Recent Advances of Cell-Penetrating Peptides and Their Application as Vectors for Delivery of Peptide and Protein-Based Cargo Molecules
Abstract
:1. Introduction
2. Discovery of CPPs
2.1. CPPs from Snake Venom
2.2. CPPs from Bee Venom
2.3. CPPs from Spider Venom
Name | Peptide Sequence | Origin | Ref. |
---|---|---|---|
Crotamine | AASSSGGPPPGGGGGCCCCCMILT PPTTLLLLLLLLLHHAATAV | The venom of Argentinean rattlesnakes | [18] |
CyLoP-1 | CRWRWKCCKK | Crotamine mimicry | [21] |
NrTP1 | YKQCHKKGGKKGSG | Crotamine mimicries | [22,23] |
NrTP2 | YKQCHKKGG-Ahx-KKGSG | ||
NrTP5 | ykqchkkGGkkGsG | ||
NrTP6 | YKQSHKKGGKKGSG | ||
NrTP7 | YRQSHRRGGRRGSG | ||
NrTP8 | WKQSHKKGGKKGSG | ||
Crotalicidin (Ctn) | KRFKKFFKKVKKSVKKRLK KIFKKPMVIGVTIPF-NH2 | Rattlesnake venom | [24] |
Ctn[15–34] | KKRLKKIFKKPMVIGVTIPF-NH2 | ||
RhB-Ctn | RhB-KRFKKFFKKVKKSVKKRL KKIFKKPMVIGVTIPF-NH2 | ||
CF-Ctn | CF-KRFKKFFKKVKKSVKKR LKKIFKKPMVIGVTIPF-NH2 | ||
b-Ahx-Ctn | b-Ahx-KRFKKFFKKVKKSVK KRLKKIFKKPMVIGVTIPF-NH2 | ||
RhB-Ctn[17–36] | RhB-KKRLKKIFKKPMVIGVTIPF-NH2 | ||
Ctn[17–36]-Lys(RhB) | KKRLKKIFKKPMVIGVTIPFK(RhB)-NH2 | ||
CF-Ctn[17–36] | CF-KKRLKKIFKKPMVIGVTIPF-NH2 | ||
BF-Ctn[17–36] | BF-KKRLKKIFKKPMVIGVTIPF-NH2 | ||
b-Ahx-Ctn[17–36] | b-Ahx-KKRLKKIFKKPMVIGVTIPF-NH2 | ||
Melittin (MEL) | GIGAVLKVLTTGLPALISWIKRKRQQ-NH2 | European honeybee Apis mellifera venom | [37] |
Apamin | CNCKAPETALCARRCQQH | Japanese solitary wasp Anoplius samariensis venom | [28] |
ApOO([Orn13,14] apamin | LOHATGPACL | Apamin mimicry | [32] |
Latarcin-1 | SMWSGMWRRKLKKLRNALKKKLKGE | Spider Lachesana tarabaevi | [25] |
Lycosin-I | GKLQAFLAKMKEIAAQTL-NH2 | Spider Lycosa singorensis | [40] |
R-lycosin-I | GRLQAFLARMREIAAQTL-NH2 | An arginine modification of lycosin-I in which all Lys residues were replaced by Arg residues | [27,41] |
3. New Generations of CPPs
3.1. Cyclic CPPs
3.2. Glycosylated CPPs (GCPPs)
Name | Peptides and Primary Sequences | Ref. |
---|---|---|
(R6/W2)-[Pra-Gal(OH)]-SH | Ac-C-RRW-[Pra(Gal-OH)]-RRWRR-NH2 | [66] |
(R6/W0)-[Pra-Gal(OH)]3-SH | Ac-C-RR-[Pra(Gal-OH)]2-RR-[Pra(Gal-OH)]-RR-NH2 | [66] |
(R6/W2)-[Pra-Gal(CH2)3(OH)]-SH | Ac-C-RRW-[Pra-Gal(CH2)3(OH)]-RRWRR-NH2 | [66] |
(R6/W2)-[Pra-Gal(CH2)3(OAc)]-SH | Ac-C-RRW-[Pra-Gal(CH2)3(OAc)]-RRWRR-NH2 | [66] |
3.3. D-Form CPPs
Name | Peptide Sequence | Ref. |
---|---|---|
D-KLA | klalklalkalkaalkla | [86] |
D-pVEC | lliilrrrirkqahahsk | [72] |
D-SAP | (vrlppp)3 | [77] |
D-Tat | rkkrrqrrr | [73] |
D-Penetratin | rqikiwfqnrrmkwkk | [75] |
GO-203 | cqcrrkn | [83,84,85] |
Oligoarginine | rrrrrrrr | [74] |
D-R9 | rrrrrrrrr | [80] |
dL1-p28 | lSTAADMQGVVTDGMASGLDKDYLKPDD | [82] |
dL24-p28 | LSTAADMQGVVTDGMASGlDKDYLKPDD | [82] |
dD28-p28 | LSTAADMQGVVTDGMASGLDKDYLKPDd | [82] |
dD22-p28 | LSTAADMQGVVTDGMASGLDKdYLKPDD | [82] |
D-hLF | qwqrnmrkvr | [80,87] |
MUC2 | tpTPTGTQtpt | [78] |
D-dfTAT | (ck(TMR)rkkrrkrrrg)2 | [88] |
RICK | kwllrwlsrllrwlarwlg | [76] |
D-Cady-k | glwralwrllrslwrllwk | [76] |
4. CPPs as Vectors for Cellular Delivery of Peptides
4.1. Anticancer Peptides (ACPs)
4.2. Antidiabetic Peptides (ADPs)
4.3. Antimicrobial Peptides (AMPs)
Type | Therapeutic Peptide | CPP | Functions | Ref. |
---|---|---|---|---|
Anticancer peptides (ACPs) | p16Ink | Penetratin | Inhibits pancreatic cancer growth and prolongs survival in vivo | [94] |
p27kip | Tat | Inhibitor of cyclin-dependent kinases (CDKs) | [95] | |
p21(WAF1/CIP1) | Tat | A cytotoxic peptide mimic of the cyclin-dependent kinase inhibitor | [96] | |
p53C’ | D-isomer FHV/D-Pas | An anticancer peptide derived from the C-terminus of p53 that inhibits GIC growth in vitro and in vivo | [97] | |
PNC-28 | Penetratin | A peptide derived from the MDM-2-binding domain of p53 that can block pancreatic cancer cell growth in vivo and induce tumor cell necrosis in 13 different human cancer cell lines | [99,100] | |
KLA | PTD-5/IMT-P8/Tat/polyarginine | A proapoptotic peptide and used as a therapeutic peptide to destroy the mitochondrial membrane | [101,102] | |
Cyclic peptide P15 | Tat | A cyclic peptide that blocks CK2 that is frequently dysregulated in many human tumors and exhibits antitumor effect in vivo | [103] | |
HPRP-A1 | iRGD | A cationic peptide that kills cancer cells by disrupting the cell membrane and inducing apoptosis in vitro | [130] | |
S100A1 | Tat | It can influence the p53–MDM2 interaction credibly and possibly reactivates the wild-type p53 pathway | [106] | |
Antidiabetic peptides (ADPs) | GLP-1 | D-R8 /penetratin/ D-penetratin /TCTP-PTD 13M2/TCTP-PTD 13M3 | An important incretin hormone, derived from intestine, that can induce insulin secretion from pancreatic islets to regulate glucose homeostasis in vivo | [113,114,131] |
Exenedin-4 | Penetratin/D-penetratin/TCTP-PTD 13M2/TCTP-PTD 13M3 | A clinically available antidiabetic peptide derived from the salivary secretions of the Gila monster (Heloderma suspectum) | [111] | |
Antimicrobial peptides (AMPs) | KR-12 | Tat | Residues 18–29 of human cathelicidin LL-37 have anti-inflammatory properties and good cell selectivity | [118,120] |
Magainin and M15 | R9 | Cationic and amphipathic α-helical peptides can exert their activity by permeabilizing cytoplasmic membranes | [132] | |
Salusin-β | Tat/Pen-BR/Pen-RRR/HEXIM1 BR | A peptide previously used in cardiovascular diseases and in several cancer cell lines that has shown antibacterial ability after conjugation with CPPs | [133] | |
Pep-1 | / | A peptide that has weak activity against Bacillus subtilis and can inhibit intracellular chlamydial infection not extracellular chlamydiae | [127] | |
Pep-1-K | / | A new AMP derived from Pep-1 that has stronger antimicrobial effects because of the high affinity to bacterial membranes | [129] |
5. CPPs as Vectors for Protein Delivery to Cells
5.1. p53 Protein
5.2. Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL)
5.3. Superoxide Dismutase (SOD)
5.4. Monoclonal Antibody
5.5. Insulin
Therapeutic Protein | CPPs | Function | Ref. |
---|---|---|---|
P53 protein/p53C | Polyarginine, R11/P28 | A tumor suppressor protein and proapoptotic protein that can induce growth arrest and apoptosis in response to cellular stress | [12,136,137] |
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) | TRAIL mutant R6 | One of the death receptor ligands in extrinsic apoptotic signal routing that can selectively induce apoptosis in cancer cells while avoiding normal cells | [140] |
Superoxide dismutase (SOD) | Tat/Pep-1/R9/r9 | It is an essential antioxidant enzyme that can scavenge oxygen free radicals and inhibit lipid peroxidation to protect cells to avoid various oxidant compounds | [26,147,148,149,150,151,152,153,154,155,156,157,158,159] |
Immunoglobulin-G | Tricyclic Tat (Figure 3A) | IgG is the most abundant antibody that plays a critical role in linking the adaptive immune response to the innate immune system | [63,173] |
Insulin | Tat/penetratin/pVEC/r8/R8 | An endogenous protein known to lower blood sugar in diabetics and improve cognition and learning by stimulating its receptor in the brain | [111,166] |
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Milletti, F. Cell-penetrating peptides: Classes, origin, and current landscape. Drug Discov. Today 2012, 17, 850–860. [Google Scholar]
- Haggag, Y.; El-Gizawy, S.A.; Osman, M. Peptides as Drug Candidates: Limitations and Recent Development Perspectives. BioMed Res. Int. 2018, 8, 6659–6662. [Google Scholar]
- Apostolopoulos, V.; Bojarska, J.; Chai, T.T.; Elnagdy, S.; Kaczmarek, K.; Matsoukas, J.; New, R.; Parang, K.; Lopez, O.P.; Parhiz, H.; et al. A Global Review on Short Peptides: Frontiers and Perspectives. Molecules 2021, 26, 430. [Google Scholar] [CrossRef]
- Hamley, I.W. Small Bioactive Peptides for Biomaterials Design and Therapeutics. Chem. Rev. 2017, 117, 14015–14041. [Google Scholar] [CrossRef] [Green Version]
- Soudy, R.; Kimura, R.; Patel, A.; Fu, W.; Kau, K.; Westaway, D.; Yang, J.; Jhamandas, J. Short amylin receptor antagonist peptides improve memory deficits in Alzheimer’s disease mouse model. Sci. Rep. 2019, 9, 709–720. [Google Scholar] [CrossRef] [Green Version]
- Zorko, M.; Jones, S.; Langel, U. Cell-penetrating peptides in protein mimicry and cancer therapeutics. Adv. Drug Deliv. Rev. 2022, 180, 114044. [Google Scholar] [CrossRef]
- Cafaro, A.; Barillari, G.; Moretti, S.; Palladino, C.; Tripiciano, A.; Falchi, M.; Picconi, O.; Pavone Cossut, M.R.; Campagna, M.; Arancio, A.; et al. HIV-1 Tat Protein Enters Dysfunctional Endothelial Cells via Integrins and Renders Them Permissive to Virus Replication. Int. J. Mol. Sci. 2021, 22, 317. [Google Scholar] [CrossRef]
- Jahng, T.A.; Lee, E.; Noh, I.S.; Yook, J.I. New Novel Bone Fusion Using TAT-BMP Hydrogel in Rat Model. Glob. Spine J. 2012, 2, s-0032-1319992. [Google Scholar]
- Agrawal, P.; Bhalla, S.; Usmani, S.S.; Singh, S.; Chaudhary, K.; Raghava, G.P.S.; Gautam, A. CPPsite 2.0: A repository of experimentally validated cell-penetrating peptides. Nucleic Acids Res. 2016, 44, D1098–D1103. [Google Scholar] [CrossRef]
- Derakhshankhah, H.; Jafari, S. Cell penetrating peptides: A concise review with emphasis on biomedical applications. Biomed. Pharmacother. 2018, 108, 1090–1096. [Google Scholar] [CrossRef] [PubMed]
- Falanga, A.; Lombardi, L.; Galdiero, E.; Del Genio, V.; Galdiero, S. The world of cell penetrating: The future of medical applications. Future Med. Chem. 2020, 12, 1431–1446. [Google Scholar] [CrossRef]
- Lulla, R.R.; Goldman, S.; Yamada, T.; Beattie, C.W.; Bressler, L.; Pacini, M.; Pollack, I.F.; Fisher, P.G.; Packer, R.J.; Dunkel, I.J.; et al. Phase 1 trial of p28 (NSC745104), a non-HDM2-mediated peptide inhibitor of p53 ubiquitination in pediatric patients with recurrent or progressive central nervous system tumors: A Pediatric Brain Tumor Consortium Study. Neuro-Oncology 2016, 18, 1319–1325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Genio, V.; Falanga, A.; Allard-Vannier, E.; Hervé-Aubert, K.; Leone, M.; Bellavita, R.; Uzbekov, R.; Chourpa, I.; Galdiero, S. Design and Validation of Nanofibers Made of Self-Assembled Peptides to Become Multifunctional Stimuli-Sensitive Nanovectors of Anticancer Drug Doxorubicin. Pharmaceutics 2022, 14, 1544. [Google Scholar] [CrossRef] [PubMed]
- Stefania, G.; Annarita, F.; Giancarlo, M.; Massimiliano, G. gH625: A milestone in understanding the many roles of membranotropic peptides. Biochim. Biophys. Acta 2015, 1848, 16–25. [Google Scholar] [CrossRef] [Green Version]
- Porosk, L.; Gaidutsik, I.; Langel, U. Approaches for the discovery of new cell-penetrating peptides. Expert Opin. Drug Discov. 2021, 16, 553–565. [Google Scholar] [CrossRef]
- Falcao, C.B.; Radis-Baptista, G. Crotamine and crotalicidin, membrane active peptides from Crotalus durissus terrificus rattlesnake venom, and their structurally-minimized fragments for applications in medicine and biotechnology. Peptides 2020, 126, 170234. [Google Scholar] [CrossRef] [PubMed]
- Grigorieva, V.E.; Gunar, O.V.; Sakhno, N.G.; Bulgakova, G.M.; Molchan, N.V. Drugs containing snake venom: History of development, nomenclature, identification. Arch. Biochem. 2018, 8, 77–83. [Google Scholar]
- Giglio, J.R. Analytical studies on crotamine hydrochloride. Anal. Biochem. 1975, 69, 207–221. [Google Scholar] [CrossRef]
- Campeiro, J.D.; Marinovic, M.P.; Carapeto, F.C.; Dal Mas, C.; Monte, G.G.; Porta, L.C.; Nering, M.B.; Oliveira, E.B.; Hayashi, M.A.F. Oral treatment with a rattlesnake native polypeptide crotamine efficiently inhibits the tumor growth with no potential toxicity for the host animal and with suggestive positive effects on animal metabolic profile. Amino Acids 2018, 50, 267–278. [Google Scholar] [CrossRef]
- Hayashi, M.A.; Campeiro, J.D.; Porta, L.C.; Szychowski, B.; Alves, W.A.; Oliveira, E.B.; Kerkis, I.; Daniel, M.-C.; Karpel, R.L. Crotamine cell-penetrating nanocarriers: Cancer-targeting and potential biotechnological and/or medical applications. In Nanoparticles in Biology and Medicine; Springer: Berlin/Heidelberg, Germany, 2020; pp. 61–89. [Google Scholar]
- Ponnappan, N.; Budagavi, D.P.; Chugh, A. CyLoP-1: Membrane-active peptide with cell-penetrating and antimicrobial properties. Biochim. Biophys. Acta (BBA)—Biomembr. 2017, 1859, 167–176. [Google Scholar] [CrossRef]
- Rodrigues, M.; Andreu, D.; Santos, N.C. Uptake and Cellular Distribution of Nucleolar Targeting Peptides (NrTPs) in Different Cell Types. Biopolymers 2015, 104, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Tansi, F.L.; Filatova, M.P.; Koroev, D.O.; Volpina, O.M.; Lange, S.; Schumann, C.; Teichgraber, U.K.; Reissmann, S.; Hilger, I. New generation CPPs show distinct selectivity for cancer and noncancer cells. J. Cell. Biochem. 2019, 120, 6528–6541. [Google Scholar] [CrossRef]
- Perez-Peinado, C.; Valle, J.; Freire, J.M.; Andreu, D. Tumor Cell Attack by Crotalicidin (Ctn) and Its Fragment Ctn 15-34: Insights into Their Dual Membranolytic and Intracellular Targeting Mechanism. ACS Chem. Biol. 2020, 15, 2945–2957. [Google Scholar] [CrossRef] [PubMed]
- Rady, I.; Siddiqui, I.A.; Rady, M.; Mukhtar, H. Melittin, a major peptide component of bee venom, and its conjugates in cancer therapy. Cancer Lett. 2017, 402, 16–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.W.; Eum, W.S.; Jang, S.H.; Kim, S.Y.; Choi, H.S.; Choi, S.H.; An, J.J.; Lee, S.H.; Lee, K.S.; Han, K.; et al. Transduced Tat-SOD fusion protein protects against ischemic brain injury. Mol. Cells 2005, 19, 88–96. [Google Scholar]
- Blenke, E.O.; Sleszynska, M.; Evers, M.J.W.; Storm, G.; Martin, N.I.; Mastrobattista, E. Strategies for the Activation and Release of the Membranolytic Peptide Melittin from Liposomes Using Endosomal pH as a Trigger. Bioconj. Chem. 2017, 28, 574–582. [Google Scholar] [CrossRef]
- Cossu, J.; Thoreau, F.; Boturyn, D. Multimeric RGD-based strategies for selective drug delivery to tumor tissues. Pharmaceutics 2023, 15, 525. [Google Scholar] [CrossRef]
- He, B.; Tan, T.; Wang, H.; Hu, H.Y.; Wang, Z.W.; Wang, J.; Li, J.; Sun, K.X.; Zhang, Z.W.; Li, Y.P. Rational Design of Tumor Microenvironment-Activated Micelles for Programed Targeting of Breast Cancer Metastasis. Adv. Funct. Mater. 2018, 28, 1705622. [Google Scholar] [CrossRef]
- Liu, H.J.; Hu, Y.; Sun, Y.J.; Wan, C.; Zhang, Z.J.; Dai, X.M.; Lin, Z.H.; He, Q.Y.; Yang, Z.; Huang, P.; et al. Co-delivery of Bee Venom Melittin and a Photosensitizer with an Organic-Inorganic Hybrid Nanocarrier for Photodynamic Therapy and Immunotherapy. ACS Nano 2019, 13, 12638–12652. [Google Scholar] [CrossRef]
- Oller-Salvia, B.; Teixido, M.; Giralt, E. From Venoms to BBB Shuttles: Synthesis and Blood-Brain Barrier Transport Assessment of Apamin and a Nontoxic Analog. Biopolymers 2013, 100, 675–686. [Google Scholar] [CrossRef]
- Fattahi, H.; Esmaeil, N.; Aliomrani, M. Apamin as a BBB Shuttle and Its Effects on T Cell Population During the Experimental Autoimmune Encephalomyelitis-Induced Model of Multiple Sclerosis. Neurotox. Res. 2021, 39, 1880–1891. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Y.; Ye, Y.; Wang, X.R.; Lin, L.T.; Xiao, L.Y.; Zhou, P.; Shi, G.X.; Liu, C.Z. Bee venom therapy: Potential mechanisms and therapeutic applications. Toxicon 2018, 148, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Cosand, W.L.; Merrifield, R.B. Concept of internal structural controls for evaluation of inactive synthetic peptide analogs—Synthesis of orn13,14 apamin and its guanidination to a apamin derivative with full neurotoxic activity. Proc. Natl. Acad. Sci. USA 1977, 74, 2771–2775. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Yao, Y.; Yan, S.Q.; Gao, R.Q.; Lu, W.Y.; He, W.X. Chiral Protein Supraparticles for Tumor Suppression and Synergistic Immunotherapy: An Enabling Strategy for Bioactive Supramolecular Chirality Construction. Nano Lett. 2020, 20, 5844–5852. [Google Scholar] [CrossRef] [PubMed]
- Kuzmenkov, A.I.; Sachkova, M.Y.; Kovalchuk, S.I.; Grishin, E.V.; Vassilevski, A.A. Lachesana tarabaevi, an expert in membrane-active toxins. Biochem. J. 2016, 473, 2495–2506. [Google Scholar] [CrossRef]
- Parvesh, W.; Saiguru, S.; Erik, S.; Archana, C.; Anne, S.U. Latarcins: Antimicrobial and cell-penetrating peptides from spider venom. Biophys. J. 2023, 122 (Suppl. S1), 4501–4522. [Google Scholar] [CrossRef]
- Zhang, P.; Jian, C.; Jian, S.D.; Zhang, Q.Q.; Sun, X.L.; Nie, L.Q.; Liu, B.B.; Li, F.J.; Li, J.T.; Liu, M.Y.; et al. Position Effect of Fatty Acid Modification on the Cytotoxicity and Antimetastasis Potential of the Cytotoxic Peptide Lycosin-I. J. Med. Chem. 2019, 62, 11108–11118. [Google Scholar] [CrossRef]
- Zhang, P.; Ma, J.; Yan, Y.J.; Chen, B.; Liu, B.B.; Jian, C.; Zhu, B.D.; Liang, S.P.; Zeng, Y.L.; Liu, Z.H. Arginine modification of lycosin-I to improve inhibitory activity against cancer cells. Org. Biomol. Chem. 2017, 15, 9379–9388. [Google Scholar] [CrossRef]
- Wehbe, R.; Frangieh, J.; Rima, M.; El Obeid, D.; Sabatier, J.M.; Fajloun, Z. Bee Venom: Overview of Main Compounds and Bioactivities for Therapeutic Interests. Molecules 2019, 24, 2997. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Jeong, H.; Bae, Y.; Shin, K.; Kang, S.; Kim, H.; Oh, J.; Bae, H. Targeting of M2-like tumor-associated macrophages with a melittin-based pro-apoptotic peptide. J. Immunother. Cancer 2019, 7, 147. [Google Scholar] [CrossRef] [Green Version]
- Guidotti, G.; Brambilla, L.; Rossi, D. Cell-Penetrating Peptides: From Basic Research to Clinics. Trends Pharmacol. Sci. 2017, 38, 406–424. [Google Scholar] [CrossRef] [PubMed]
- Bechara, C.; Sagan, S. Cell-penetrating peptides: 20 years later, where do we stand? Febs Lett. 2013, 587, 1693–1702. [Google Scholar] [CrossRef] [PubMed]
- Reissmann, S. Cell penetration: Scope and limitations by the application of cell-penetrating peptides. J. Pept. Sci. 2014, 20, 760–784. [Google Scholar] [CrossRef] [PubMed]
- Rubin, S.J.S.; Qvit, N. Backbone-cyclized peptides: A critical review. Curr. Top. Med. Chem. 2018, 18, 526–555. [Google Scholar] [CrossRef] [PubMed]
- Verdurmen, W.P.R.; Mazlami, M.; Pluckthun, A. A quantitative comparison of cytosolic delivery via different protein uptake systems. Sci. Rep. 2017, 7, 13194. [Google Scholar] [CrossRef] [Green Version]
- Dougherty, P.G.; Sahni, A.; Pei, D.H. Understanding Cell Penetration of Cyclic Peptides. Chem. Rev. 2019, 119, 10241–10287. [Google Scholar] [CrossRef]
- Cai, Y.; Zheng, Z.K.; Bin, Y.; Qu, C.; Ying, C.L.; Qi, W.C. All-Factor Analysis and Correlations on the Transmembrane Process for Arginine-Rich Cell-Penetrating Peptides. Langmuir ACS J. Surf. Colloids 2019, 35, 9286–9296. [Google Scholar] [CrossRef]
- Buyanova, M.; Pei, D. Targeting intracellular protein-protein interactions with macrocyclic peptides. Trends Pharmacol Sci. 2022, 43, 234–248. [Google Scholar] [CrossRef]
- Sanjay, G.P.; Edward, J.S.; Lin, H.; Rohan, N.; Thomas, L.W.; Emily, M.M.; Rudolf, K.A.; Louis, Y.P.L.; Arwyn, T.J.; Yu-Hsuan, T. Cell-penetrating peptide sequence and modification dependent uptake and subcellular distribution of green florescent protein in different cell lines. Sci. Rep. 2019, 9, 6298. [Google Scholar] [CrossRef] [Green Version]
- Chang, M.M.; Li, X.H.; Sun, Y.M.; Cheng, F.; Li, Y.Q.; Zhao, W.J.; Wang, Q. A Potential Mechanism of a Cationic Cyclopeptide for Enhancing Insulin Delivery across Caco-2 Cell Monolayers. Biol. Pharm. Bull. 2013, 36, 1602–1607. [Google Scholar] [CrossRef]
- Chang, M.M.; Li, X.H.; Sun, Y.M.; Cheng, F.; Wang, Q.; Xie, X.H.; Zhao, W.J.; Tian, X. Effect of Cationic Cyclopeptides on Transdermal and Transmembrane Delivery of Insulin. Mol. Pharm. 2013, 10, 951–957. [Google Scholar] [CrossRef]
- Shang, E.P.; Muhammad, I.S.; Keykavous, P.; Rakesh, K.T. Cyclic Cell-Penetrating Peptides as efficient intracellular drug delivery tools. Mol. Pharm. 2019, 16, 3727–3743. [Google Scholar] [CrossRef]
- Mandal, D.; Shirazi, A.N.; Parang, K. Cell-Penetrating Homochiral Cyclic Peptides as Nuclear-Targeting Molecular Transporters. Angew. Chem. Int. Ed. 2011, 50, 9633–9637. [Google Scholar] [CrossRef] [PubMed]
- Darwish, S.; Sadeghiani, N.; Fong, S.; Mozaffari, S.; Hamidi, P.; Withana, T.; Yang, S.; Tiwari, R.K.; Parang, K. Synthesis and antiproliferative activities of doxorubicin thiol conjugates and doxorubicin-SS-cyclic peptide. Eur. J. Med. Chem. 2019, 161, 594–606. [Google Scholar] [CrossRef]
- Timmerman, P.; Beld, J.; Puijk, W.C.; Meloen, R.H. Rapid and quantitative cyclization of multiple peptide loops onto synthetic scaffolds for structural mimicry of protein surfaces. Chembiochem 2005, 6, 821–824. [Google Scholar] [CrossRef] [PubMed]
- Wallbrecher, R.; Depre, L.; Verdurmen, W.P.R.; Bovee-Geurts, P.H.; van Duinkerken, R.H.; Zekveld, M.J.; Timmerman, P.; Brock, R. Exploration of the Design Principles of a Cell-Penetrating Bicylic Peptide Scaffold. Bioconj. Chem. 2014, 25, 955–964. [Google Scholar] [CrossRef] [PubMed]
- Oh, D.; Darwish, S.A.; Shirazi, A.N.; Tiwari, R.K.; Parang, K. Amphiphilic bicyclic peptides as cellular delivery agents. ChemMedChem 2016, 11, 2449–2453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolfe, J.M.; Fadzen, C.M.; Holden, R.L.; Yao, M.; Hanson, G.J.; Pentelute, B.L. Perfluoroaryl Bicyclic Cell-Penetrating Peptides for Delivery of Antisense Oligonucleotides. Angew. Chem. Int. Ed. 2018, 57, 4756–4759. [Google Scholar] [CrossRef] [Green Version]
- Rhodes, C.A.; Dougherty, P.G.; Cooper, J.K.; Qian, Z.Q.; Lindert, S.; Wang, Q.E.; Pei, D.H. Cell-Permeable Bicyclic Peptidyl Inhibitors against NEMO-I kappa B Kinase Interaction Directly from a Combinatorial Library. J. Am. Chem. Soc. 2018, 140, 12102–12110. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Lenardo, M.J.; Baltimore, D. 30 Years of NF-kappa B: A Blossoming of Relevance to Human Pathobiology. Cell 2017, 168, 37–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Mandal, D.; El-Mowafi, S.A.; Mozaffari, S.; Tiwari, R.K.; Parang, K. Click-Free Synthesis of a Multivalent Tricyclic Peptide as a Molecular Transporter. Pharmaceutics 2020, 12, 842. [Google Scholar] [CrossRef] [PubMed]
- Tietz, O.; Cortezon-Tamarit, F.; Chalk, R.; Able, S.; Vallis, K.A. Tricyclic cell-penetrating peptides for efficient delivery of functional antibodies into cancer cells. Nat. Chem. 2022, 14, 284–293. [Google Scholar] [CrossRef]
- Gang, D.; Kim, D.W.; Park, H.S. Cyclic Peptides: Promising Scaffolds for Biopharmaceuticals. Genes 2018, 9, 557. [Google Scholar] [CrossRef] [Green Version]
- Shi, N.Q.; Qi, X.R.; Xiang, B.; Zhang, Y. A survey on “Trojan Horse” peptides: Opportunities, issues and controlled entry to “Troy”. J. Control. Release 2014, 194, 53–70. [Google Scholar] [CrossRef] [PubMed]
- Dutot, L.; Lécorché, P.; Burlina, F.; Marquant, R.; Point, V.; Sagan, S.; Chassaing, G.; Mallet, J.-M.; Lavielle, S. Glycosylated cell-penetrating peptides and their conjugates to a proapoptotic peptide: Preparation by click chemistry and cell viability studies. J. Chem. Biol. 2010, 3, 51–65. [Google Scholar]
- Lécorché, P.; Walrant, A.; Burlina, F.; Dutot, L.; Sagan, S.; Mallet, J.-M.; Desbat, B.; Chassaing, G.; Alves, I.D.; Lavielle, S. Cellular uptake and biophysical properties of galactose and/or tryptophan containing cell-penetrating peptides. Biochim. Biophys. Acta (BBA)—Biomembr. 2012, 1818, 448–457. [Google Scholar]
- Gallego, I.; Rioboo, A.; Reina, J.J.; Diaz, B.; Canales, A.; Canada, F.J.; Guerra-Varela, J.; Sanchez, L.; Montenegro, J. Glycosylated Cell-Penetrating Peptides (GCPPs). Chembiochem 2019, 20, 1400–1409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobayashi, J. d-Amino Acids and Lactic Acid Bacteria. Microorganisms 2019, 7, 690. [Google Scholar] [CrossRef] [Green Version]
- Genchi, G. An overview on D-amino acids. Amino Acids 2017, 49, 1521–1533. [Google Scholar] [CrossRef]
- Zhang, Q.Q.; Liu, N.X.; Wang, J.; Liu, Y.Y.; Wang, K.; Zhang, J.; Pan, X.Y. The Recent Advance of Cell-Penetrating and Tumor-Targeting Peptides as Drug Delivery Systems Based on Tumor Microenvironment. Mol. Pharm. 2023, 20, 789–809. [Google Scholar] [CrossRef]
- Elmquist, A.; Langel, U. In vitro uptake and stability study of pVEC and its all-D analog. Biol. Chem. 2003, 384, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Claudine, N.H.; Dominik, F.; Ute, S.; Stefan, B. Bio-instructive materials on-demand—Combinatorial chemistry of peptoids, foldamers, and beyond. Proc. Natl. Acad. Sci. United Chem. Commun. 2021, 57, 11131–11152. [Google Scholar] [CrossRef]
- Hu, J.M.; Lou, Y.M.; Wu, F.M. Improved Intracellular Delivery of Polyarginine Peptides with Cargoes. J. Phys. Chem. B 2019, 123, 2636–2644. [Google Scholar] [CrossRef] [PubMed]
- Ditlev, B.; Edward, J.S.; Malene, V.C.; Arwyn, T.J.; Henrik, F.; Hanne, M.N. Stereoisomer-Dependent Membrane Association and Capacity for Insulin Delivery Facilitated by Penetratin. Pharmaceutics 2023, 15, 1672. [Google Scholar] [CrossRef]
- Vaissiere, A.; Aldrian, G.; Konate, K.; Lindberg, M.F.; Jourdan, C.; Telmar, A.; Seisel, Q.; Fernandez, F.; Viguier, V.; Genevois, C.; et al. A retro-inverso cell-penetrating peptide for siRNA delivery. J. Nanobiotechnol. 2017, 15, 34. [Google Scholar] [CrossRef] [Green Version]
- Pujals, S.; Fernandez-Carneado, J.; Ludevid, M.D.; Giralt, E. D-SAP: A new, noncytotoxic, and fully protease resistant cell-penetrating peptide. ChemMedChem 2008, 3, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Zhong, C.; Gou, S.; Liu, T.; Zhu, Y.; Zhu, N.; Liu, H.; Zhang, Y.; Xie, J.; Guo, X.; Ni, J. Study on the effects of different dimerization positions on biological activity of partial D-Amino acid substitution analogues of Anoplin. Microb. Pathog. 2020, 139, 103871. [Google Scholar] [CrossRef] [PubMed]
- Derossi, D.; Calvet, S.; Trembleau, A.; Brunissen, A.; Chassaing, G.; Prochiantz, A. Cell internalization of the third helix of the antennapedia homeodomain is receptor-independent. J. Biol. Chem. 1996, 271, 18188–18193. [Google Scholar] [CrossRef] [Green Version]
- Verdurmen, W.P.R.; Bovee-Geurts, P.H.; Wadhwani, P.; Ulrich, A.S.; Hallbrink, M.; van Kuppevelt, T.H.; Brock, R. Preferential Uptake of L- versus D-Amino Acid Cell-Penetrating Peptides in a Cell Type-Dependent Manner. Chem. Biol. 2011, 18, 1000–1010. [Google Scholar] [CrossRef] [Green Version]
- Najjar, K.; Erazo-Oliveras, A.; Brock, D.J.; Wang, T.Y.; Pellois, J.P. An L- to D-Amino Acid Conversion in an Endosomolytic Analog of the Cell- penetrating Peptide TAT Influences Proteolytic Stability, Endocytic Uptake, and Endosomal Escape. J. Biol. Chem. 2017, 292, 847–861. [Google Scholar] [CrossRef] [Green Version]
- Yamada, T.; Signorelli, S.; Cannistraro, S.; Beattie, C.W.; Bizzarri, A.R. Chirality Switching within an Anionic Cell-Penetrating Peptide Inhibits Translocation without Affecting Preferential Entry. Mol. Pharm. 2015, 12, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, R.; Alam, M.; Rajabi, H.; Kufe, D. The MUC1-C Oncoprotein Binds to the BH3 Domain of the Pro-apoptotic BAX Protein and Blocks BAX Function. J. Biol. Chem. 2012, 287, 20866–20875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raina, D.; Kosugi, M.; Ahmad, R.; Panchamoorthy, G.; Rajabi, H.; Alam, M.; Shimamura, T.; Shapiro, G.I.; Supko, J.; Kharbanda, S.; et al. Dependence on the MUC1-C oncoprotein in classic, variant and non-neuroendocrine small cell lung cancer. Mol. Cancer Res. 2022, 20, 1379–1390. [Google Scholar] [CrossRef]
- Katarzyna, S.; Iwona, R. MUC1 is an oncoprotein with a significant role in apoptosis. Int. J. Oncol. 2021, 59, 68. [Google Scholar] [CrossRef]
- Fatemeh, M.; Astrid, G. Membrane Molecular Interactions and Induced Structures of CPPs. Methods Mol. Biol. 2022, 2383, 153–165. [Google Scholar] [CrossRef]
- Duchardt, F.; Ruttekolk, I.R.; Verdurmen, W.P.R.; Lortat-Jacob, H.; Burck, J.; Hufnagel, H.; Fischer, R.; van den Heuvel, M.; Lowik, D.; Vuister, G.W.; et al. A Cell-penetrating Peptide Derived from Human Lactoferrin with Conformation-dependent Uptake Efficiency. J. Biol. Chem. 2009, 284, 36099–36108. [Google Scholar] [CrossRef] [Green Version]
- Allen, J.K.; Brock, D.J.; Kondow, M.; Conaghy, H.M.; Pellois, J.P. Efficient Delivery of Macromolecules into Human Cells by Improving the Endosomal Escape Activity of Cell-Penetrating Peptides: Lessons Learned from dfTAT and its Analogs. Biomolecules 2018, 8, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, K.H.; Hong, S.T.; Wang, H.T.; Lo, Y.L.; Lin, A.M.; Yang, J.C. Enhancing anticancer effect of gefitinib across the blood-brain barrier model using liposomes modified with oneα-helical cell-penetrating peptide or glutathione and tween 80. Int. J. Mol. Sci. 2016, 17, 1998. [Google Scholar] [CrossRef] [Green Version]
- Stalmans, S.; Bracke, N.; Wynendaele, E.; Gevaert, B.; Peremans, K.; Burvenich, C.; Polis, I.; De Spiegeleer, B. Cell-penetrating peptides selectively cross the blood-brain barrier in vivo. PLoS ONE 2015, 10, e0139652. [Google Scholar] [CrossRef] [Green Version]
- Barra, T.; Falanga, A.; Bellavita, R.; Laforgia, V.; Prisco, M.; Galdiero, S.; Valiante, S. gGH625-liposomes deliver PACAP through a dynamic in vitro model of the blood-brain barrier. Front. Physiol. 2022, 19, 932099. [Google Scholar] [CrossRef]
- Gupta, B.; Levchenko, T.S.; Torchilin, V.P. Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides. Adv. Drug Deliv. Rev. 2005, 57, 637–651. [Google Scholar] [CrossRef]
- Wadia, J.S.; Dowdy, S.F. Transmembrane delivery of protein and peptide drugs by TAT-mediated transduction in the treatment of cancer. Adv. Drug Deliv. Rev. 2005, 57, 579–596. [Google Scholar] [CrossRef]
- Hosotani, R.; Miyamoto, Y.; Fujimoto, K.; Doi, R.; Otaka, A.; Fujii, N.; Imamura, M. Trojan p16 peptide suppresses pancreatic cancer growth and prolongs survival in mice. Clin. Cancer Res. 2002, 8, 1271–1276. [Google Scholar] [PubMed]
- Bolhassani, A.; Jafarzade, B.S.; Mardani, G. In vitro and in vivo delivery of therapeutic proteins using cell penetrating peptides. Peptides 2017, 87, 50–63. [Google Scholar] [CrossRef]
- Baker, R.D.; Howl, J.; Nicholl, I.D. A sychnological cell penetrating peptide mimic of p21(WAF1/CIP1) is pro-apoptogenic. Peptides 2007, 28, 731–740. [Google Scholar] [CrossRef]
- Ueda, Y.; Wei, F.Y.; Hide, T.; Michiue, H.; Takayama, K.; Kaitsuka, T.; Nakamura, H.; Makino, K.; Kuratsu, J.; Futaki, S.; et al. Induction of autophagic cell death of glioma-initiating cells by cell-penetrating D-isomer peptides consisting of Pas and the p53 C-terminus. Biomaterials 2012, 33, 9061–9069. [Google Scholar] [CrossRef] [PubMed]
- Araki, D.; Takayama, K.; Inoue, M.; Watanabe, T.; Kumon, H.; Futaki, S.; Matsui, H.; Tomizawa, K. Cell-penetrating D-Isomer Peptides of p53 C-terminus: Long-term Inhibitory Effect on the Growth of Bladder Cancer. Urology 2010, 75, 813–819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michl, J.; Scharf, B.; Schmidt, A.; Huynh, C.; Hannan, R.; von Gizycki, H.; Friedman, F.K.; Brandt-Rauf, P.; Fine, R.L.; Pincus, M.R. PNC-28, a p53-derived peptide that is cytotoxic to cancer cells, blocks pancreatic cancer cell growth in vivo. Int. J. Cancer 2006, 119, 1577–1585. [Google Scholar] [CrossRef]
- Bowne, W.B.; Michl, J.; Bluth, M.H.; Zenilman, M.E.; Pincus, M.R. Novel peptides from the RAS-p21 and p53 proteins for the treatment of cancer. Cancer Ther. 2007, 5, 331. [Google Scholar]
- Mai, J.C.; Mi, Z.B.; Kim, S.H.; Ng, B.; Robbins, P.D. A proapoptotic peptide for the treatment of solid tumors. Cancer Res. 2001, 61, 7709–7712. [Google Scholar]
- Gautam, A.; Nanda, J.S.; Samuel, J.S.; Kumari, M.; Priyanka, P.; Bedi, G.; Nath, S.K.; Mittal, G.; Khatri, N.; Raghava, G.P.S. Topical Delivery of Protein and Peptide Using Novel Cell Penetrating Peptide IMT-P8. Sci. Rep. 2016, 6, 26278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perea, S.E.; Reyes, O.; Puchades, Y.; Mendoza, O.; Vispo, N.S.; Torrens, I.; Santos, A.; Silva, R.; Acevedo, B.; Lopez, E.; et al. Antitumor effect of a novel proapoptotic peptide that impairs the phosphorylation by the protein kinase 2 (casein kinase 2). Cancer Res. 2004, 64, 7127–7129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, M.; Zhu, H.; Yi, C.; Yan, J.; Wei, L.J.; Yang, X.; Chen, S.C.; Huang, Y. A novel TRAIL mutant-TRAIL-Mu3 enhances the antitumor effects by the increased affinity and the up-expression of DR5 in pancreatic cancer. Cancer Chemother. Pharmacol. 2018, 82, 829–838. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.H.; Huang, Y.B.; Chen, Y.X. Targeted Modification of the Cationic Anticancer Peptide HPRP-A1 with iRGD To Improve Specificity, Penetration, and Tumor-Tissue Accumulation. Mol. Pharm. 2019, 16, 561–572. [Google Scholar] [CrossRef]
- Dowarha, D.; Chou, R.H.; Yu, C. S100A1 blocks the interaction between p53 and mdm2 and decreases cell proliferation activity. PLoS ONE 2020, 15, e0234152. [Google Scholar] [CrossRef]
- Runge, S.; Schimmer, S.; Oschmann, J.; Schiodt, C.B.; Knudsen, S.M.; Jeppesen, C.B.; Madsen, K.; Lau, J.; Thogersen, H.; Rudolph, R. Differential structural properties of GLP-1 and exendin-4 determine their relative affinity for the GLP-1 receptor N-terminal extracellular domain. Biochemistry 2007, 46, 5830–5840. [Google Scholar] [CrossRef]
- Muller, T.D.; Finan, B.; Bloom, S.R.; D’Alessio, D.; Drucker, D.J.; Flatt, P.R.; Fritsche, A.; Gribble, F.; Grill, H.J.; Habener, J.F.; et al. Glucagon-like peptide 1 (GLP-1). Mol. Metab. 2019, 30, 72–130. [Google Scholar] [CrossRef]
- Stepensky, D. Pharmacokinetics of Toxin-Derived Peptide Drugs. Toxins 2018, 10, 483. [Google Scholar] [CrossRef] [Green Version]
- Dinca, A.; Chien, W.M.; Chin, M.T. Intracellular Delivery of Proteins with Cell-Penetrating Peptides for Therapeutic Uses in Human Disease. Int. J. Mol. Sci. 2016, 17, 263. [Google Scholar] [CrossRef] [Green Version]
- Kamei, N.; Morishita, M.; Takayama, K. Importance of intermolecular interaction on the improvement of intestinal therapeutic peptide/protein absorption using cell-penetrating peptides. J. Control. Release 2009, 136, 179–186. [Google Scholar] [CrossRef]
- Khafagy, E.S.; Morishita, M.; Isowa, K.; Imai, J.; Takayama, K. Effect of cell-penetrating peptides on the nasal absorption of insulin. J. Control. Release 2009, 133, 103–108. [Google Scholar] [CrossRef]
- Khafagy, E.S.; Morishita, M.; Takayama, K. The role of intermolecular interactions with penetratin and its analogue on the enhancement of absorption of nasal therapeutic peptides. Int. J. Pharm. 2010, 388, 209–212. [Google Scholar] [CrossRef]
- Bae, H.D.; Kim, M.; Lee, J.; Lee, K. Modified translationally controlled tumor protein-derived protein transduction domain enhances nasal delivery of exendin-4 as shown with insulin. Drug Deliv. 2018, 25, 1579–1584. [Google Scholar] [CrossRef] [PubMed]
- Ojo, O.O.; Srinivasan, D.K.; Owolabi, B.O.; Vasu, S.; Conlon, J.M.; Flatt, P.R.; Abdel-Wahab, Y.H.A. Esculentin-2CHa-Related Peptides Modulate Islet Cell Function and Improve Glucose Tolerance in Mice with Diet-Induced Obesity and Insulin Resistance. PLoS ONE 2015, 10, e0141549. [Google Scholar] [CrossRef]
- Vasu, S.; Ojo, O.O.; Moffett, R.C.; Conlon, J.M.; Flatt, P.R.; Abdel-Wahab, Y.H.A. Anti-diabetic actions of esculentin-2CHa(1-30) and its stable analogues in a diet-induced model of obesity-diabetes. Amino Acids 2017, 49, 1705–1717. [Google Scholar] [CrossRef]
- Plisson, F.; Hill, T.A.; Mitchell, J.M.; Hoang, H.N.; de Araujo, A.D.; Xu, W.; Cotterell, A.; Edmonds, D.J.; Stanton, R.V.; Derksen, D.R.; et al. Helixconstraints and amino acid substitution in GLP-1 increase cAMP and insulin secretion but not beta-arrestin 2 signaling. Eur. J. Med. Chem. 2017, 127, 703–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buccini, D.F.; Cardoso, M.H.; Franco, O.L. Antimicrobial Peptides and Cell-Penetrating Peptides for Treating Intracellular Bacterial Infections. Front. Cell. Infect. Microbiol. 2021, 10, 612931. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, X.M.; Teng, D.; Mao, R.Y.; Hao, Y.; Yang, N.; Li, Z.Z.; Wang, J.H. Increased intracellular activity of MP1102 and NZ2114 against Staphylococcus aureus in vitro and in vivo. Sci. Rep. 2018, 8, 4204. [Google Scholar] [CrossRef] [PubMed]
- Huo, S.C.; Chen, C.; Lyu, Z.C.; Zhang, S.T.; Wang, Y.; Nie, B.E.; Yue, B. Overcoming Planktonic and Intracellular Staphylococcus aureus-Associated Infection with a Cell-Penetrating Peptide-Conjugated Antimicrobial Peptide. ACS Infect. Dis. 2020, 6, 3147–3162. [Google Scholar] [CrossRef]
- Li, Z.Z.; Wang, X.; Teng, D.; Mao, R.Y.; Hao, Y.; Yang, N.; Chen, H.X.; Wang, X.M.; Wang, J.H. Improved antibacterial activity of a marine peptide-N2 against intracellular Salmonella typhimurium by conjugating with cell-penetrating peptides-bLFcin(6)/Tat(11). Eur. J. Med. Chem. 2018, 145, 263–272. [Google Scholar] [CrossRef]
- Lee, H.; Lim, S.I.; Shin, S.H.; Lim, Y.; Koh, J.W.; Yang, S. Conjugation of Cell-Penetrating Peptides to Antimicrobial Peptides Enhances Antibacterial Activity. ACS Omega 2019, 4, 15694–15701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ti, Y.; Wang, F.; Wang, Z.H.; Wang, X.L.; Zhang, W.; Zhang, Y.; Bu, P.L. Associations of serum salusin-alpha levels with atherosclerosis and left ventricular diastolic dysfunction in essential hypertension. J. Hum. Hypertens. 2011, 26, 603–609. [Google Scholar] [CrossRef] [Green Version]
- Kimura, M.; Kosuge, K.; Ko, Y.; Kurosaki, N.; Tagawa, N.; Kato, I.; Uchida, Y. Potent Antibacterial Activity of Synthetic Peptides Designed from Salusin-beta and HIV-1 Tat(49-57). Chem. Pharm. Bull. 2020, 68, 810–813. [Google Scholar] [CrossRef]
- Ho, P.L.; Ong, H.K.; Teo, J.; Ow, D.S.W.; Chao, S.H. HEXIM1 Peptide Exhibits Antimicrobial Activity Against Antibiotic Resistant Bacteria Through Guidance of Cell Penetrating Peptide. Front. Microbiol. 2019, 10, 203. [Google Scholar] [CrossRef] [Green Version]
- Henriques, S.T.; Castanho, M.; Pattenden, L.K.; Aguilar, M.I. Fast Membrane Association Is a Crucial Factor in the Peptide Pep-1 Translocation Mechanism: A Kinetic Study Followed by Surface Plasmon Resonance. Biopolymers 2010, 94, 314–322. [Google Scholar] [CrossRef]
- Zhu, W.L.; Lan, H.L.; Park, I.S.; Kim, J.I.; Jin, H.Z.; Hahm, K.S.; Shin, S.Y. Design and mechanism of action of a novel bacteria-selective antimicrobial peptide from the cell-penetrating peptide Pep-1. Biochem. Biophys. Res. Commun. 2006, 349, 769–774. [Google Scholar] [CrossRef]
- Park, N.; Yamanaka, K.; Tran, D.; Chandrangsu, P.; Akers, J.C.; de Leon, J.C.; Morrissette, N.S.; Selsted, M.E.; Tan, M. The cell-penetrating peptide, Pep-1, has activity against intracellular chlamydial growth but not extracellular forms of Chlamydia trachomatis. J. Antimicrob. Chemother. 2009, 63, 115–123. [Google Scholar] [CrossRef]
- Bobone, S.; Piazzon, A.; Orioni, B.; Pedersen, J.Z.; Nan, Y.H.; Hahm, K.S.; Shin, S.Y.; Stella, L. The thin line between cell-penetrating and antimicrobial peptides: The case of Pep-1 and Pep-1-K. J. Pept. Sci. 2011, 17, 335–341. [Google Scholar] [CrossRef]
- Hu, C.; Huang, Y.; Chen, Y. Co-administration of iRGD with peptide HPRP-A1 to improve anticancer activity and membrane penetrability. Sci Rep. 2018, 8, 2274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khafagy, E.-S.; Morishita, M.; Kamei, N.; Eda, Y.; Ikeno, Y.; Takayama, K. Efficiency of cell-penetrating peptides on the nasal and intestinal absorption of therapeutic peptides and proteins. Int. J. Pharm. 2009, 381, 49–55. [Google Scholar] [CrossRef]
- Bechinger, B.; Gorr, S.U. Antimicrobial Peptides: Mechanisms of Action and Resistance. J. Dent. Res. 2017, 96, 254–260. [Google Scholar] [CrossRef] [Green Version]
- Kimura, M.; Shindo, M.; Moriizumi, T.; Tagawa, N.; Fujinami, A.; Kato, I.; Uchida, Y. Salusin-β, an antimicrobially active peptide against Gram-positive bacteria. Chem. Pharm. Bull. 2014, 62, 586–690. [Google Scholar] [CrossRef] [Green Version]
- Selivanova, G.; Ryabchenko, L.; Jansson, E.; Iotsova, V.; Wiman, K.G. Reactivation of mutant p53 through interaction of a C-terminal peptide with the core domain. Mol. Cell. Biol. 1999, 19, 3395–3402. [Google Scholar]
- Snyder, E.L.; Meade, B.R.; Saenz, C.C.; Dowdy, S.F. Treatment of terminal peritoneal carcinomatosis by a transducible p53-activating peptide. PLoS Biol. 2004, 2, 186–193. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.T.; Wu, K.J.; Ding, C.; Sun, K.W.; Guan, Z.F.; Wang, X.Y.; Hsieh, J.T.; He, D.L.; Fan, J.H. Inhibiting bladder tumor growth with a cell penetrating R11 peptide derived from the p53 C-terminus. Oncotarget 2015, 6, 37782–37791. [Google Scholar] [CrossRef] [Green Version]
- Takenobu, T.; Tomizawa, K.; Matsushita, M.; Li, S.T.; Moriwaki, A.; Lu, Y.F.; Matsui, H. Development of p53 protein transduction therapy using membrane-permeable peptides and the application to oral cancer cells. Mol. Cancer Ther. 2002, 1, 1043–1049. [Google Scholar]
- Michiue, H.; Tomizawa, K.; Wei, F.Y.; Matsushita, M.; Lu, Y.F.; Ichikawa, T.; Tamiya, T.; Date, I.; Matsui, H. The NH2 terminus of influenza virus hemagglutinin-2 subunit peptides enhances the antitumor potency of polyarginine-mediated p53 protein transduction. J. Biol. Chem. 2005, 280, 8285–8289. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.H.; Cao, J.S.; Topatana, W.; Juengpanich, S.; Li, S.J.; Zhang, B.; Shen, J.L.; Cai, L.X.; Cai, X.J.; Chen, M.Y. Targeting mutant p53 for cancer therapy: Direct and indirect strategies. J. Hematol. Oncol. 2021, 14, 157. [Google Scholar] [CrossRef]
- Sun, L.; Chen, C.; Zhu, A.J.; Huang, Y.; Zhu, H.; Yi, C. TRAIL mutant membrane penetrating peptide alike-MuR6-TR enhances the antitumor effects of TRAIL in pancreatic carcinoma both in vitro and in vivo. Int. J. Mol. Med. 2017, 39, 1468–1476. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.; Baik, S.K.; Yoon, Y.; Hwang, S.; Sohn, J.H.; Jo, M.; Kim, W.S.; Rhee, K.J.; Whang, K.; Eom, Y.W. DNA-binding Cell-penetrating Peptide-based TRAIL Over-expression in Adipose Tissue-derived Mesenchymal Stem Cells Inhibits Glioma U251MG Growth. Anticancer Res. 2021, 41, 2859–2866. [Google Scholar] [CrossRef] [PubMed]
- Orzechowska, E.J.; Kozlowska, E.; Czubaty, A.; Kozlowski, P.; Staron, K.; Trzcinska-Danielewicz, J. Controlled delivery of BID protein fused with TAT peptide sensitizes cancer cells to apoptosis. BMC Cancer 2014, 14, 771. [Google Scholar] [CrossRef]
- Srivastava, S.; Singh, D.; Patel, S.; Singh, M.R. Role of enzymatic free radical scavengers in management of oxidative stress in autoimmune disorders. Int. J. Biol. Macromol. 2017, 101, 502–517. [Google Scholar] [CrossRef]
- Christina, S.; Caitlin, L.; Nathan, D.; Nana, B.; Kaori, O.; Eric, S.; Christine, V.; Eva, N. Release of extracellular superoxide dismutase into alveolar fluid protects against acute lung injury and inflammation in Staphylococcus aureus pneumonia. Am. J. Physiol. 2023, 324, L445–L455. [Google Scholar] [CrossRef]
- Zelko, I.N.; Mariani, T.J.; Folz, R.J. Superoxide dismutase multigene family: A comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic. Biol. Med. 2002, 33, 337–349. [Google Scholar] [CrossRef] [PubMed]
- Edeas, M.A.; Emerit, I.; Khalfoun, Y.; Lazizi, Y.; Cernjavski, L.; Levy, A.; Lindenbaum, A. Clastogenic factors in plasma of HIV-1 infected patients activate HIV-1 replication in vitro: Inhibition by superoxide dismutase. Free Radic. Biol. Med. 1997, 23, 571–578. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.R.; Su, Y.; Hou, X.J.; He, H.C.; Liu, S.T.; Wu, J.X.; Rao, P.F. Protective effect of recombinant protein SOD-TAT on radiation-induced lung injury in mice. Life Sci. 2012, 91, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Yao, W.J.; Zhao, H.W.; Shi, R.S.; Li, X.H.; Li, Y.; Ke, C.B.; Liu, J.Y. Recombinant protein transduction domain-Cu/Zn superoxide dismutase alleviates bone cancer pain via peroxiredoxin 4 modulation and antioxidation. Biochem. Biophys. Res. Commun. 2017, 486, 1143–1148. [Google Scholar] [CrossRef]
- Guo, H.; Zhang, N.; Liu, D.; Wang, P.; Ma, X.Y. Inhibitory effect on the proliferation of human heptoma induced by cell-permeable manganese superoxide dismutase. Biomed. Pharmacother. 2016, 83, 1379–1386. [Google Scholar] [CrossRef]
- Morris, M.C.; Depollier, J.; Mery, J.; Heitz, F.; Divita, G. A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat. Biotechnol. 2001, 19, 1173–1176. [Google Scholar] [CrossRef]
- Choi, H.S.; An, J.J.; Kim, S.Y.; Lee, S.H.; Kim, D.W.; Yoo, K.Y.; Won, M.H.; Kang, T.C.; Kwon, H.J.; Kang, J.H.; et al. PEP-1-SOD fusion protein efficiently protects against paraquat-induced doparninergic neuron damage in a Parkinson disease mouse model. Free Radic. Biol. Med. 2006, 41, 1058–1068. [Google Scholar] [CrossRef]
- Kim, W.; Kim, D.W.; Yoo, D.Y.; Chung, J.Y.; Hwang, I.K.; Won, M.H.; Choi, S.Y.; Jeon, S.W.; Jeong, J.H.; Hwang, H.S.; et al. Neuroprotective Effects of PEP-1-Cu,Zn-SOD against Ischemic Neuronal Damage in the Rabbit Spinal Cord. Neurochem. Res. 2012, 37, 307–313. [Google Scholar] [CrossRef]
- Yoo, D.Y.; Kim, D.W.; Chung, J.Y.; Jung, H.Y.; Kim, J.W.; Yoon, Y.S.; Hwang, I.K.; Choi, J.H.; Choi, G.M.; Choi, S.Y.; et al. Cu, Zn-Superoxide Dismutase Increases the Therapeutic Potential of Adipose-derived Mesenchymal Stem Cells by Maintaining Antioxidant Enzyme Levels. Neurochem. Res. 2016, 41, 3300–3307. [Google Scholar] [CrossRef]
- Zhang, Y.E.; Wang, J.N.; Tang, J.M.; Guo, L.Y.; Yang, J.Y.; Huang, Y.Z.; Tan, Y.; Fu, S.Z.; Kong, X.; Zheng, F. In Vivo protein transduction: Delivery of PEP-1-SOD1 fusion protein into myocardium efficiently protects against ischemic insult. Mol. Cells 2009, 27, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Hou, J.; Xia, Z.Y.; Zeng, W.; Wang, X.; Li, R.; Ke, C.; Xu, J.; Lei, S.; Xia, Z. Recombinant PTD-Cu/Zn SOD attenuates hypoxia-reoxygenation injury in cardiomyocytes. Free Radic. Res. 2013, 47, 386–393. [Google Scholar] [CrossRef]
- Choi, J.H.; Kim, D.W.; Yoo, D.Y.; Jeong, H.J.; Kim, W.; Jung, H.Y.; Nam, S.M.; Kim, J.H.; Yoon, Y.S.; Choi, S.Y.; et al. Repeated Administration of PEP-1-Cu,Zn-Superoxide Dismutase and PEP-1-Peroxiredoxin-2 to Senescent Mice Induced by D-galactose Improves the Hippocampal Functions. Neurochem. Res. 2013, 38, 2046–2055. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.D.; Huang, L.Y.; Wu, Q.H.; Yang, E.Z.; Zhang, G.; Sun, H.X.; Wang, F. A recombinant trans-membrane protein hMnSOD-R9 inhibits the proliferation of cervical cancer cells in vitro. Mol. Cell. Biochem. 2014, 385, 79–86. [Google Scholar] [CrossRef]
- Park, S.H.; Shin, M.J.; Kim, D.W.; Park, J.; Choi, S.Y.; Kang, Y.H. Blockade of monocyte-endothelial trafficking by transduced Tat-superoxide dismutase protein. Int. J. Mol. Med. 2016, 37, 387–397. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.L.; Jiang, R.W. Therapeutic Potential of Superoxide Dismutase Fused with Cell-Penetrating Peptides in Oxidative Stress-Related Diseases. Mini-Rev. Med. Chem. 2022, 22, 2287–2298. [Google Scholar] [CrossRef]
- Jauset, T.; Beaulieu, M.E. Bioactive cell penetrating peptides and proteins in cancer: A bright future ahead. Curr. Opin. Pharmacol. 2019, 47, 133–140. [Google Scholar] [CrossRef]
- Gaston, J.; Maestrali, N.; Lalle, G.; Gagnaire, M.; Masiero, A.; Dumas, B.; Dabdoubi, T.; Radosevic, K.; Berne, P.F. Intracellular delivery of therapeutic antibodies into specific cells using antibody-peptide fusions. Sci. Rep. 2019, 9, 18688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, S.M.; Choi, D.K.; Jung, K.; Bae, J.; Kim, J.S.; Park, S.W.; Song, K.H.; Kim, Y.S. Antibody targeting intracellular oncogenic Ras mutants exerts anti-tumour effects after systemic administration. Nat. Commun. 2017, 8, 15090. [Google Scholar] [CrossRef] [Green Version]
- Van Impe, K.; Bethuyne, J.; Cool, S.; Impens, F.; Ruano-Gallego, D.; De Wever, O.; Vanloo, B.; Van Troys, M.; Lambein, K.; Boucherie, C.; et al. A nanobody targeting the F-actin capping protein CapG restrains breast cancer metastasis. Breast Cancer Res. 2013, 15, R116. [Google Scholar] [CrossRef]
- Rehmani, S.; Dixon, J.E. Oral delivery of anti-diabetes therapeutics using cell penetrating and transcytosing peptide strategies. Peptides 2018, 100, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.F.; Yang, V.C. Insulin-cell penetrating peptide hybrids with improved intestinal absorption efficiency. Biochem. Biophys. Res. Commun. 2005, 335, 734–738. [Google Scholar] [CrossRef]
- Kamei, N.; Morishita, M.; Eda, Y.; Ida, N.; Nishio, R.; Takayama, K. Usefulness of cell-penetrating peptides to improve intestinal insulin absorption. J. Control. Release 2008, 132, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Kamei, N.; Kikuchi, S.; Takeda-Morishita, M.; Terasawa, Y.; Yasuda, A.; Yamamoto, S.; Ida, N.; Nishio, R.; Takayama, K. Determination of the optimal cell-penetrating peptide sequence for intestinal insulin delivery based on molecular orbital analysis with self-organizing maps. J. Pharm. Sci. 2013, 102, 469–479. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, L.; Han, M.; Hu, J.Y.; Zhang, L.F. Amphiphilic Lipopeptide-Mediated Transport of Insulin and Cell Membrane Penetration Mechanism. Molecules 2015, 20, 21569–21583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, S.Q.; Chen, S.X.; Gao, Y.; Guo, F.; Li, F.Y.; Xie, B.G.; Zhou, J.L.; Zhong, H.J. Enhanced oral bioavailability of insulin using PLGA nanoparticles co-modified with cell-penetrating peptides and Engrailed secretion peptide (Sec). Drug Deliv. 2016, 23, 1980–1991. [Google Scholar] [CrossRef] [Green Version]
- Shan, W.; Zhu, X.; Liu, M.; Li, L.; Zhong, J.J.; Sun, W.; Zhang, Z.R.; Huang, Y. Overcoming the Diffusion Barrier of Mucus and Absorption Barrier of Epithelium by Self-Assembled Nanoparticles for Oral Delivery of Insulin. ACS Nano 2015, 9, 2345–2356. [Google Scholar] [CrossRef]
- Kamei, N.; Takeda-Morishita, M. Brain delivery of insulin boosted by intranasal coadministration with cell-penetrating peptides. J. Control. Release 2015, 197, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Patel, E.N.; Wang, J.; Kim, K.J.; Borok, Z.; Crandall, E.D.; Shen, W.C. Conjugation with Cationic Cell-Penetrating Peptide Increases Pulmonary Absorption of Insulin. Mol. Pharm. 2009, 6, 492–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vattepu, R.; Sneed, S.L.; Anthony, R.M. Sialylation as an Important Regulator of Antibody Function. Front. Immunol. 2022, 13, 818736. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Zhang, Y.; Zhang, C.; Yu, H.; Ma, Y.; Li, Z.; Shi, N. Recent Advances of Cell-Penetrating Peptides and Their Application as Vectors for Delivery of Peptide and Protein-Based Cargo Molecules. Pharmaceutics 2023, 15, 2093. https://doi.org/10.3390/pharmaceutics15082093
Zhang H, Zhang Y, Zhang C, Yu H, Ma Y, Li Z, Shi N. Recent Advances of Cell-Penetrating Peptides and Their Application as Vectors for Delivery of Peptide and Protein-Based Cargo Molecules. Pharmaceutics. 2023; 15(8):2093. https://doi.org/10.3390/pharmaceutics15082093
Chicago/Turabian StyleZhang, Huifeng, Yanfei Zhang, Chuang Zhang, Huan Yu, Yinghui Ma, Zhengqiang Li, and Nianqiu Shi. 2023. "Recent Advances of Cell-Penetrating Peptides and Their Application as Vectors for Delivery of Peptide and Protein-Based Cargo Molecules" Pharmaceutics 15, no. 8: 2093. https://doi.org/10.3390/pharmaceutics15082093
APA StyleZhang, H., Zhang, Y., Zhang, C., Yu, H., Ma, Y., Li, Z., & Shi, N. (2023). Recent Advances of Cell-Penetrating Peptides and Their Application as Vectors for Delivery of Peptide and Protein-Based Cargo Molecules. Pharmaceutics, 15(8), 2093. https://doi.org/10.3390/pharmaceutics15082093