Biocomposite for Prolonged Release of Water-Soluble Drugs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Biocomposites
2.3. Characterization of Biocomposites
2.4. In Vitro Release Kinetics
2.5. In Vitro Cytotoxicity Assay
2.6. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Biocomposites
3.2. In Vitro Release Kinetics
3.3. In Vitro Toxicity Assay
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sangeetha, K.; Angelin Vinodhini, P.; Sudha, P.N. Clay Based Biopolymer Nanocomposites and Their Applications in Environmental and Biomedical Fields. In Sustainable Polymer Composites and Nanocomposites; Springer International Publishing: Cham, Switzerland, 2019; pp. 1159–1183. [Google Scholar] [CrossRef]
- Salcedo, I.; Aguzzi, C.; Sandri, G.; Bonferoni, M.C.; Mori, M.; Cerezo, P.; Sánchez, R.; Viseras, C.; Caramella, C. In Vitro Biocompatibility and Mucoadhesion of Montmorillonite Chitosan Nanocomposite: A New Drug Delivery. Appl. Clay Sci. 2012, 55, 131–137. [Google Scholar] [CrossRef]
- Aguzzi, C.; Sandri, G.; Bonferoni, C.; Cerezo, P.; Rossi, S.; Ferrari, F.; Caramella, C.; Viseras, C. Solid State Characterisation of Silver Sulfadiazine Loaded on Montmorillonite/Chitosan Nanocomposite for Wound Healing. Colloids Surf. B Biointerfaces 2014, 113, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Rawat, K.; Bohidar, H.B.; Solanki, P.R. Studies on Clay-Gelatin Nanocomposite as Urea Sensor. Appl. Clay Sci. 2017, 146, 297–305. [Google Scholar] [CrossRef]
- Alexa, R.L.; Iovu, H.; Trica, B.; Zaharia, C.; Serafim, A.; Alexandrescu, E.; Radu, I.-C.; Vlasceanu, G.; Preda, S.; Ninciuleanu, C.M.; et al. Assessment of Naturally Sourced Mineral Clays for the 3D Printing of Biopolymer-Based Nanocomposite Inks. Nanomaterials 2021, 11, 703. [Google Scholar] [CrossRef] [PubMed]
- Del Mar Orta, M.; Martín, J.; Santos, J.L.; Aparicio, I.; Medina-Carrasco, S.; Alonso, E. Biopolymer-Clay Nanocomposites as Novel and Ecofriendly Adsorbents for Environmental Remediation. Appl. Clay Sci. 2020, 198, 105838. [Google Scholar] [CrossRef]
- Bernkop-Schnürch, A.; Dünnhaupt, S. Chitosan-Based Drug Delivery Systems. Eur. J. Pharm. Biopharm. 2012, 81, 463–469. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; El-Saadony, M.T.; Shafi, M.E.; Zabermawi, N.M.; Arif, M.; Batiha, G.E.; Khafaga, A.F.; Abd El-Hakim, Y.M.; Al-Sagheer, A.A. Antimicrobial and Antioxidant Properties of Chitosan and Its Derivatives and Their Applications: A Review. Int. J. Biol. Macromol. 2020, 164, 2726–2744. [Google Scholar] [CrossRef]
- Hu, L.; Sun, Y.; Wu, Y. Advances in Chitosan-Based Drug Delivery Vehicles. Nanoscale 2013, 5, 3103. [Google Scholar] [CrossRef]
- Murugesan, S.; Scheibel, T. Copolymer/Clay Nanocomposites for Biomedical Applications. Adv. Funct. Mater. 2020, 30, 1908101. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-hitzky, E.; Darder, M.; Fernandes, F.M.; Wicklein, B.; Alcântara, A.C.S.; Aranda, P. Fibrous Clays Based Bionanocomposites. Prog. Polym. Sci. 2013, 38, 1392–1414. [Google Scholar] [CrossRef] [Green Version]
- Viseras, C.; Aguzzi, C.; Cerezo, P.; Bedmar, M.C. Biopolymer-Clay Nanocomposites for Controlled Drug Delivery. Mater. Sci. Technol. 2008, 24, 1020–1026. [Google Scholar] [CrossRef]
- Wang, W.; Wang, A. Palygorskite Nanomaterials: Structure, Properties, and Functional Applications. In Nanomaterials from Clay Minerals; Elsevier: Amsterdam, The Netherlands, 2019; pp. 21–133. [Google Scholar] [CrossRef]
- Suárez, M.; García-Romero, E. Advances in the Crystal Chemistry of Sepiolite and Palygorskite. Dev. Clay Sci. 2011, 3, 33–65. [Google Scholar] [CrossRef]
- Meirelles, L.; Carazo, E.; Borrego-Sánchez, A.; Barbosa, R.; Moura, T.; Aguzzi, C.; Sainz-Diaz, C.I.; Viseras, C.; Raffin, F. Design and Characterization of a Tuberculostatic Hybrid Based on Interaction of Ethambutol with a Raw Palygorskite. Appl. Clay Sci. 2019, 181, 105213. [Google Scholar] [CrossRef]
- Yahia, Y.; García-Villén, F.; Djelad, A.; Belaroui, L.S.; Sanchez-Espejo, R.; Sassi, M.; López-Galindo, A.; Viseras, C. Crosslinked Palygorskite-Chitosan Beads as Diclofenac Carriers. Appl. Clay Sci. 2019, 180, 105169. [Google Scholar] [CrossRef]
- Borrego-Sánchez, A.; Carazo, E.; Aguzzi, C.; Viseras, C.; Sainz-Díaz, C.I. Biopharmaceutical Improvement of Praziquantel by Interaction with Montmorillonite and Sepiolite. Appl. Clay Sci. 2018, 160, 173–179. [Google Scholar] [CrossRef]
- Alcântara, A.C.S.; Darder, M.; Aranda, P.; Ruiz-Hitzky, E. Polysaccharide–Fibrous Clay Bionanocomposites. Appl. Clay Sci. 2014, 96, 2–8. [Google Scholar] [CrossRef]
- Santana, A.C.S.G.V.; Soares Sobrinho, J.L.; da Silva Filho, E.C.; Nunes, L.C.C. Preparation and Physicochemical Characterization of Binary Composites Palygorskite–Chitosan for Drug Delivery. J. Therm. Anal. Calorim. 2017, 128, 1327–1334. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, J.; Wang, W.; Wang, A. Preparation, Characterization and Drug-Release Behaviors of Crosslinked Chitosan/Attapulgite Hybrid Microspheres by a Facile Spray-Drying Technique. J. Biomater. Nanobiotechnol. 2011, 2, 250–257. [Google Scholar] [CrossRef] [Green Version]
- Meneguin, A.; Pacheco, G.; Silva, J.M.; de Araujo, F.P.; Silva-Filho, E.C.; Bertolino, L.C.; da Silva Barud, H. Nanocellulose/Palygorskite Biocomposite Membranes for Controlled Release of Metronidazole. Int. J. Biol. Macromol. 2021, 188, 689–695. [Google Scholar] [CrossRef]
- Dong, Y.; Ng, W.K.; Hu, J.; Shen, S.; Tan, R.B.H. Clay as a Matrix Former for Spray Drying of Drug Nanosuspensions. Int. J. Pharm. 2014, 465, 83–89. [Google Scholar] [CrossRef]
- Saadat, S.; Rawtani, D.; Parikh, G. Clay Minerals-Based Drug Delivery Systems for Anti-Tuberculosis Drugs. J. Drug Deliv. Sci. Technol. 2022, 76, 103755. [Google Scholar] [CrossRef]
- Bhutani, H.; Singh, S.; Jindal, K.C.; Chakraborti, A.K. Mechanistic Explanation to the Catalysis by Pyrazinamide and Ethambutol of Reaction between Rifampicin and Isoniazid in Anti-TB FDCs. J. Pharm. Biomed. Anal. 2005, 39, 892–899. [Google Scholar] [CrossRef]
- Diniz, L.F.; Carvalho, P.S.; de Melo, C.C.; Ellena, J. Reducing the Hygroscopicity of the Anti-Tuberculosis Drug (S,S)-Ethambutol Using Multicomponent Crystal Forms. Cryst. Growth Des. 2017, 17, 2622–2630. [Google Scholar] [CrossRef]
- Dos Santos Soares, D.; Fernandes, C.S.; Da Costa, A.C.S.; Raffin, F.N.; Acchar, W.; De Lima E Moura, T.F.A. Characterization of Palygorskite Clay from Piauí, Brazil and Its Potential Use as Excipient for Solid Dosage Forms Containing Anti-Tuberculosis Drugs. J. Therm. Anal. Calorim. 2013, 113, 551–558. [Google Scholar] [CrossRef]
- Dos Santos, Z.M.; Caroni, A.L.P.F.; Pereira, M.R.; da Silva, D.R.; Fonseca, J.L.C. Determination of Deacetylation Degree of Chitosan: A Comparison between Conductometric Titration and CHN Elemental Analysis. Carbohydr. Res. 2009, 344, 2591–2595. [Google Scholar] [CrossRef]
- Khlibsuwan, R.; Siepmann, F.; Siepmann, J.; Pongjanyakul, T. Chitosan-Clay Nanocomposite Microparticles for Controlled Drug Delivery: Effects of the MAS Content and TPP Crosslinking. J. Drug Deliv. Sci. Technol. 2017, 40, 1–10. [Google Scholar] [CrossRef]
- Zhao, R.; Hu, P.; Wu, X.; Wang, Y. Determination of Assay for Ethambutol Hydrochloride in Ethambutol Hydrochloride Tablets by RP—HPLC. J. Dali Univ. 2007, 10, 10–12. [Google Scholar]
- Mohamed, A.E.; Elgammal, W.E.; Eid, A.M.; Dawaba, A.M.; Ibrahim, A.G.; Fouda, A.; Hassan, S.M. Synthesis and Characterization of New Functionalized Chitosan and Its Antimicrobial and In-Vitro Release Behavior from Topical Gel. Int. J. Biol. Macromol. 2022, 207, 242–253. [Google Scholar] [CrossRef]
- Mohamed, A.E.; Elgammal, W.E.; Dawaba, A.M.; Ibrahim, A.G.; Fouda, A.; Hassan, S.M. A Novel 1,3,4-Thiadiazole Modified Chitosan: Synthesis, Characterization, Antimicrobial Activity, and Release Study from Film Dressings. Appl. Biol. Chem. 2022, 65, 54. [Google Scholar] [CrossRef]
- Lopes, C.M.; Lobo, J.M.S.; Costa, P. Formas Farmacêuticas de Liberação Modificada: Polímeros Hidrifílicos. Rev. Bras. Ciênc. Farm. 2005, 41, 143–154. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, A.G.; Fouda, A.; Elgammal, W.E.; Eid, A.M.; Elsenety, M.M.; Mohamed, A.E.; Hassan, S.M. New Thiadiazole Modified Chitosan Derivative to Control the Growth of Human Pathogenic Microbes and Cancer Cell Lines. Sci. Rep. 2022, 12, 21423. [Google Scholar] [CrossRef] [PubMed]
- Mosmann, T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Messa, L.L.; Souza, C.F.; Faez, R. Spray-Dried Potassium Nitrate-Containing Chitosan/Montmorillonite Microparticles as Potential Enhanced Efficiency Fertilizer. Polym. Test. 2020, 81, 106196. [Google Scholar] [CrossRef]
- Aranaz, I.; Paños, I.; Peniche, C.; Heras, Á.; Acosta, N. Chitosan Spray-Dried Microparticles for Controlled Delivery of Venlafaxine Hydrochloride. Molecules 2017, 22, 1980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katsarov, P.D.; Pilicheva, B.A.; Manev, H.M.; Lukova, P.K.; Kassarova, M.I. Optimization of Chitosan Microspheres Spray Drying via 32 Full Factorial Design. Folia Med. 2017, 59, 310–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, W.-Z.; Cai, Y.; Li, H.-Y. Chitosan-Based Spray-Dried Mucoadhesive Microspheres for Sustained Oromucosal Drug Delivery. Powder Technol. 2017, 312, 124–132. [Google Scholar] [CrossRef]
- Álvarez, A.; Santarén, J.; Esteban-Cubillo, A.; Aparicio, P. Current Industrial Applications of Palygorskite and Sepiolite. In Developments in Clay Science; Galan, E., Singer, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar] [CrossRef]
- Rusmin, R.; Sarkar, B.; Liu, Y.; McClure, S.; Naidu, R. Structural Evolution of Chitosan-Palygorskite Composites and Removal of Aqueous Lead by Composite Beads. Appl. Surf. Sci. 2015, 353, 363–375. [Google Scholar] [CrossRef]
- He, P.; Davis, S.S.; Illum, L. Chitosan Microspheres Prepared by Spray Drying. Int. J. Pharm. 1999, 187, 53–65. [Google Scholar] [CrossRef]
- Anitha, A.; Rejinold, N.S.; Bumgardner, J.D.; Nair, S.V.; Jayakumar, R. Approaches for Functional Modification or Cross-Linking of Chitosan. In Chitosan-Based Systems for Biopharmaceuticals; Wiley: New York, NY, USA, 2012; pp. 107–124. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Wang, Q.; Wang, A. Synthesis and Characterization of Chitosan-g-Poly(Acrylic Acid)/Attapulgite Superabsorbent Composites. Carbohydr. Polym. 2007, 68, 367–374. [Google Scholar] [CrossRef]
- Ruiz-Hitzky, E.; Aranda, P.; Darder, M.; Fernandes, F.M. Fibrous Clay Mineral-Polymer Nanocomposites. In Developments in Clay Science; Elsevier Ltd.: New York, NY, USA, 2013; Volume 5, pp. 721–741. [Google Scholar] [CrossRef]
- Gan, Q.; Wang, T. Chitosan Nanoparticle as Protein Delivery Carrier-Systematic Examination of Fabrication Conditions for Efficient Loading and Release. Colloids Surf. B Biointerfaces 2007, 59, 24–34. [Google Scholar] [CrossRef]
- Khunawattanakul, W.; Puttipipatkhachorn, S.; Rades, T.; Pongjanyakul, T. Chitosan–Magnesium Aluminum Silicate Composite Dispersions: Characterization of Rheology, Flocculate Size and Zeta Potential. Int. J. Pharm. 2008, 351, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Beggs, W.H.; Andrews, F.A. Chemical Characterization of Ethambutol Binding to Mycobacterium Smegmatis. Antimicrob. Agents Chemother. 1974, 5, 234–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Galindo, A.; Ruiz, J.T.; López, J.M.G. Mineral Quantification in Sepiolite-Palygorskite Deposits Using X-ray Diffraction and Chemical Data. Clay Miner. 1996, 31, 217–224. [Google Scholar] [CrossRef]
- Jaworska, M.; Sakurai, K.; Gaudon, P.; Guibal, E. Influence of Chitosan Characteristics on Polymer Properties. I: Crystallographic Properties. Polym. Int. 2003, 52, 198–205. [Google Scholar] [CrossRef]
- Singh, A.; den Mooter, G.V. Spray Drying Formulation of Amorphous Solid Dispersions. Adv. Drug Deliv. Rev. 2016, 100, 27–50. [Google Scholar] [CrossRef]
- Gover Antoniraj, M.; Maria Leena, M.; Moses, J.A.; Anandharamakrishnan, C. Cross-Linked Chitosan Microparticles Preparation by Modified Three Fluid Nozzle Spray Drying Approach. Int. J. Biol. Macromol. 2020, 147, 1268–1277. [Google Scholar] [CrossRef]
- Cervera, M.F.; Heinämäki, J.; de la Paz, N.; López, O.; Maunu, S.L.; Virtanen, T.; Hatanpää, T.; Antikainen, O.; Nogueira, A.; Fundora, J.; et al. Effects of Spray Drying on Physicochemical Properties of Chitosan Acid Salts. AAPS PharmSciTech 2011, 12, 637–649. [Google Scholar] [CrossRef] [Green Version]
- Do Nascimento, E.; de Caland, L.; de Medeiros, A.; Fernandes-Pedrosa, M.; Soares-Sobrinho, J.; dos Santos, K.; da Silva-Júnior, A. Tailoring Drug Release Properties by Gradual Changes in the Particle Engineering of Polysaccharide Chitosan Based Powders. Polymers 2017, 9, 253. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Ding, S.; Chen, J.; Zhou, S.; Ding, H. Preparation and Drug Release Properties of Chitosan/Organomodified Palygorskite Microspheres. Int. J. Biol. Macromol. 2014, 68, 107–112. [Google Scholar] [CrossRef]
- Rajalakshmi, K.; Gunasekaran, S.; Kumaresan, S. Vibrational Assignment, HOMO–LUMO and NBO Analysis of (2S)-2-[(2-{[(2S)-1-Hydroxybutan-2-Yl]Amino}ethyl)Amino]Butan-1-Ol by Density Functional Theory. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 130, 466–479. [Google Scholar] [CrossRef]
- Suárez, M.; García-Romero, E. FTIR Spectroscopic Study of Palygorskite: Influence of the Composition of the Octahedral Sheet. Appl. Clay Sci. 2006, 31, 154–163. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, A.M.B.M.; Coelho, L.F.O.; Gomes, S.S.S.; Costa, I.F.; Fonseca, M.G.; de Sousa, K.S.; Espínola, J.G.P.; da Silva Filho, E.C. Brazilian Palygorskite as Adsorbent for Metal Ions from Aqueous Solution—Kinetic and Equilibrium Studies. Water Air Soil Pollut. 2013, 224, 1687. [Google Scholar] [CrossRef]
- Nunthanid, J.; Laungtana-anan, M.; Sriamornsak, P.; Limmatvapirat, S.; Puttipipatkhachorn, S.; Lim, L.Y.; Khor, E. Characterization of Chitosan Acetate as a Binder for Sustained Release Tablets. J. Control. Release 2004, 99, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.F.; Shen, L.; Tong, Y.J.; Chen, L.; Phang, I.Y.; Lim, P.Q.; Liu, T.X. Biopolymer Chitosan/Montmorillonite Nanocomposites: Preparation and Characterization. Polym. Degrad. Stab. 2005, 90, 123–131. [Google Scholar] [CrossRef]
- Toffey, A.; Samaranayake, G.; Frazier, C.E.; Glasser, W.G. Chitin Derivatives. I. Kinetics of the Heat-Induced Conversion of Chitosan to Chitin. J. Appl. Polym. Sci. 1996, 60, 75–85. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, L.; Hu, X.; Liu, B.; Wei, Z.; Yang, S.; Sun, C. Highly Efficient Removal of Tannic Acid from Aqueous Solution by Chitosan-Coated Attapulgite. Chem. Eng. J. 2012, 181–182, 300–306. [Google Scholar] [CrossRef]
- Darder, M.; López-Blanco, M.; Aranda, P.; Aznar, A.J.; Bravo, J.; Ruiz-Hitzky, E. Microfibrous Chitosan—Sepiolite Nanocomposites. Chem. Mater. 2006, 18, 1602–1610. [Google Scholar] [CrossRef]
- Huang, D.; Zheng, Y.; Zhang, Z.; Quan, Q.; Qiang, X. Synergistic Effect of Hydrophilic Palygorskite and Hydrophobic Zein Particles on the Properties of Chitosan Films. Mater. Des. 2020, 185, 108229. [Google Scholar] [CrossRef]
- Rubin-preminger, J.M.; Bernstein, J.; Harris, R.K.; Evans, I.R.; Ghi, P.Y. Variable Temperature Studies of a Polymorphic System Comprising Two Pairs of Enantiotropically Related Forms: [S,S]-Ethambutol Dihydrochloride. Cryst. Growth Des. 2004, 4, 431–439. [Google Scholar] [CrossRef]
- López, F.A.; Mercê, A.L.R.; Alguacil, F.J.; López-Delgado, A. A Kinetic Study on the Thermal Behaviour of Chitosan. J. Therm. Anal. Calorim. 2008, 91, 633–639. [Google Scholar] [CrossRef]
- Farah, K.; Syed, M.F.H.; Madiha, M.; Rabia, N.; Sana, G.; Iyad, N.M.; Fouzia, H. Comparative Analysis of Biopharmaceutic Classification System (BCS) Based Biowaiver Protocols to Validate Equivalence of a Multisource Product. Afr. J. Pharm. Pharmacol. 2020, 14, 212–220. [Google Scholar] [CrossRef]
- Failla, P.; Cosco, D.; Mollace, V.; Costa, N.; Paolino, D.; Pullano, S.; Fiorillo, A.; Fresta, M. Rutin-Loaded Chitosan Microspheres: Characterization and Evaluation of the Anti-Inflammatory Activity. Carbohydr. Polym. 2016, 152, 583–591. [Google Scholar] [CrossRef]
- Alhalaweh, A.; Andersson, S.; Velaga, S.P. Preparation of Zolmitriptan–Chitosan Microparticles by Spray Drying for Nasal Delivery. Eur. J. Pharm. Sci. 2009, 38, 206–214. [Google Scholar] [CrossRef]
- Liu, K.H.; Liu, T.Y.; Chen, S.Y.; Liu, D.M. Drug Release Behavior of Chitosan-Montmorillonite Nanocomposite Hydrogels Following Electrostimulation. Acta Biomater. 2008, 4, 1038–1045. [Google Scholar] [CrossRef] [PubMed]
- Aguzzi, C.; Capra, P.; Bonferoni, C.; Cerezo, P.; Salcedo, I.; Sánchez, R.; Caramella, C.; Viseras, C. Chitosan-Silicate Biocomposites to Be Used in Modified Drug Release of 5-Aminosalicylic Acid (5-ASA). Appl. Clay Sci. 2010, 50, 106–111. [Google Scholar] [CrossRef]
- Manadas, R.; Pina, M.E.; Veiga, F. A Dissolução in Vitro Na Previsão Da Absorção Oral de Fármacos Em Formas Farmacêuticas de Liberação Modificada. Rev. Bras. Ciênc. Solo 2002, 38, 375–399. [Google Scholar] [CrossRef] [Green Version]
- Yassue-Cordeiro, P.H.; Zandonai, C.H.; da Silva, C.F.; Fernandes-Machado, N.R.C. Desenvolvimento e Caracterização de Filmes Compósitos de Quitosana e Zeólitas Com Prata. Polímeros 2015, 25, 492–502. [Google Scholar] [CrossRef] [Green Version]
- Peppas, N.A.; Sahlin, J.J. A Simple Equation for the Description of Solute Release. III. Coupling of Diffusion and Relaxation. Int. J. Pharm. 1989, 57, 169–172. [Google Scholar] [CrossRef]
- Santana, A.C.S.G.V.; Sobrinho, J.L.S.; da Silva Filho, E.C.; Nunes, L.C.C. Obtaining the Palygorskite:Chitosan Composite for Modified Release of 5-Aminosalicylic Acid. Mater. Sci. Eng. C 2017, 73, 245–251. [Google Scholar] [CrossRef]
- Jadaun, G.P.S.; Agarwal, C.; Sharma, H.; Ahmed, Z.; Upadhyay, P.; Faujdar, J.; Gupta, A.K.; Das, R.; Gupta, P.; Chauhan, D.S.; et al. Determination of Ethambutol MICs for Mycobacterium Tuberculosis and Mycobacterium Avium Isolates by Resazurin Microtitre Assay. J. Antimicrob. Chemother. 2007, 60, 152–155. [Google Scholar] [CrossRef]
- Saifullah, B.; Chrzastek, A.; Maitra, A.; Naeemullah, B.; Fakurazi, S.; Bhakta, S.; Hussein, M. Novel Anti-Tuberculosis Nanodelivery Formulation of Ethambutol with Graphene Oxide. Molecules 2017, 22, 1560. [Google Scholar] [CrossRef] [Green Version]
- Peniche, C.; Argüelles-Monal, W.; Peniche, H.; Acosta, N. Chitosan: An Attractive Biocompatible Polymer for Microencapsulation. Macromol. Biosci. 2003, 3, 511–520. [Google Scholar] [CrossRef]
- Gomathi, T.; Prasad, P.S.; Sudha, P.N.; Anil, S. Size Optimization and in Vitro Biocompatibility Studies of Chitosan Nanoparticles. Int. J. Biol. Macromol. 2017, 104, 1794–1806. [Google Scholar] [CrossRef]
- Rodrigues, S.; Dionísio, M.; López, C.R.; Grenha, A. Biocompatibility of Chitosan Carriers with Application in Drug Delivery. J. Funct. Biomater. 2012, 3, 615–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, D.; Li, Y.; Ahlemeyer, B.; Krieglstein, J.; Kissel, T. In Vitro Cytotoxicity Testing of Polycations: Influence of Polymer Structure on Cell Viability and Hemolysis. Biomaterials 2003, 24, 1121–1131. [Google Scholar] [CrossRef] [PubMed]
- Kudsiova, L.; Lawrence, M.J. A Comparison of the Effect of Chitosan and Chitosan-Coated Vesicles on Monolayer Integrity and Permeability across Caco-2 and 16HBE14o-Cells. J. Pharm. Sci. 2008, 97, 3998–4010. [Google Scholar] [CrossRef]
- Dumas, L.; Pagé, M. Growth Changes of 3T3 Cells in the Presence of Mineral Fibers. Environ. Res. 1986, 39, 199–204. [Google Scholar] [CrossRef]
- Cervini Silva, J.; Nieto Camacho, A.; Ramírez Apan, M.T.; Gómez Vidales, V.; Palacios, E.; Montoya, A.; Ronquillo de Jesús, E. Anti-Inflammatory, Anti-Bacterial, and Cytotoxic Activity of Fibrous Clays. Colloids Surf. B Biointerfaces 2015, 129, 1–6. [Google Scholar] [CrossRef]
- Li, X.-D.; Li, S.-P.; Song, F.-G.; Liu, Z.-L.; Zhao, X.-F. The Performance of Attapulgite Hybrids Combined with MTX and Au Nanoparticles. J. Phys. Chem. Solids 2018, 124, 73–80. [Google Scholar] [CrossRef]
- Rowe, R.C.; Sheskey, P.J.; Quinn, M.E. (Eds.) Handbook of Pharmaceutical Excipientes, 6th ed.; Pharmaceutical Press: London, UK, 2009. [Google Scholar] [CrossRef]
- Moraes, J.D.D.; Bertolino, S.R.A.; Cuffini, S.L.; Ducart, D.F.; Bretzke, P.E.; Leonardi, G.R. Clay Minerals: Properties and Applications to Dermocosmetic Products and Perspectives of Natural Raw Materials for Therapeutic Purposes—A Review. Int. J. Pharm. 2017, 534, 213–219. [Google Scholar] [CrossRef]
- Mahanta, A.K.; Senapati, S.; Paliwal, P.; Krishnamurthy, S.; Hemalatha, S.; Maiti, P. Nanoparticle-Induced Controlled Drug Delivery Using Chitosan-Based Hydrogel and Scaffold: Application to Bone Regeneration. Mol. Pharm. 2019, 16, 327–338. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Ding, K.; Wu, H.; Wang, N.; Williams, C.; Yan, Q.; Li, X.; Guan, W.; Wu, G.; Chu, P.K. Evaluation of Cytotoxicity of Natural Nano-Attapulgite and Its Enhancement of Vero Cell Productivity. Dig. J. Nanomater. Biostruct. 2013, 8, 551–560. [Google Scholar]
Formulation | Chitosan: Palygorskite (w/w) | Yield (%) |
---|---|---|
CE | 1:0 | 52.05 |
C2P1E | 2:1 | 59.37 |
C1P1E | 1:1 | 58.98 |
Models | Equation | Parameters |
---|---|---|
Higuchi | KH, r2 | |
Korsmeyer–Peppas | KP, n, r2 | |
Peppas–Sahlin | K1, K2, m, r2 |
Formulation | Diameter (µM) | Drug Loading (%) | Encapsulation Efficiency (%) | Zeta Potential (mV) |
---|---|---|---|---|
CE | 3.17 ± 0.46 | 12.34 ± 0.04 | 94.59 ± 0.34 | 34.93 ± 0.99 |
C2P1E | 3.36 ± 0.22 | 11.69 ± 0.18 | 99.39 ± 1.56 | 26.53 ± 3.65 |
C1P1E | 4.29 ± 0.16 | 7.66 ± 0.07 | 84.30 ± 0.79 | 23.27 ± 2.87 |
Model | Parameters | CE | C2P1E | C1P1E |
---|---|---|---|---|
Higuchi | KH r2 | 9.061 ± 0.262 0.966 ± 0.015 | 7.568 ± 0.857 0.974 ± 0.018 | 6.709 ± 0.613 0.956 ± 0.002 |
Korsmeyer–Peppas | KP n r2 | 4.035 ± 0.766 0.699 ± 0.079 0.860 ± 0.120 | 6.829 ± 1.508 0.521 ± 0.060 0.948 ± 0.036 | 2.245 ± 0.030 0.735 ± 0.009 0.896 ± 0.056 |
Peppas–Sahlin | K1 K2 m r2 | 8.320 ± 0.636 0.422 ± 0.048 0.450 ± 0.000 0.958 ± 0.022 | 8.842 ± 1.652 0.068 ± 0.158 0.450 ± 0.000 0.968 ± 0.021 | 5.040 ± 0.891 0.481 ± 0.023 0.450 ± 0.000 0.960 ± 0.012 |
Model | Parameters | CE | C2P1E | C1P1E |
---|---|---|---|---|
Higuchi | KH r2 | 3.207 ± 0.087 0.848 ± 0.024 | 3.936 ± 0.029 0.767 ± 0.072 | 4.711 ± 0.274 0.843 ± 0.012 |
Korsmeyer–Peppas | KP n r2 | 4.795 ± 1.007 0.501 ± 0.052 0.988 ± 0.007 | 6.200 ± 1.161 0.491 ± 0.068 0.976 ± 0.020 | 6.665 ± 1.578 0.509 ± 0.077 0.979 ± 0.015 |
Peppas–Sahlin | K1 K2 m r2 | 6.284 ± 0.260 −0.150 ± 0.013 0.450 ± 0.000 0.993 ± 0.003 | 8.380 ± 0.620 −0.233 ± 0.044 0.450 ± 0.000 0.983 ±0.007 | 9.384 ± 0.680 −0.232 ± 0.024 0.450 ± 0.000 0.994 ± 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meirelles, L.M.A.; de Melo Barbosa, R.; de Almeida Júnior, R.F.; Machado, P.R.L.; Perioli, L.; Viseras, C.; Raffin, F.N. Biocomposite for Prolonged Release of Water-Soluble Drugs. Pharmaceutics 2023, 15, 1722. https://doi.org/10.3390/pharmaceutics15061722
Meirelles LMA, de Melo Barbosa R, de Almeida Júnior RF, Machado PRL, Perioli L, Viseras C, Raffin FN. Biocomposite for Prolonged Release of Water-Soluble Drugs. Pharmaceutics. 2023; 15(6):1722. https://doi.org/10.3390/pharmaceutics15061722
Chicago/Turabian StyleMeirelles, Lyghia M. A., Raquel de Melo Barbosa, Renato Ferreira de Almeida Júnior, Paula Renata Lima Machado, Luana Perioli, César Viseras, and Fernanda Nervo Raffin. 2023. "Biocomposite for Prolonged Release of Water-Soluble Drugs" Pharmaceutics 15, no. 6: 1722. https://doi.org/10.3390/pharmaceutics15061722
APA StyleMeirelles, L. M. A., de Melo Barbosa, R., de Almeida Júnior, R. F., Machado, P. R. L., Perioli, L., Viseras, C., & Raffin, F. N. (2023). Biocomposite for Prolonged Release of Water-Soluble Drugs. Pharmaceutics, 15(6), 1722. https://doi.org/10.3390/pharmaceutics15061722