agents: Structural aspects and biologic function. Clin. Microbiol. Rev. 2000, 13, 523–533. [Google Scholar] [CrossRef]
- Wang, K.; Cai, M.; Sun, S.; Cheng, W.; Zhai, D.; Ni, Z.; Yu, C. Therapeutic prospects of polysaccharides for ovarian cancer. Front. Nutr. 2022, 9, 879111. [Google Scholar] [CrossRef]
- Damiri, F.; Kommineni, N.; Ebhodaghe, S.O.; Bulusu, R.; Jyothi, V.G.S.; Sayed, A.A.; Awaji, A.A.; Germoush, M.O.; Al-Malky, H.S.; Nasrullah, M.Z. Microneedle-Based Natural Polysaccharide for Drug Delivery Systems (DDS): Progress and Challenges. Pharmaceuticals 2022, 15, 190. [Google Scholar] [CrossRef]
- Dhahri, M.; Alghrably, M.; Mohammed, H.A.; Badshah, S.L.; Noreen, N.; Mouffouk, F.; Rayyan, S.; Qureshi, K.A.; Mahmood, D.; Lachowicz, J.I. Natural polysaccharides as preventive and therapeutic horizon for neurodegenerative diseases. Pharmaceutics 2021, 14, 1. [Google Scholar] [CrossRef]
- Corrie, L.; Gulati, M.; Awasthi, A.; Vishwas, S.; Kaur, J.; Khursheed, R.; Kumar, R.; Kumar, A.; Imran, M.; Chellappan, D. Polysaccharide, fecal microbiota, and curcumin-based novel oral colon-targeted solid self-nanoemulsifying delivery system: Formulation, characterization, and in-vitro anticancer evaluation. Mater. Today Chem. 2022, 26, 101165. [Google Scholar] [CrossRef]
- Chen, G.; Chen, R.; Chen, D.; Ye, H.; Hu, B.; Zeng, X.; Liu, Z. Tea polysaccharides as potential therapeutic options for metabolic diseases. J. Agric. Food Chem. 2018, 67, 5350–5360. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Xie, Z.; Wu, F.; Chen, J.; Liao, Y.; Liu, L.; Zhao, A.; Wu, J.; Yang, P.; Huang, N. Hyaluronic acid nanoparticle composite films confer favorable time-dependent biofunctions for vascular wound healing. ACS Biomater. Sci. Eng. 2019, 5, 1833–1848. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Yang, X.; Liu, D.; Cong, M.; Song, Y.; Bai, S. Lipid/hyaluronic acid-Coated Doxorubicin-Fe3O4 as a dual-targeting nanoparticle for enhanced cancer therapy. AAPS PharmSciTech 2020, 21, 235. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.; Kim, H.; Jeong, Y.I.; Yang, H.S. CD44 Receptor-Mediated/Reactive Oxygen Species-Sensitive Delivery of Nanophotosensitizers against Cervical Cancer Cells. Int. J. Mol. Sci. 2022, 23, 3594. [Google Scholar] [CrossRef]
- Ashrafizadeh, M.; Mirzaei, S.; Gholami, M.H.; Hashemi, F.; Zabolian, A.; Raei, M.; Hushmandi, K.; Zarrabi, A.; Voelcker, N.H.; Aref, A.R.; et al. Hyaluronic acid-based nanoplatforms for Doxorubicin: A review of stimuli-responsive carriers, co-delivery and resistance suppression. Carbohydr. Polym. 2021, 272, 118491. [Google Scholar] [CrossRef]
- Zhuang, Y.; Zhao, L.; Zheng, L.; Hu, Y.; Ding, L.; Li, X.; Liu, C.; Zhao, J.; Shi, X.; Guo, R. Laponite-polyethylenimine based theranostic nanoplatform for tumor-targeting CT imaging and chemotherapy. ACS Biomater. Sci. Eng. 2017, 3, 431–442. [Google Scholar] [CrossRef]
- Zhou, H.; Xu, H.; Li, X.; Lv, Y.; Ma, T.; Guo, S.; Huang, Z.; Wang, X.; Xu, P. Dual targeting hyaluronic acid-RGD mesoporous silica coated gold nanorods for chemo-photothermal cancer therapy. Mater. Sci. Eng. C 2017, 81, 261–270. [Google Scholar] [CrossRef]
- Beals, N.; Thiagarajan, P.S.; Soehnlen, E.; Das, A.; Reizes, O.; Lathia, J.D.; Basu, S. Five-part pentameric nanocomplex shows improved efficacy of doxorubicin in CD44+ cancer cells. ACS Omega 2017, 2, 7702–7713. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Qian, J.; Hou, G.; Suo, A.; Wang, Y.; Wang, J.; Sun, T.; Yang, M.; Wan, X.; Yao, Y. Hyaluronic acid-functionalized gold nanorods with pH/NIR dual-responsive drug release for synergetic targeted photothermal chemotherapy of breast cancer. ACS Appl. Mater. Interfaces 2017, 9, 36533–36547. [Google Scholar] [CrossRef] [PubMed]
- Hosseinzadeh, H.; Atyabi, F.; Varnamkhasti, B.S.; Hosseinzadeh, R.; Ostad, S.N.; Ghahremani, M.H.; Dinarvand, R. SN38 conjugated hyaluronic acid gold nanoparticles as a novel system against metastatic colon cancer cells. Int. J. Pharm. 2017, 526, 339–352. [Google Scholar] [CrossRef]
- Seo, J.R.; Choi, H.W.; Kim, D.E.; Park, D.Y.; Kim, E.-J.; Chung, B.G. Facile synthesis of surfactant-free au decorated hollow silica nanoparticles for photothermal applications. Macromol. Res. 2018, 26, 1129–1134. [Google Scholar] [CrossRef]
- Gotov, O.; Battogtokh, G.; Shin, D.; Ko, Y.T. Hyaluronic acid-coated cisplatin conjugated gold nanoparticles for combined cancer treatment. J. Ind. Eng. Chem. 2018, 65, 236–243. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Y.; Jin, R.; Wu, C.; Zhang, B.; Zhang, Q.; Chen, X. Preparation and photothermal therapy of hyaluronic acid-conjugated Au nanoparticle-coated poly (glycidyl methacrylate) nanocomposites. J. Mater. Sci. 2018, 53, 16252–16262. [Google Scholar] [CrossRef]
- Wang, W.; Huang, S.; Yuan, J.; Xu, X.; Li, H.; Lv, Z.; Yu, W.; Duan, S.; Hu, Y. Reverse multidrug resistance in human HepG2/ADR by Anti-miR-21 combined with hyperthermia mediated by functionalized gold nanocages. Mol. Pharm. 2018, 15, 3767–3776. [Google Scholar] [CrossRef]
- Liu, R.; Xiao, W.; Hu, C.; Xie, R.; Gao, H. Theranostic size-reducible and no donor conjugated gold nanocluster fabricated hyaluronic acid nanoparticle with optimal size for combinational treatment of breast cancer and lung metastasis. J. Control. Release 2018, 278, 127–139. [Google Scholar] [CrossRef]
- Xu, W.; Qian, J.; Hou, G.; Wang, Y.; Wang, J.; Sun, T.; Ji, L.; Suo, A.; Yao, Y. A dual-targeted hyaluronic acid-gold nanorod platform with triple-stimuli responsiveness for photodynamic/photothermal therapy of breast cancer. Acta Biomater. 2019, 83, 400–413. [Google Scholar] [CrossRef] [PubMed]
- Francisco, V.; Lino, M.; Ferreira, L. A near infrared light-triggerable modular formulation for the delivery of small biomolecules. J. Nanobiotechnol. 2019, 17, 97. [Google Scholar] [CrossRef] [PubMed]
- Hou, G.; Qian, J.; Xu, W.; Sun, T.; Wang, Y.; Wang, J.; Ji, L.; Suo, A. A novel pH-sensitive targeting polysaccharide-gold nanorod conjugate for combined photothermal-chemotherapy of breast cancer. Carbohydr. Polym. 2019, 212, 334–344. [Google Scholar] [CrossRef] [PubMed]
- Dahmani, F.Z.; Zhong, D.; Qi, Y.; Dahmani, A.E.G.; Xie, T.; Zhou, B.; Li, W.; Yao, K.; Li, L.; Zhou, M. A size-tunable and multi-responsive nanoplatform for deep tumor penetration and targeted combinatorial radio-/chemotherapy. J. Mater. Chem. B 2019, 7, 4484–4498. [Google Scholar] [CrossRef]
- Xu, W.; Wang, J.; Qian, J.; Hou, G.; Wang, Y.; Ji, L.; Suo, A. NIR/pH dual-responsive polysaccharide-encapsulated gold nanorods for enhanced chemo-photothermal therapy of breast cancer. Mater. Sci. Eng. C 2019, 103, 109854. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhao, Y.; Sun, L.; Zou, X. Tri-responsive porous silica carrier with gold nanoparticles for chemophotothermal combination therapy. J. Sol-Gel Sci. Technol. 2020, 93, 332–340. [Google Scholar] [CrossRef]
- Li, Y.; Le, T.M.D.; Bui, Q.N.; Yang, H.Y.; Lee, D.S. Tumor acidity and CD44 dual targeting hyaluronic acid-coated gold nanorods for combined chemo-and photothermal cancer therapy. Carbohydr. Polym. 2019, 226, 115281. [Google Scholar] [CrossRef]
- Zhao, L.; Choi, J.; Lu, Y.; Kim, S.Y. Targeted photodynamic therapy activities of surface-enhanced Raman scattering-active theranostic system based on folate/Hyaluronic acid-functionalized gold nanochains. J. Biomed. Nanotechnol. 2019, 15, 544–554. [Google Scholar] [CrossRef]
- Jacinto, T.A.; Rodrigues, C.F.; Moreira, A.F.; Miguel, S.P.; Costa, E.C.; Ferreira, P.; Correia, I.J. Hyaluronic acid and vitamin E polyethylene glycol succinate functionalized gold-core silica shell nanorods for cancer targeted photothermal therapy. Colloids Surf. B Biointerfaces 2020, 188, 110778. [Google Scholar] [CrossRef]
- Li, N.; Chen, L.; Luo, Z.; Nie, G.; Zhang, P.; He, S.; Peng, J. Dual-Targeting of Doxorubicin and Chlorine e6 Co-Delivery Based on Small-Size Nanocomposite for the Synergetic Imaging and Therapy. J. Clust. Sci. 2022, 33, 1793–1807. [Google Scholar] [CrossRef]
- Pan, Y.; Ma, X.; Liu, C.; Xing, J.; Zhou, S.; Parshad, B.; Schwerdtle, T.; Li, W.; Wu, A.; Haag, R. Retinoic acid-loaded dendritic polyglycerol-conjugated gold nanostars for targeted photothermal therapy in breast cancer stem cells. ACS Nano 2021, 15, 15069–15084. [Google Scholar] [CrossRef]
- Wang, X.-Y.; Lin, C.; Chang, W.-J.; Huang, Y.-H.; Mi, F.-L. Thiolated hyaluronic acid and catalase-enhanced CD44-targeting and oxygen self-supplying nanoplatforms with photothermal/photodynamic effects against hypoxic breast cancer cells. Int. J. Biol. Macromol. 2022, 221, 121–134. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Niu, K.; Ni, S.; Zhang, W.; Liu, Z.; Zhang, X. Hyaluronic acid-modified gold-polydopamine complex nanomedicine for tumor-targeting drug delivery and chemo-photothermal-therapy synergistic therapy. ACS Sustain. Chem. Eng. 2022, 10, 1585–1594. [Google Scholar] [CrossRef]
- Zhang, J.; He, C.; Fei, X.; Xu, T. Anti-leukemia activity of hyaluronic acid coated silver nanoparticles for selective targeting to leukemic cells. J. Biomater. Tissue Eng. 2018, 8, 906–910. [Google Scholar] [CrossRef]
- Ivashchenko, O.; Przysiecka, Ł.; Peplińska, B.; Jarek, M.; Coy, E.; Jurga, S. Gel with silver and ultrasmall iron oxide nanoparticles produced with Amanita muscaria extract: Physicochemical characterization, microstructure analysis and anticancer properties. Sci. Rep. 2018, 8, 13260. [Google Scholar] [CrossRef]
- Liu, T.; Li, X.; Wang, J.; Zhang, P.; Huang, X.; Zhang, Z.; Guo, D.-S.; Yang, X. Ag@ S-nitrosothiol core-shell nanoparticles for chemo and photothermal synergistic tumor targeted therapy. J. Mater. Chem. B 2020, 8, 5483–5490. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Li, W.; Zhao, X.; Zhou, Z.; Wang, Y.; Cheng, Y.; Huang, Q.; Zhang, Q. Hyaluronic acid-encapsulated platinum nanoparticles for targeted photothermal therapy of breast cancer. J. Biomed. Nanotechnol. 2017, 13, 1457–1467. [Google Scholar] [CrossRef] [PubMed]
- Liang, K.; Zhao, F.; Nan, F.; Wang, J.; Zhang, Y.; Li, J.; Xue, X.; Chen, T.; Kong, L.; Ge, J. Carbon dots/platinum nanoparticles-loaded mesoporous silica for synergistic photodynamic/catalytic therapy of hypoxic tumors. Mater. Chem. Front. 2023, ahead of print. [Google Scholar]
- Ming, J.; Zhu, T.; Yang, W.; Shi, Y.; Huang, D.; Li, J.; Xiang, S.; Wang, J.; Chen, X.; Zheng, N. Pd@ Pt-GOx/HA as a novel enzymatic cascade nanoreactor for high-efficiency starving-enhanced chemodynamic cancer therapy. ACS Appl. Mater. Interfaces 2020, 12, 51249–51262. [Google Scholar] [CrossRef]
- Zheng, C.; Wu, A.; Zhai, X.; Ji, H.; Chen, Z.; Chen, X.; Yu, X. The cellular immunotherapy of integrated photothermal anti-oxidation Pd-Se nanoparticles in inhibition of the macrophage inflammatory response in rheumatoid arthritis. Acta Pharm. Sin. B 2021, 11, 1993–2003. [Google Scholar] [CrossRef]
- Chen, C.; Yu, D.; Wang, W.; Huang, Y.; Ying, Y.; Sheng, W.; Wu, X.; Wang, Y.; Gao, F.; Jiang, G. Hyaluronic acid-covered piezoelectric nanocomposites as tumor microenvironment modulators for piezoelectric catalytic therapy of melanoma. Int. J. Biol. Macromol. 2023, 236, 124020. [Google Scholar] [CrossRef]
- Lachowicz, D.; Szpak, A.; Malek-Zietek, K.E.; Kepczynski, M.; Muller, R.N.; Laurent, S.; Nowakowska, M.; Zapotoczny, S. Biocompatible and fluorescent superparamagnetic iron oxide nanoparticles with superior magnetic properties coated with charged polysaccharide derivatives. Colloids Surf. B Biointerfaces 2017, 150, 402–407. [Google Scholar] [CrossRef]
- Yang, R.-M.; Fu, C.-P.; Fang, J.-Z.; Xu, X.-D.; Wei, X.-H.; Tang, W.-J.; Jiang, X.-Q.; Zhang, L.-M. Hyaluronan-modified superparamagnetic iron oxide nanoparticles for bimodal breast cancer imaging and photothermal therapy. Int. J. Nanomed. 2017, 12, 197. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Jing, L.; Li, X.; Lin, L.; Yue, X.; Dai, Z. Hyaluronic acid conjugated magnetic prussian blue@ quantum dot nanoparticles for cancer theranostics. Theranostics 2017, 7, 466. [Google Scholar] [CrossRef]
- Fu, C.; Yang, R.-M.; Wang, L.; Li, N.-N.; Qi, M.; Xu, X.-D.; Wei, X.-H.; Jiang, X.-Q.; Zhang, L.-M. Surface functionalization of superparamagnetic nanoparticles by an acid-liable polysaccharide-based prodrug for combinatorial monitoring and chemotherapy of hepatocellular carcinoma. RSC Adv. 2017, 7, 41919–41928. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Gao, S.; Tian, R.; Miller-Kleinhenz, J.; Qin, Z.; Liu, T.; Li, L.; Zhang, F.; Ma, Q.; Zhu, L. Theranostic hyaluronic acid-iron micellar nanoparticles for magnetic-field-enhanced in vivo cancer chemotherapy. ChemMedChem 2018, 13, 78–86. [Google Scholar]
- Zheng, S.; Han, J.; Jin, Z.; Kim, C.-S.; Park, S.; Kim, K.-P.; Park, J.-O.; Choi, E. Dual tumor-targeted multifunctional magnetic hyaluronic acid micelles for enhanced MR imaging and combined photothermal-chemotherapy. Colloids Surf. B Biointerfaces 2018, 164, 424–435. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Chen, Y.; Zhou, X.; Chen, D.; Li, Y.; Yang, J.; Zhu, X. Hyaluronic acid-methotrexate conjugates coated magnetic polydopamine nanoparticles for multimodal imaging-guided multistage targeted chemo-photothermal therapy. Mol. Pharm. 2018, 15, 4049–4062. [Google Scholar] [CrossRef] [PubMed]
- Sargazi, A.; Shiri, F.; Keikha, S.; Majd, M.H. Hyaluronan magnetic nanoparticle for mitoxantrone delivery toward CD44-positive cancer cells. Colloids Surf. B Biointerfaces 2018, 171, 150–158. [Google Scholar] [CrossRef]
- Pandey, A.; Singh, K.; Patel, S.; Singh, R.; Patel, K.; Sawant, K. Hyaluronic acid tethered pH-responsive alloy-drug nanoconjugates for multimodal therapy of glioblastoma: An intranasal route approach. Mater. Sci. Eng. C 2019, 98, 419–436. [Google Scholar] [CrossRef]
- Luo, Y.; Li, Y.; Li, J.; Fu, C.; Yu, X.; Wu, L. Hyaluronic acid-mediated multifunctional iron oxide-based MRI nanoprobes for dynamic monitoring of pancreatic cancer. RSC Adv. 2019, 9, 10486–10493. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Sun, B.; Chu, X.; Zhang, Q.; She, Z.; Song, S.; Zhou, N.; Zhang, J.; Yi, X.; Wu, D.; et al. Hyaluronic Acid-Modified Porous Carbon-Coated Fe(3)O(4) Nanoparticles for Magnetic Resonance Imaging-Guided Photothermal/Chemotherapy of Tumors. Langmuir 2019, 35, 13135–13144. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, Y.; Zhang, C.; Fan, Y.; Li, D.; Cao, X.; Xia, J.; Shi, X.; Guo, R. LDH-stabilized ultrasmall iron oxide nanoparticles as a platform for hyaluronidase-promoted MR imaging and chemotherapy of tumors. Theranostics 2020, 10, 2791–2802. [Google Scholar] [CrossRef]
- Soleymani, M.; Velashjerdi, M.; Shaterabadi, Z.; Barati, A. One-pot preparation of hyaluronic acid-coated iron oxide nanoparticles for magnetic hyperthermia therapy and targeting CD44-overexpressing cancer cells. Carbohydr. Polym. 2020, 237, 116130. [Google Scholar] [CrossRef]
- Chen, H.A.; Lu, Y.J.; Dash, B.S.; Chao, Y.K.; Chen, J.P. Hyaluronic Acid-Modified Cisplatin-Encapsulated Poly(Lactic-co-Glycolic Acid) Magnetic Nanoparticles for Dual-Targeted NIR-Responsive Chemo-Photothermal Combination Cancer Therapy. Pharmaceutics 2023, 15, 290. [Google Scholar] [CrossRef]
- Chen, M.; Chen, B.; Ge, X.; Ma, Q.; Gao, S. Targeted Nanodrugs to Destroy the Tumor Extracellular Matrix Barrier for Improving Drug Delivery and Cancer Therapeutic Efficacy. Mol. Pharm. 2023, 20, 2389–2401. [Google Scholar] [CrossRef]
- Khodayari, H.; Heydarinasab, A.; Moniri, E.; Miralinaghi, M. Synthesis and characterization of magnetic nanoparticles-grafted-hyaluronic acid/β-cyclodextrin as a novel pH-sensetive nanocarrier for targeted delivery of doxorubicin. Inorg. Chem. Commun. 2023, 148, 110366. [Google Scholar] [CrossRef]
- Cai, X.; Yan, H.; Luo, Y.; Song, Y.; Zhao, Y.; Li, H.; Du, D.; Lin, Y. Mesoporous carbon nanospheres with ZnO nanolids for multimodal therapy of lung cancer. ACS Appl. Bio Mater. 2018, 1, 1165–1173. [Google Scholar] [CrossRef]
- Zheng, M.; Yang, Z.; Chen, S.; Wu, H.; Liu, Y.; Wright, A.; Lu, J.-W.; Xia, X.; Lee, A.; Zhang, J. Bioreducible zinc (II)-dipicolylamine functionalized hyaluronic acid mediates safe siRNA delivery and effective glioblastoma RNAi therapy. ACS Appl. Bio Mater. 2018, 2, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Perumalsamy, H.; Castro-Aceituno, V.; Kim, D.; Markus, J.; Lee, S.; Kim, S.; Liu, Y.; Yang, D.C. Photoluminescent and self-assembled hyaluronic acid-zinc oxide-ginsenoside Rh2 nanoparticles and their potential caspase-9 apoptotic mechanism towards cancer cell lines. Int. J. Nanomed. 2019, 14, 8195–8208. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zou, L.; Qiang, Z.; Jiang, J.; Zhu, Z.; Ren, J. Enhancing targeted cancer treatment by combining hyperthermia and radiotherapy using Mn-Zn ferrite magnetic nanoparticles. ACS Biomater. Sci. Eng. 2020, 6, 3550–3562. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.; Wong, R.C.; Wang, Y.; Guo, X.; Yang, Z.; Lo, P.-C. Shifting the absorption to the near-infrared region and inducing a strong photothermal effect by encapsulating zinc (II) phthalocyanine in poly (lactic-co-glycolic acid)-hyaluronic acid nanoparticles. Acta Biomater. 2020, 116, 329–343. [Google Scholar] [CrossRef] [PubMed]
- Varukattu, N.B.; Lin, W.; Vivek, R.; Rejeeth, C.; Sabarathinam, S.; Yao, Z.; Zhang, H. Targeted and intrinsic activity of HA-functionalized PEI-nanoceria as a nano reactor in potential triple-negative breast cancer treatment. ACS Appl. Bio Mater. 2019, 3, 186–196. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Cheng, H.; Dai, Y.; Su, Z.; Wang, C.; Lei, L.; Lin, D.; Li, X.; Chen, H.; Fan, K. In vivo regenerable cerium oxide nanozyme-loaded pH/H2O2-responsive nanovesicle for tumor-targeted photothermal and photodynamic therapies. ACS Appl. Mater. Interfaces 2020, 13, 233–244. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.R.; Kim, G.G.; Park, S.B.; Kim, S.W. Synthesis of Hyaluronic Acid-Conjugated Fe3O4@ CeO2 Composite Nanoparticles for a Target-Oriented Multifunctional Drug Delivery System. Micromachines 2021, 12, 1018. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Sun, X.; Liu, Y.; Yang, Y.; Shi, M.; Yu, J.; Zhang, S.; Shi, P. CeO2-Decorated Metal-Organic Framework for Enhanced Photodynamic Therapy. Inorg. Chem. 2020, 61, 16307–16316. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zou, J.; Chen, B.; Cao, Y.; Hu, D.; Zhang, Y.; Zhao, X.; Wen, J.; Liu, K.; Wang, K. Hyaluronic acid/serotonin-decorated cerium dioxide nanomedicine for targeted treatment of ulcerative colitis. Biomater. Sci. 2023, 11, 618–629. [Google Scholar] [CrossRef] [PubMed]
- Lv, Z.; He, S.; Wang, Y.; Zhu, X. Noble Metal Nanomaterials for NIR-Triggered Photothermal Therapy in Cancer. Adv. Healthc. Mater. 2021, 10, e2001806. [Google Scholar] [CrossRef]
Sr.no. | Core Materials | Other Substituents | Key Outcomes | Ref. |
---|---|---|---|---|
HA-modified Au | ||||
1. | LAP-PLA-PEG-PEI |
| [62] | |
2. | mSiO2-RGD |
| [63] | |
3. | PEG-Aptamer |
| [64] | |
4. | FA |
| [65] | |
5. | - |
| [66] | |
6. | HSN |
| [67] | |
7. | - |
| [68] | |
8. | PGMA |
| [69] | |
9. | PEI-PEG |
| [70] | |
10. | CBSA |
| [71] | |
11. | - |
| [72] | |
12. | - |
| [73] | |
13. | DHHC |
| [74] | |
14. | PAMAM |
| [75] | |
15. | DAHA-HECS |
| [76] | |
16. | pSiO2 |
| [77] | |
17. | LA |
| [78] | |
18. | HCA |
| [79] | |
19. | MSS-TPGS |
| [80] | |
20. | FA |
| [81] | |
21. | RA-dPG |
| [82] | |
22. | - |
| [83] | |
23. | PDA |
| [84] |
Sr.no. | Core Materials | Other Substituents | Key Outcomes | Ref. |
---|---|---|---|---|
1. | HA modidied Ag | - |
| [85] |
2. | Fe |
| [86] | |
3. | SiO2-EGDMA |
| [87] |
Sr.no. | Core Materials | Other Substituents | Key Outcomes | Ref. |
---|---|---|---|---|
HA-modified Pt | ||||
1. | - |
| [88] | |
2. | DMSN-CDs |
| [89] | |
3. | Pd |
| [90] | |
HA-modified Pd | ||||
1. | Se |
| [91] | |
2. | BTO-MnO2 |
| [92] |
Sr.no. | Core Materials | Other Substituents | Key Outcomes | Ref. |
---|---|---|---|---|
HA-modified Fe | ||||
1. | CCh |
| [93] | |
2. | - |
| [94] | |
3. | PEI-BSA-QD |
| [95] | |
4. | - |
| [96] | |
5. | - |
| [97] | |
6. | - |
| [98] | |
7. | PDA |
| [99] | |
8. | PEG |
| [100] | |
9. | Pt, APTES |
| [101] | |
10. | PEI-mPEG |
| [102] | |
11. | PC-NH2 (porous carbon) |
| [103] | |
12. | LDH |
| [104] | |
13. | APTES-Phosphatidylcholine (PC) |
| [59] | |
14. | - |
| [105] | |
15. | PLGA-OA |
| [106] | |
16. | Peptide |
| [107] | |
17. | β-cyclodextrin |
| [108] |
Sr.no. | Core Materials | Other Substituents | Key Outcomes | Ref. |
---|---|---|---|---|
HA-modified Zn | ||||
1. | PEG-QDs |
| [109] | |
2. | - |
| [110] | |
3. | - |
| [111] | |
4. | Mn-Zn-PEG-PCL |
| [112] | |
5. | PLGA |
| [113] | |
HA-modified Ce | ||||
1. | PEI |
| [114] | |
2. | PEI |
| [115] | |
3. |
| [116] | ||
4. | MOF |
| [117] | |
5. |
| [118] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uthappa, U.T.; Suneetha, M.; Ajeya, K.V.; Ji, S.M. Hyaluronic Acid Modified Metal Nanoparticles and Their Derived Substituents for Cancer Therapy: A Review. Pharmaceutics 2023, 15, 1713. https://doi.org/10.3390/pharmaceutics15061713
Uthappa UT, Suneetha M, Ajeya KV, Ji SM. Hyaluronic Acid Modified Metal Nanoparticles and Their Derived Substituents for Cancer Therapy: A Review. Pharmaceutics. 2023; 15(6):1713. https://doi.org/10.3390/pharmaceutics15061713
Chicago/Turabian StyleUthappa, Uluvangada Thammaiah, Maduru Suneetha, Kanalli V. Ajeya, and Seong Min Ji. 2023. "Hyaluronic Acid Modified Metal Nanoparticles and Their Derived Substituents for Cancer Therapy: A Review" Pharmaceutics 15, no. 6: 1713. https://doi.org/10.3390/pharmaceutics15061713
APA StyleUthappa, U. T., Suneetha, M., Ajeya, K. V., & Ji, S. M. (2023). Hyaluronic Acid Modified Metal Nanoparticles and Their Derived Substituents for Cancer Therapy: A Review. Pharmaceutics, 15(6), 1713. https://doi.org/10.3390/pharmaceutics15061713