Transdermal Delivery of Glimepiride: A Novel Approach Using Nanomicelle-Embedded Microneedles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Instruments
2.3. Methadology
2.3.1. Pre-Formulation Studies
Fourier Transform Infrared (FTIR) Analysis
Simultaneous Thermal Analysis, STA (DSC/TGA)
2.3.2. Solubility Studies of Glimepiride
2.3.3. Preparation of Microneedle Casting Solution
2.3.4. Fabrication of GM-Loaded DMN Array
2.3.5. Characterization of GM-Loaded MN Array
Mechanical Strength Testing
- Fracture Test of GM-Array
- Insertion Test of GM-Array
Scanning Electron Microscopy (SEM)
2.3.6. Estimation of Drug Content
2.3.7. In Vitro Drug Release
2.3.8. In Vivo Evaluation of Gm–DMNs in Human Volunteers
2.3.9. In Vivo Safety Assessment
2.4. Data Analysis
3. Results
3.1. Results and Discussion
3.1.1. Fourier Transform Infrared Analysis (FTIR)
3.1.2. Simultaneous Thermal Analysis, STA (DSC/TGA)
3.1.3. Optimization of GM–Nanomicelles (GNM)
3.1.4. Fabrication of Glimepiride Nanomicelle-Loaded DMN Array
3.1.5. Scanning Electron Microscopy (SEM)
3.1.6. Mechanical Strength Testing
Fracture Test of GM-Array
Insertion Test of GM-Array
3.1.7. Estimation of Drug Content
3.1.8. In Vitro Drug Release
3.1.9. In Vivo PK Evaluation of GM–DMNs in Human Volunteers
3.1.10. In Vivo Safety Assessment of Microneedle Arrays in Human Skin
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mukhtar, Y.; Galalain, A.; Yunusa, U. A modern overview on diabetes mellitus: A chronic endocrine disorder. Eur. J. Biol. 2020, 5, 1–14. [Google Scholar] [CrossRef]
- Steinbrenner, H.; Duntas, L.H.; Rayman, M.P. The role of selenium in type-2 diabetes mellitus and its metabolic comorbidities. Redox Biol. 2022, 50, 102236. [Google Scholar] [CrossRef] [PubMed]
- Kalin, M.F.; Goncalves, M.; John-Kalarickal, J.; Fonseca, V. Pathogenesis of type 2 diabetes mellitus. Med. Clin. N. Am. 2017, 36, 1–11. [Google Scholar]
- Li, Y.; Zhang, W.; Zhao, R.; Zhang, X. Advances in oral peptide drug nanoparticles for diabetes mellitus treatment. Bioact. Mater. 2022, 15, 392–408. [Google Scholar] [CrossRef] [PubMed]
- Alghamdi, A.F.; Alkhalaf, A.S.; Alkhalaf, A.S. High performance liquid chromatographic determination of glimepiride and timolol in pharmaceutical formulations using britton-robinson buffer in mobile phases. Mor. J. Chem. 2016, 4, 454–560. [Google Scholar]
- Tiwari, S.; Batra, N. Oral drug delivery system: A review. Am. J. Life. Sci. Res 2014, 2, 27–35. [Google Scholar]
- Moon, C.; Oh, E. Rationale and strategies for formulation development of oral fixed dose combination drug products. J. Pharm. Investig. 2016, 46, 615–631. [Google Scholar]
- Kumar, P. Designing and development of nanotechnology besed formulation for mucoadhesive drug delivery of glimepiride: Shalini Rawat, Puja Sharma Himalayan Institute of Pharmacy and Research, Dehradun, Uttarakhand. Int. J. Pharm. Allied Sci. Res. 2022, 1, 1–23. [Google Scholar]
- Dhirendra, K.; Lewis, S.; Udupa, N.; Atin, K. Solid dispersions: A review. Pak. J. Pharm. Sci. 2009, 22, 234–246. [Google Scholar]
- Ryles, R. Chemical stability limits of water-soluble polymers used in oil recovery processes. SPE Reserv. 1988, 3, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Ingert, D.; Pileni, M.P. Limitations in producing nanocrystals using reverse micelles as nanoreactors. Adv. Funct. Mater. 2001, 11, 136–139. [Google Scholar] [CrossRef]
- Ramadon, D.; McCrudden, M.T.; Courtenay, A.J.; Donnelly, R.F. Enhancement strategies for transdermal drug delivery systems: Current trends and applications. Drug Deliv. Transl. Res. 2021, 12, 758–791. [Google Scholar] [PubMed]
- Alamoudi, A.A.; Ahmed, O.A.; El-Say, K.M. Investigating the potential of transdermal delivery of Avanafil using vitamin E-TPGS based mixed micelles loaded films. Pharmaceutics 2021, 13, 739. [Google Scholar] [PubMed]
- Peng, C.; Kuang, L.; Zhao, J.; Ross, A.E.; Wang, Z.; Ciolino, J.B. Bibliometric and visualized analysis of ocular drug delivery from 2001 to 2020. J. Control. Release 2022, 345, 625–645. [Google Scholar] [CrossRef]
- Sartawi, Z.; Blackshields, C.; Faisal, W. Dissolving microneedles: Applications and growing therapeutic potential. J. Control. Release 2022, 348, 186–205. [Google Scholar]
- Ramadon, D.; Sutrisna, L.F.P.; Harahap, Y.; Putri, K.S.S.; Ulayya, F.; Hartrianti, P.; Anjani, Q.K.; Donnelly, R.F. Enhancing Intradermal Delivery of Lidocaine by Dissolving Microneedles: Comparison between Hyaluronic Acid and Poly (Vinyl Pyrrolidone) Backbone Polymers. Pharmaceutics 2023, 15, 289. [Google Scholar] [PubMed]
- Trinh, H.M.; Joseph, M.; Cholkar, K.; Mitra, R.; Mitra, A.K. Nanomicelles in diagnosis and drug delivery. In Emerging Nanotechnologies for Diagnostics, Drug Delivery and Medical Devices; Elsevier: Amsterdam, The Netherlands, 2017; pp. 45–58. [Google Scholar]
- Amirmahani, N.; Mahmoodi, N.O.; Galangash, M.M.; Ghavidast, A. Advances in nanomicelles for sustained drug delivery. J. Ind. Eng. Chem. 2017, 55, 21–34. [Google Scholar] [CrossRef]
- Chen, K.; Ren, L.; Chen, Z.; Pan, C.; Zhou, W.; Jiang, L. Fabrication of micro-needle electrodes for bio-signal recording by a magnetization-induced self-assembly method. Sensors 2016, 16, 1533. [Google Scholar] [CrossRef] [Green Version]
- Hoskins, C.; Thoo-Lin, P.K.; Cheng, W.P. A review on comb-shaped amphiphilic polymers for hydrophobic drug solubilization. Ther. Deliv. 2012, 3, 59–79. [Google Scholar] [CrossRef] [Green Version]
- Lust, A.; Laidmäe, I.; Palo, M.; Meos, A.; Aaltonen, J.; Veski, P.; Heinämäki, J.; Kogermann, K. Solid-state dependent dissolution and oral bioavailability of piroxicam in rats. Eur. J. Pharm. Sci. 2013, 48, 47–54. [Google Scholar]
- Anjani, Q.K.; Sabri, A.H.B.; Domínguez-Robles, J.; Moreno-Castellanos, N.; Utomo, E.; Wardoyo, L.A.H.; Larrañeta, E.; Donnelly, R.F. Metronidazole nanosuspension loaded dissolving microarray patches: An engineered composite pharmaceutical system for the treatment of skin and soft tissue infection. Biomater. Adv. 2022, 140, 213073. [Google Scholar]
- Nguyen, H.X.; Bozorg, B.D.; Kim, Y.; Wieber, A.; Birk, G.; Lubda, D.; Banga, A.K. Poly (vinyl alcohol) microneedles: Fabrication, characterization, and application for transdermal drug delivery of doxorubicin. Eur. J. Pharm. Biopharm. 2018, 129, 88–103. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Vora, L.K.; Donnelly, R.F.; Singh, T.R.R. Rapidly dissolving bilayer microneedles enabling minimally invasive and efficient protein delivery to the posterior segment of the eye. Drug Deliv. Transl. Res. 2023, 13, 2142–2158. [Google Scholar] [CrossRef] [PubMed]
- Paredes, A.J.; Permana, A.D.; Volpe-Zanutto, F.; Amir, M.N.; Vora, L.K.; Tekko, I.A.; Akhavein, N.; Weber, A.D.; Larrañeta, E.; Donnelly, R.F. Ring inserts as a useful strategy to prepare tip-loaded microneedles for long-acting drug delivery with application in HIV pre-exposure prophylaxis. Mater. Des. 2022, 224, 111416. [Google Scholar] [CrossRef]
- Huang, D.; Li, J.; Li, T.; Wang, Z.; Wang, Q.; Li, Z. Recent advances on fabrication of microneedles on the flexible substrate. J. Micromech. Microeng. 2021, 31, 073001. [Google Scholar] [CrossRef]
- Parejiya, P.; Movaliya, V.; Patel, H.; Suthar, D.; Patel, C. Preformulation Study of Glimepiride: An Insight for Formulation and Development of Parenteral Formulation. J. Pharm. Res. Int. 2022, 34, 38–49. [Google Scholar]
- Hidayatullah, T.; Nasir, F.; Khattak, M.A.; Pervez, S.; Almalki, W.H.; Alasmari, F.; Maryam, G.E.; Rahman, A.U.; Ali, A.T. Hybrid Dissolving Microneedle-Mediated Delivery of Ibuprofen: Solubilization, Fabrication, and Characterization. Pharmaceuticals 2023, 16, 677. [Google Scholar] [CrossRef] [PubMed]
- Pignatello, R.; Corsaro, R.; Bonaccorso, A.; Zingale, E.; Carbone, C.; Musumeci, T. Soluplus® polymeric nanomicelles improve solubility of BCS-class II drugs. Drug Deliv. Transl. Res. 2022, 12, 1991–2006. [Google Scholar] [CrossRef]
- Sakure, K.; Kumari, L.; Badwaik, H. Development and evaluation of solid dispersion based rapid disintegrating tablets of poorly water-soluble anti-diabetic drug. J. Drug Deliv. Sci. Technol. 2020, 60, 101942. [Google Scholar] [CrossRef]
- Cholkar, K.; Patel, A.; Dutt Vadlapudi, A.; K Mitra, A. Novel nanomicellar formulation approaches for anterior and posterior segment ocular drug delivery. Recent Pat. 2012, 2, 82–95. [Google Scholar] [CrossRef]
- Alopaeus, J.F.; Hagesæther, E.; Tho, I. Micellisation mechanism and behaviour of Soluplus®–furosemide micelles: Preformulation studies of an oral nanocarrier-based system. Pharmaceuticals 2019, 12, 15. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Gong, S.; Ding, J.; Yu, M.; Ahmad, E.; Feng, Y.; Gan, Y. Supersaturated polymeric micelles for oral silybin delivery: The role of the Soluplus–PVPVA complex. Acta Pharm. Sin. B 2019, 9, 107–117. [Google Scholar] [CrossRef]
- Permana, A.D.; Tekko, I.A.; McCrudden, M.T.; Anjani, Q.K.; Ramadon, D.; McCarthy, H.O.; Donnelly, R.F. Solid lipid nanoparticle-based dissolving microneedles: A promising intradermal lymph targeting drug delivery system with potential for enhanced treatment of lymphatic filariasis. J. Control. Release 2019, 316, 34–52. [Google Scholar] [CrossRef]
- Zhang, N.; Zhou, X.; Liu, L.; Zhao, L.; Xie, H.; Yang, Z. Dissolving polymer microneedles for transdermal delivery of insulin. Front. Pharmacol. 2021, 12, 719905. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Yang, G.; Zhao, X.; Zhang, S.; Gao, Y. Intradermal implantable PLGA microneedles for etonogestrel sustained release. J. Pharm. Sci. 2020, 109, 1958–1966. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.P.; Zhang, B.L.; Chen, B.Z.; Zhao, Z.Q.; Fei, W.M.; Cui, Y.; Guo, X.D. Dissolving microneedle rollers for rapid transdermal drug delivery. Drug Deliv. Transl. Res. 2022, 12, 459–471. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Wu, F.; Liu, J.; Fan, G.; Welsh, W.; Zhu, H.; Jin, T. Phase-transition microneedle patches for efficient and accurate transdermal delivery of insulin. Adv. Funct. Mater. 2015, 25, 4633–4641. [Google Scholar] [CrossRef]
- He, J.; Zhang, Z.; Zheng, X.; Li, L.; Qi, J.; Wu, W.; Lu, Y. Design and evaluation of dissolving microneedles for enhanced dermal delivery of propranolol hydrochloride. Pharmaceutics 2021, 13, 579. [Google Scholar] [CrossRef]
- Larrañeta, E.; McCrudden, M.T.; Courtenay, A.J.; Donnelly, R.F. Microneedles: A new frontier in nanomedicine delivery. Pharm. Res. 2016, 33, 1055–1073. [Google Scholar] [CrossRef] [Green Version]
- Vora, L.K.; Vavia, P.R.; Larrañeta, E.; Bell, S.E.; Donnelly, R.F. Novel nanosuspension-based dissolving microneedle arrays for transdermal delivery of a hydrophobic drug. J. Interdiscip. Nanomed. 2018, 3, 89–101. [Google Scholar] [CrossRef]
- Malek-Khatabi, A.; Rad, Z.F.; Rad-Malekshahi, M.; Akbarijavar, H. Development of dissolvable microneedle patches by CNC machining and micromolding for drug delivery. Mater. Lett. 2023, 330, 133328. [Google Scholar] [CrossRef]
- Zhao, W.; Zheng, L.; Yang, J.; Li, Y.; Zhang, Y.; Ma, T.; Wang, Q. Dissolving Microneedle Patches-mediated Percutaneous Delivery of Tetramethylpyrazine for Rheumatoid Arthritis Treatment. Eur.J. Pharm. Sci. 2023, 184, 106409. [Google Scholar]
- Reginald-Opara, J.N.; Attama, A.; Ofokansi, K.; Umeyor, C.; Kenechukwu, F. Molecular interaction between glimepiride and Soluplus®-PEG 4000 hybrid based solid dispersions: Characterisation and anti-diabetic studies. Int. J. Pharm. 2015, 496, 741–750. [Google Scholar]
- Jain, S.; Dongare, K.; Nallamothu, B.; Dora, C.P.; Kushwah, V.; Katiyar, S.S.; Sharma, R. Enhanced stability and oral bioavailability of erlotinib by solid self nano emulsifying drug delivery systems. Int. J. Pharm. 2022, 622, 121852. [Google Scholar] [PubMed]
- Namera, A.; Miyazaki, S.; Saito, T.; Nakamoto, A. Monolithic silica with HPLC separation and solid phase extraction materials for determination of drugs in biological materials. Anal. Methods 2011, 3, 2189–2200. [Google Scholar] [CrossRef]
- Kinani, A.A.Y.; Taghi, H.S. Formulation and characterization of orodispersible tablet of glimepiride. J. Adv. Pharm. Technol. Res. 2022, 13, 252. [Google Scholar]
- Nasiri, M.I.; Vora, L.K.; Ershaid, J.A.; Peng, K.; Tekko, I.A.; Donnelly, R.F. Nanoemulsion-based dissolving microneedle arrays for enhanced intradermal and transdermal delivery. Drug Deliv. Transl. Res. 2022, 12, 881–896. [Google Scholar] [CrossRef]
- Larrañeta, E.; Stewart, S.; Fallows, S.J.; Birkhäuer, L.L.; McCrudden, M.T.; Woolfson, A.D.; Donnelly, R.F. A facile system to evaluate in vitro drug release from dissolving microneedle arrays. Int. J. Pharm. 2016, 497, 62–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damgalı, Ş.; Özdemir, S.; Kaya, G.; Demirkoz, A.B.; Üner, M. Development of monolithic matrix type transdermal patches containing cinnarizine: Physical characterization and permeation studies. Braz. J. Pharm. Sci. 2022, 58, e19859. [Google Scholar] [CrossRef]
- Jacob, S.; Nair, A.; Boddu, S.; Gorain, B.; Sreeharsha, N.; Shah, J. An Updated Overview of the Emerging Role of Patch and Film-Based Buccal Delivery Systems. Pharmaceutics 2021, 13, 1206. [Google Scholar] [CrossRef]
- Ferreira, J.V.; Pianetti, G.A.; Fernandes, C. Bioanalytical method by column-switching with direct injection of human plasma for determination of sulphonylureas. Drug Anal. Res. 2019, 3, 16–22. [Google Scholar] [CrossRef]
- Overkamp, D.; Volk, A.; Maerker, E.; Heide, P.E.; Wahl, H.G.; Rett, K.; Haring, H.U. Acute effect of glimepiride on insulin-stimulated glucose metabolism in glucose-tolerant insulin-resistant offspring of patients with type 2 diabetes. Diabetes Care 2002, 25, 2065–2073. [Google Scholar] [CrossRef] [Green Version]
- Samala, S.; Tatipamula, S.R.; Veeresham, C. Determination of glimepiride in rat serum by RP-HPLC method. Am. J. Anal. Chem. 2011, 2, 152. [Google Scholar] [CrossRef] [Green Version]
- Bal, S.M.; Caussin, J.; Pavel, S.; Bouwstra, J.A. In vivo assessment of safety of microneedle arrays in human skin. Eur. J. Pharm. Sci. 2008, 35, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zeng, Q.; Zhao, G.; Dong, W.; Ou, L.; Cai, P.; Liao, Z.; Liang, X. Effect of carrier materials on the properties of the andrographolide solid dispersion. Braz. J. Pharm. Sci. 2022, 58, e191023. [Google Scholar] [CrossRef]
- Gaber, D.A.; Alhuwaymili, A.S.; Alhawas, H.S.; Almutiri, A.A.; Alsubaiyel, A.M.; Abdoun, S.A.; Almutairi, R.A. Synthesized nano particles of glimepiride via spray freezing into cryogenic liquid: Characterization, antidiabetic activity, and bioavailability. Drug Deliv. 2022, 29, 364–373. [Google Scholar] [CrossRef]
- Nemati, M.; Fathi-Azarbayjani, A.; Al-Salami, H.; Roshani Asl, E.; Rasmi, Y. Bile acid-based advanced drug delivery systems, bilosomes and micelles as novel carriers for therapeutics. Cell Biochem. 2022, 40, 623–635. [Google Scholar] [CrossRef]
- Alopaeus, J.F.; Hellfritzsch, M.; Gutowski, T.; Scherließ, R.; Almeida, A.; Sarmento, B.; Škalko-Basnet, N.; Tho, I. Mucoadhesive buccal films based on a graft co-polymer–A mucin-retentive hydrogel scaffold. Eur. J. Pharm. Sci. 2020, 142, 105142. [Google Scholar] [CrossRef]
- Gaikwad, V.L.; Bhatia, M.S.; Singhvi, I. Statistical significance of polymeric physicochemical properties in the development of formulations containing a drug from neutral class. Arab. J. Chem. 2016, 9, S1915–S1927. [Google Scholar] [CrossRef] [Green Version]
- Uppal, S.; Italiya, K.S.; Chitkara, D.; Mittal, A. Nanoparticulate-based drug delivery systems for small molecule anti-diabetic drugs: An emerging paradigm for effective therapy. Acta Biomater. 2018, 81, 20–42. [Google Scholar] [CrossRef]
- Lu, Y.; Yue, Z.; Xie, J.; Wang, W.; Zhu, H.; Zhang, E.; Cao, Z. Micelles with ultralow critical micelle concentration as carriers for drug delivery. Nat. Biomed. Eng. 2018, 2, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Sofroniou, C.; Baglioni, M.; Mamusa, M.; Resta, C.; Doutch, J.; Smets, J.; Baglioni, P. Self-Assembly of Soluplus in Aqueous Solutions: Characterization and Prospectives on Perfume Encapsulation. ACS Appl. Mater. Interfaces 2022, 14, 14791–14804. [Google Scholar] [CrossRef]
- Tekko, I.A.; Chen, G.; Domínguez-Robles, J.; Thakur, R.R.S.; Hamdan, I.M.; Vora, L.; Larrañeta, E.; McElnay, J.C.; McCarthy, H.O.; Rooney, M. Development and characterisation of novel poly (vinyl alcohol)/poly (vinyl pyrrolidone)-based hydrogel-forming microneedle arrays for enhanced and sustained transdermal delivery of methotrexate. Int. J. Pharm. 2020, 586, 119580. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Yu, X.; Yi, X.; Guo, X.; Li, L.; Hao, Y.; Wang, W. Lidocaine-loaded hyaluronic acid adhesive microneedle patch for oral mucosal topical anesthesia. Pharmaceutics 2022, 14, 686. [Google Scholar] [CrossRef]
- McCrudden, M.T.; Alkilani, A.Z.; McCrudden, C.M.; McAlister, E.; McCarthy, H.O.; Woolfson, A.D.; Donnelly, R.F. Design and physicochemical characterisation of novel dissolving polymeric microneedle arrays for transdermal delivery of high dose, low molecular weight drugs. J. Control. Release 2014, 180, 71–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Revathi, A.I.; Venkatesh, D.; Santhoshi, P. Formulation and evaluation of bilayer tablets of diabetis drugs. WJPMR 2019, 8, 336–399. [Google Scholar]
- Uhljar, L.É.; Kan, S.Y.; Radacsi, N.; Koutsos, V.; Szabó-Révész, P.; Ambrus, R. In vitro drug release, permeability, and structural test of ciprofloxacin-loaded nanofibers. Pharmaceutics 2021, 13, 556. [Google Scholar] [CrossRef]
- Kammoun, A.K.; Awan, Z.A.; Elawady, T.; Khedr, A.; El-Awady, M.I. LC-MS/MS determination of glimepiride in human plasma with a high recovery at picogram scale: Pharmacokinetic study after oral administration. Acta Chromatogr. 2021, 34, 12–17. [Google Scholar] [CrossRef]
- Anjani, Q.K.; Sabri, A.H.B.; Utomo, E.; Domínguez-Robles, J.; Donnelly, R.F. Elucidating the Impact of Surfactants on the Performance of Dissolving Microneedle Array Patches. Mol. Pharm. 2022, 19, 1191–1208. [Google Scholar] [CrossRef] [PubMed]
- Guillot, A.J.; Petalas, D.; Skondra, P.; Rico, H.; Garrigues, T.M.; Melero, A. Ciprofloxacin self-dissolvable Soluplus based polymeric films: A novel proposal to improve the management of eye infections. Drug Deliv. Transl. Res. 2021, 11, 608–625. [Google Scholar] [CrossRef]
Glimepiride | PVP K-90 | PVA | Soluplus® | Physical Mixture | Interpretation |
---|---|---|---|---|---|
3368.77 | 3364.42 | - | 3368.86 | 3368.86 | N-H stretch (secondary amine) |
2931.94 | 2934.38 | 2932.25 | 2932.18 | 2932.18 | C-H stretch (aliphatic) |
1704.93 | 1707.50 | 1705.25 | 1705.05 | 1705.05 | C=O stretch |
1670.95 | 1656.91 | - | - | 1672.87 | N-C=O stretch |
I: Initial Weight Loss | II: Major Decomposition | III: Residual Weight Loss | |
---|---|---|---|
Glimepiride | Approx. 150 °C | 324 °C | Above 500 °C |
PVP K-90 | Approx. 50 °C | 350 °C | Above 600 °C |
PVA | Approx. 65 °C | 270 °C | Above 700 °C |
Soluplus® | Approx. 50 °C | 330 °C | Above 570 °C |
Thermal Transitions | Melting Points | Thermal Degradation | |
---|---|---|---|
Glimepiride | Approx. 70 °C | 205 °C | Above 260 °C |
PVP K-90 | Approx. 100 °C | 135 °C | Above 250 °C |
PVA | Approx. 60 °C | 209 °C | Above 220 °C |
Soluplus® | Approx. 50 °C | 83 °C | Above 200 °C |
SP% (w/v) | Particle Size (d·nm) | PDI | Zeta Potential (mV) |
---|---|---|---|
1 | 356.8 ± 0.05 | 1.11 ± 0.14 | −72.2 ± 0.14 |
2 | 221.8 ± 0.21 | 0.96 ± 0.02 | −61.9 ± 0.07 |
4 | 155.5 ± 1.04 | 0.85 ± 0.01 | −58.6 ± 0.38 |
6 | 134.6 ± 0.51 | 0.75 ± 0.01 | −54.3 ± 0.10 |
8 | 115.5 ± 0.21 | 0.55 ± 0.01 | −44.4 ± 0.31 |
10 | 82.6 ± 0.54 | 0.1 ± 0.01 | −16.2 ± 0.18 |
Parameters | GM–Nanomicelles | GM–DMNs |
---|---|---|
Particle size (d·nm) | 82.6 ± 0.54 | 83.1 ± 0.14 |
PDI | 0.1 ± 0.01 | 0.1 ± 0.10 |
Zeta (mV) | −16.2 ± 0.18 | −16.8 ± 0.70 |
GM–Nanomicelles | GM–DMNs Array | |||||||
---|---|---|---|---|---|---|---|---|
Model | R2 | K | N | Regression Equation | R2 | K | N | Regression Equation |
Zero order | 0.905 | 3.72 | -- | y = 3.72x + 21.574 | 0.9916 | 0.66 | -- | y = 0.6615x − 1.4147 |
First order | 0.435 | 0.06 | -- | y = 0.067x + 0.768 | 0.8316 | 0.01 | -- | y = 0.014x + 0.3519 |
Higuchi | 0.9055 | −1.11 | -- | y = −1.114x + 5.725 | 0.7158 | −0.22 | -- | y = −0.2229x + 5.1692 |
Hixson and Crowell | 0.9871 | −0.20 | -- | y = −0.205x + 4.650 | 0.8603 | −0.01 | -- | y = −0.0196x + 4.8235 |
Korsemeyer and Peppas | 0.8091 | -- | 0.536 | y = 1.313x + 0.536 | 0.9298 | -- | 0.883 | y = 0.8829x − 0.0589 |
Parameters | Units | Oral Tablet 1 mg | GM–DMN Patch 240 µg | p-Value |
---|---|---|---|---|
Mean ± SD | Mean ± SD | |||
t1/2 | h | 29.19 ± 1.96 | 27.33 ± 3.17 | 0.33 |
Tmax | h | 2 ± 0 | 4 ± 0 | 0 * |
Cmax | μg/mL | 0.87 ± 0.01 | 1.56 ± 0.06 | 0.003 * |
AUC 0-t | μg/mL·h | 24.11 ± 0.04 | 32.07 ± 0.95 | 0.009 * |
AUMC 0-inf | μg/mL·h2 | 1365.04 ± 166.38 | 1858.29 ± 271.85 | 0.055 * |
MRT 0-inf | H | 40.26 ± 3.05 | 40.04 ± 3.37 | 0.905 |
Vz/F | (μg)/(μg/mL) | 1246.15 ± 28.62 | 204.50 ± 11.24 | 0.0002 * |
Cl/F | (μg)/(μg/mL)/h | 29.70 ± 1.25 | 5.23 ± 0.33 | 0.0010 * |
Subject Assessment-Skin Irritation | ECRC Scale-Skin Redness | Clinical Pain Scale | Systemic Effects-Vital Signs | ||||||
---|---|---|---|---|---|---|---|---|---|
Subjects (Male) | Itching (Yes/No) | Burning Sensation (Yes/No) | Discomfort (Yes/No) | Skin Redness Scoring | Pain Scale Score | Systolic BP (mm of Hg) | Diastolic BP (mm of Hg) | Pulse Rate (bpm) | Body Temp. |
1 | Yes | No | No | 0 | 1 | 115 ± 5.2 | 77 ± 2.1 | 73 ± 1.7 | 98.9 °F ± 0.6 |
2 | No | No | No | 0 | 1 | 120 ± 7.2 | 79 ± 4.3 | 78 ± 3.4 | 97.9 °F ± 1.8 |
3 | Yes | Yes | No | 0 | 1 | 120 ± 2.8 | 79 ± 4.8 | 87 ± 1.4 | 97.8 °F ± 1.1 |
4 | No | No | No | 0 | 1 | 114 ± 2.4 | 74 ± 3.1 | 77 ± 2.2 | 97.9 °F ± 1.2 |
5 | No | No | No | 0 | 1 | 120 ± 4.1 | 79 ± 1.6 | 79 ± 2.7 | 97.9 °F ± 0.8 |
6 | No | No | No | 0 | 1 | 113 ± 2.9 | 79 ± 1.4 | 73 ± 1.4 | 97.8 °F ± 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pervez, S.; Nasir, F.; Hidayatullah, T.; Khattak, M.A.; Alasmari, F.; Zainab, S.R.; Gohar, S.; Tahir, A.; Maryam, G.e. Transdermal Delivery of Glimepiride: A Novel Approach Using Nanomicelle-Embedded Microneedles. Pharmaceutics 2023, 15, 2019. https://doi.org/10.3390/pharmaceutics15082019
Pervez S, Nasir F, Hidayatullah T, Khattak MA, Alasmari F, Zainab SR, Gohar S, Tahir A, Maryam Ge. Transdermal Delivery of Glimepiride: A Novel Approach Using Nanomicelle-Embedded Microneedles. Pharmaceutics. 2023; 15(8):2019. https://doi.org/10.3390/pharmaceutics15082019
Chicago/Turabian StylePervez, Sadia, Fazli Nasir, Talaya Hidayatullah, Muzna Ali Khattak, Fawaz Alasmari, Syeda Rabqa Zainab, Shazma Gohar, Arbab Tahir, and Gul e Maryam. 2023. "Transdermal Delivery of Glimepiride: A Novel Approach Using Nanomicelle-Embedded Microneedles" Pharmaceutics 15, no. 8: 2019. https://doi.org/10.3390/pharmaceutics15082019
APA StylePervez, S., Nasir, F., Hidayatullah, T., Khattak, M. A., Alasmari, F., Zainab, S. R., Gohar, S., Tahir, A., & Maryam, G. e. (2023). Transdermal Delivery of Glimepiride: A Novel Approach Using Nanomicelle-Embedded Microneedles. Pharmaceutics, 15(8), 2019. https://doi.org/10.3390/pharmaceutics15082019