Optimizing Absorption for Intranasal Delivery of Drugs Targeting the Central Nervous System Using Alkylsaccharide Permeation Enhancers
Abstract
:1. Introduction
2. Challenges of Nasal Drug Delivery
2.1. Nasal Anatomy and Physiology
2.2. Considerations for Nasal Drug Formulations
2.2.1. Anatomic and Physiologic Constraints
2.2.2. Formulation and Physiochemical Constraints
2.2.3. Delivery Device Constraints
3. Focus on Absorption Optimization
3.1. Biochemistry of the Alkylsaccharides Dodecyl Maltoside and Tetradecyl Maltoside
3.2. DDM and TDM Mechanism of Action
3.3. Preclinical Studies of DDM and TDM
3.4. DDM: Currently Approved Treatments
3.4.1. Sumatriptan Nasal Spray with Intravail (Tosymra®)
3.4.2. Diazepam Nasal Spray (Valtoco®)
3.4.3. Nalmefene Nasal Spray (Opvee®)
3.5. DDM: Future Directions
3.5.1. Epinephrine Nasal Spray (Neffy™)
3.5.2. Other Treatments
4. Future Perspectives and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADI | Allowable daily intake |
AUC | Area under the curve |
Cmax | Maximum plasma concentration |
CNS | Central nervous system |
DDM | Dodecyl maltoside |
FDA | US Food and Drug Administration |
GMP | Good manufacturing practices |
GRAS | Generally recognized as safe |
MAD | Mucosal atomization device |
NALT | Nasopharynx-associated lymphatic tissue |
NOEL | No-observed-effect level |
TDM | Tetradecyl maltoside |
TEAE | Treatment-emergent adverse event |
tmax | Time to maximum plasma concentration |
References
- Cloyd, J.; Haut, S.; Carrazana, E.; Rabinowicz, A.L. Overcoming the challenges of developing an intranasal diazepam rescue therapy for the treatment of seizure clusters. Epilepsia 2021, 62, 846–856. [Google Scholar] [CrossRef] [PubMed]
- Penovich, P.; Wheless, J.W.; Hogan, R.E.; Guerra, C.; Cook, D.F.; Carrazana, E.; Rabinowicz, A.L. Examining the patient and caregiver experience with diazepam nasal spray for seizure clusters: Results from an exit survey of a phase 3, open-label, repeat-dose safety study. Epilepsy Behav. 2021, 121, 108013. [Google Scholar]
- Chung, S.; Peters, J.M.; Detyniecki, K.; Tatum, W.; Rabinowicz, A.L.; Carrazana, E. The nose has it: Opportunities and challenges for intranasal drug administration for neurologic conditions including seizure clusters. Epilepsy Behav. Rep. 2023, 21, 100581. [Google Scholar] [PubMed]
- Janssen Pharmaceuticals. Spravato (Esketamine Nasal Spray, CII); Janssen Pharmaceutical Companies: Titusville, NJ, USA, 2020. [Google Scholar]
- Neurelis, Inc. VALTOCO® (Diazepam Nasal Spray); Neurelis, Inc.: San Diego, CA, USA, 2023. [Google Scholar]
- UCB, Inc. Nayzilam® (Midazolam Nasal Spray); UCB, Inc.: Smyrna, GA, USA, 2023. [Google Scholar]
- Bausch Health US, LLC. Migranal® (Dihydroergotamine Mesylate Nasal Spray); Bausch Health US, LLC: Bridgewater, NJ, USA, 2022. [Google Scholar]
- GlaxoSmithKline. Imitrex Nasal Spray (Sumatriptan); GlaxoSmithKline: Research Triangle Park, NC, USA, 2017. [Google Scholar]
- Upsher-Smith Laboratories, LLC. TOSYMRA® (Sumatriptan); Upsher-Smith Laboratories, LLC: Maple Grove, MN, USA, 2021. [Google Scholar]
- Pfizer Inc. Zavzpret (Zavegepant); Pfizer Inc.: New York, NY, USA, 2023. [Google Scholar]
- Amneal Pharmaceuticals. Zomig (Zolmitriptan Spray, Metered); Amneal Pharmaceuticals: Bridgewater, NJ, USA, 2019. [Google Scholar]
- Adapt Pharma, Inc. Narcan® Nasal Spray (Naloxone Hydrochloride); Adapt Pharma, Inc.: Plymouth Meeting, PA, USA, 2020. [Google Scholar]
- Opiant Pharmaceuticals, Inc. Opvee (Nalmefene Nasal Spray); Opiant Pharmaceuticals, Inc.: Santa Monica, CA, USA, 2023. [Google Scholar]
- US Food & Drug Administration. FDA Approves First Over-the-Counter Naloxone Nasal Spray [Press Release]. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-first-over-counter-naloxone-nasal-spray (accessed on 14 July 2023).
- Tripathi, S.; Gupta, U.; Ujjwal, R.R.; Yadav, A.K. Nano-lipidic formulation and therapeutic strategies for Alzheimer’s disease via intranasal route. J. Microencapsul. 2021, 38, 572–593. [Google Scholar] [CrossRef]
- Nair, A.B.; Chaudhary, S.; Shah, H.; Jacob, S.; Mewada, V.; Shinu, P.; Aldhubiab, B.; Sreeharsha, N.; Venugopala, K.N.; Attimarad, M.; et al. Intranasal Delivery of Darunavir-Loaded Mucoadhesive In Situ Gel: Experimental Design, In Vitro Evaluation, and Pharmacokinetic Studies. Gels 2022, 8, 342. [Google Scholar] [CrossRef] [PubMed]
- Djupesland, P.G. Nasal drug delivery devices: Characteristics and performance in a clinical perspective-a review. Drug Deliv. Transl. Res. 2013, 3, 42–62. [Google Scholar] [CrossRef] [Green Version]
- Gizurarson, S. Anatomical and histological factors affecting intranasal drug and vaccine delivery. Curr. Drug Deliv. 2012, 9, 566–582. [Google Scholar]
- Erdo, F.; Bors, L.A.; Farkas, D.; Bajza, A.; Gizurarson, S. Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Res. Bull. 2018, 143, 155–170. [Google Scholar]
- Sharma, D.; Sharma, R.K.; Sharma, N.; Gabrani, R.; Sharma, S.K.; Ali, J.; Dang, S. Nose-to-brain delivery of PLGA-diazepam nanoparticles. AAPS PharmSciTech 2015, 16, 1108–1121. [Google Scholar] [CrossRef] [Green Version]
- Edizer, D.T.; Yigit, O.; Rudenko, M. Mucociliary clearance and its importance. In All Around the Nose; Cingi, C., Bayar Muluk, N., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 65–70. [Google Scholar]
- Maggio, E.T. Intravail: Highly effective intranasal delivery of peptide and protein drugs. Expert. Opin. Drug Deliv. 2006, 3, 529–539. [Google Scholar] [CrossRef]
- Shyu, W.C.; Pittman, K.A.; Robinson, D.S.; Barbhaiya, R.H. The absolute bioavailability of transnasal butorphanol in patients experiencing rhinitis. Eur. J. Clin. Pharmacol. 1993, 45, 559–562. [Google Scholar] [CrossRef] [PubMed]
- Davis, G.A.; Rudy, A.C.; Archer, S.M.; Wermeling, D.P.; McNamara, P.J. Bioavailability and pharmacokinetics of intranasal hydromorphone in patients experiencing vasomotor rhinitis. Clin. Drug Investig. 2004, 24, 633–639. [Google Scholar] [CrossRef] [PubMed]
- Lunell, E.; Molander, L.; Andersson, M. Relative bioavailability of nicotine from a nasal spray in infectious rhinitis and after use of a topical decongestant. Eur. J. Clin. Pharmacol. 1995, 48, 71–75. [Google Scholar] [PubMed]
- Dowson, A.J.; Charlesworth, B.R.; Green, J.; Färkkilä, M.; Diener, H.-C.; Hansen, S.B.; Gawel, M.; INDEX Study Group. Zolmitriptan nasal spray exhibits good long-term safety and tolerability in migraine: Results of the INDEX trial. Headache 2005, 45, 17–24. [Google Scholar]
- Vazquez, B.; Wheless, J.; Desai, J.; Rabinowicz, A.L.; Carrazana, E. Lack of observed impact of history or concomitant treatment of seasonal allergies or rhinitis on repeated doses of diazepam nasal spray administered per seizure episode in a day, safety, and tolerability: Interim results from a phase 3, open-label, 12-month repeat-dose safety study. Epilepsy Behav. 2021, 118, 107898. [Google Scholar]
- Trows, S.; Wuchner, K.; Spycher, R.; Steckel, H. Analytical challenges and regulatory requirements for nasal drug products in Europe and the U.S. Pharmaceutics 2014, 6, 195–219. [Google Scholar]
- Keller, L.A.; Merkel, O.; Popp, A. Intranasal drug delivery: Opportunities and toxicologic challenges during drug development. Drug Deliv. Transl. Res. 2022, 12, 735–757. [Google Scholar]
- Lofts, A.; Abu-Hijleh, F.; Rigg, N.; Mishra, R.K.; Hoare, T. Using the intranasal route to administer drugs to treat neurological and psychiatric illnesses: Rationale, successes, and future needs. CNS Drugs 2022, 36, 739–770. [Google Scholar]
- Marx, D.; Williams, G.; Birkhoff, M. Intranasal drug administration—An attractive delivery route for some drugs. In Drug Discovery and Development—From Molecules to Medicine; Vallisuta, O., Olimat, S., Eds.; InTech Open: London, UK, 2015; pp. 299–320. [Google Scholar]
- Ahmed, S.; Sileno, A.P.; de Meireles, J.C.; Dua, R.; Pimplaskar, H.K.; Xia, W.J.; Marinaro, J.; Langenback, E.; Matos, F.J.; Putcha, L.; et al. Effects of pH and dose on nasal absorption of scopolamine hydrobromide in human subjects. Pharm. Res. 2000, 17, 974–977. [Google Scholar] [CrossRef]
- Tengamnuay, P.; Sahamethapat, A.; Sailasuta, A.; Mitra, A.K. Chitosans as nasal absorption enhancers of peptides: Comparison between free amine chitosans and soluble salts. Int. J. Pharm. 2000, 197, 53–67. [Google Scholar] [CrossRef]
- US Department of Health and Human Services, US Food and Drug Administration, Center for Drug Evaluation and Research (CDER). Guidance for Industry: Nasal Spray and Inhalation Solution, Suspension, and Spray Drug Products—Chemistry, Manufacturing, and Controls Documentation; Center for Drug Evaluation and Research: Rockville, MD, USA, 2002. [Google Scholar]
- Shrewsbury, S.; Davies, G.; McConnachie, L.; Hoekman, J. The pharmacokinetics of drug delivery to the upper nasal space: A review of INP105 development. Med. Res. Arch. 2022, 10. [Google Scholar] [CrossRef]
- Cooper, W.; Ray, S.; Aurora, S.K.; Shrewsbury, S.B.; Fuller, C.; Davies, G.; Hoekman, J. Delivery of dihydroergotamine mesylate to the upper nasal space for the acute treatment of migraine: Technology in action. J. Aerosol Med. Pulm. Drug Deliv. 2022, 35, 321–332. [Google Scholar]
- Maggio, E.T.; Pillion, D.J. High efficiency intranasal drug delivery using Intravail® alkylsaccharide absorption enhancers. Drug Deliv. Transl. Res. 2013, 3, 16–25. [Google Scholar]
- Rabinowicz, A.L.; Carrazana, E.; Maggio, E.T. Improvement of intranasal drug delivery with Intravail® alkylsaccharide excipient as a mucosal absorption enhancer aiding in the treatment of conditions of the central nervous system. Drugs RD 2021, 21, 361–369. [Google Scholar]
- World Health Organization. The forty-ninth meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). In Sucrose Esters of Fatty Acids and Sucroglycerides (WHO Food Additives Series 40); World Health Organization: Geneva, Switzerland, 1998. [Google Scholar]
- Maggio, E.T. Absorption enhancing excipients in systemic nasal drug delivery. J. Excip. Food Chem. 2014, 5, 100–112. [Google Scholar]
- Arnold, J.J.; Fyrberg, M.D.; Meezan, E.; Pillion, D.J. Reestablishment of the nasal permeability barrier to several peptides following exposure to the absorption enhancer tetradecyl-beta-D-maltoside. J. Pharm. Sci. 2010, 99, 1912–1920. [Google Scholar] [PubMed]
- Arnold, J.J.; Ahsan, F.; Meezan, E.; Pillion, D.J. Correlation of tetradecylmaltoside induced increases in nasal peptide drug delivery with morphological changes in nasal epithelial cells. J. Pharm. Sci. 2004, 93, 2205–2213. [Google Scholar] [PubMed]
- Ahsan, F.; Arnold, J.; Meezan, E.; Pillion, D.J. Enhanced bioavailability of calcitonin formulated with alkylglycosides following nasal and ocular administration in rats. Pharm. Res. 2001, 18, 1742–1746. [Google Scholar]
- Arnold, J.; Ahsan, F.; Meezan, E.; Pillion, D.J. Nasal administration of low molecular weight heparin. J. Pharm. Sci. 2002, 91, 1707–1714. [Google Scholar]
- Mustafa, F.; Yang, T.; Khan, M.A.; Ahsan, F. Chain length-dependent effects of alkylmaltosides on nasal absorption of enoxaparin. J. Pharm. Sci. 2004, 93, 675–683. [Google Scholar]
- Agarwal, S.K.; Kriel, R.L.; Brundage, R.C.; Ivaturi, V.D.; Cloyd, J.C. A pilot study assessing the bioavailability and pharmacokinetics of diazepam after intranasal and intravenous administration in healthy volunteers. Epilepsy Res. 2013, 105, 362–367. [Google Scholar]
- Munjal, S.; Gautam, A.; Offman, E.; Brand-Schieber, E.; Allenby, K.; Fisher, D.M. A randomized trial comparing the pharmacokinetics, safety, and tolerability of DFN-02, an intranasal sumatriptan spray containing a permeation enhancer, with intranasal and subcutaneous sumatriptan in healthy adults. Headache 2016, 56, 1455–1465. [Google Scholar] [PubMed]
- Lipton, R.B.; Munjal, S.; Brand-Schieber, E.; Rapoport, A.M. DFN-02 (sumatriptan 10 mg with a permeation enhancer) nasal spray vs placebo in the acute treatment of migraine: A double-blind, placebo-controlled study. Headache 2018, 58, 676–687. [Google Scholar] [PubMed]
- Munjal, S.; Brand-Schieber, E.; Allenby, K.; Spierings, E.L.H.; Cady, R.K.; Rapoport, A.M. A multicenter, open-label, long-term safety and tolerability study of DFN-02, an intranasal spray of sumatriptan 10 mg plus permeation enhancer DDM, for the acute treatment of episodic migraine. J. Headache Pain. 2017, 18, 31. [Google Scholar]
- Wheless, J.W.; Miller, I.; Hogan, R.E.; Dlugos, D.; Biton, V.; Cascino, G.D.; Sperling, M.R.; Liow, K.; Vazquez, B.; Segal, E.B.; et al. Final results from a phase 3, long-term, open-label, repeat-dose safety study of diazepam nasal spray for seizure clusters in patients with epilepsy. Epilepsia 2021, 62, 2485–2495. [Google Scholar] [PubMed]
- Hogan, R.E.; Gidal, B.E.; Koplowitz, B.; Koplowitz, L.P.; Lowenthal, R.E.; Carrazana, E. Bioavailability and safety of diazepam intranasal solution compared to oral and rectal diazepam in healthy volunteers. Epilepsia 2020, 61, 455–464. [Google Scholar] [PubMed]
- Hogan, R.E.; Tarquinio, D.; Sperling, M.R.; Klein, P.; Miller, I.; Segal, E.B.; Rabinowicz, A.L.; Carrazana, E. Pharmacokinetics and safety of VALTOCO (NRL-1; diazepam nasal spray) in patients with epilepsy during seizure (ictal/peri-ictal) and nonseizure (interictal) conditions: A phase 1, open-label study. Epilepsia 2020, 61, 935–943. [Google Scholar]
- Klein, P.; Sperling, M.R.; Hogan, R.E.; Tarquinio, D.; Miller, I.; Segal, E.B.; Rabinowicz, A.L.; Carrazana, E. Pharmacokinetics of Intravail® A3 (n-dodecyl-beta-D-maltoside), a mucosal absorption enabler, after intranasal administration of NRL-1 in patients with epilepsy. Neurology 2020, 94, 1918. [Google Scholar]
- Eggleston, W.; Calleo, V.; Kim, M.; Wojcik, S. Naloxone administration by untrained community members. Pharmacotherapy 2020, 40, 84–88. [Google Scholar]
- Zhang, T.; Li, M.; Han, X.; Nie, G.; Zheng, A. Effect of different absorption enhancers on the nasal absorption of nalmefene hydrochloride. AAPS PharmSciTech 2022, 23, 143. [Google Scholar]
- Krieter, P.; Gyaw, S.; Crystal, R.; Skolnick, P. Fighting fire with fire: Development of intranasal nalmefene to treat synthetic opioid overdose. J. Pharmacol. Exp. Ther. 2019, 371, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Tanimoto, S.; Kaliner, M.; Lockey, R.F.; Ebisawa, M.; Koplowitz, L.P.; Koplowitz, B.; Lowenthal, R. Pharmacokinetic and pharmacodynamic comparison of epinephrine, administered intranasally and intramuscularly: An integrated analysis. Ann. Allergy Asthma Immunol. 2023, 130, 508–514.e501. [Google Scholar] [CrossRef] [PubMed]
- ARS Pharamceuticals, Inc. neffyTM (Epinephrine Nasal Spray) for the Treatment of Type I Allergic Reactions, Including Anaphylaxis: FDA Advisory Board Briefing Document; US Food and Drug Administration: Silver Spring, MD, USA, 2023. [Google Scholar]
- Krieter, P.; Gyaw, S.; Chiang, C.N.; Crystal, R.; Skolnick, P. Enhanced intranasal absorption of naltrexone by dodecyl maltopyranoside: Implications for the treatment of opioid overdose. J. Clin. Pharmacol. 2019, 59, 947–957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Opiant Pharmaceuticals, Inc. Opiant Pharmaceuticals Announces Completion of Enrollment in Phase 2 Clinical Trial of OPNT002, Nasal Naltrexone, in Patients with Alcohol Use Disorder. Available online: https://www.globenewswire.com/en/news-release/2022/10/06/2529493/0/en/Opiant-Pharmaceuticals-Announces-Completion-of-Enrollment-in-Phase-2-Clinical-Trial-of-OPNT002-Nasal-Naltrexone-in-Patients-with-Alcohol-Use-Disorder.html (accessed on 5 June 2023).
- EudraCT Number: 2019-002859-42. Available online: https://www.clinicaltrialsregister.eu/ctr-search/search?query=2019-002859-42 (accessed on 5 June 2023).
- Neurelis, Inc. Neurelis Completes Pre-IND Meeting with FDA to Establish Clinical Development Program for NRL-4 in the Treatment of Acute Agitation Associated with Schizophrenia and Bipolar 1 Mania in Adults. Available online: https://www.neurelis.com/neurelis-news/neurelis-completes-pre-ind-meeting (accessed on 5 June 2023).
- GSK group of companies. Imitrex Nasal Spray. Available online: https://www.drugs.com/pro/imitrex-nasal-spray.html (accessed on 26 January 2022).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madden, S.; Carrazana, E.; Rabinowicz, A.L. Optimizing Absorption for Intranasal Delivery of Drugs Targeting the Central Nervous System Using Alkylsaccharide Permeation Enhancers. Pharmaceutics 2023, 15, 2119. https://doi.org/10.3390/pharmaceutics15082119
Madden S, Carrazana E, Rabinowicz AL. Optimizing Absorption for Intranasal Delivery of Drugs Targeting the Central Nervous System Using Alkylsaccharide Permeation Enhancers. Pharmaceutics. 2023; 15(8):2119. https://doi.org/10.3390/pharmaceutics15082119
Chicago/Turabian StyleMadden, Stuart, Enrique Carrazana, and Adrian L. Rabinowicz. 2023. "Optimizing Absorption for Intranasal Delivery of Drugs Targeting the Central Nervous System Using Alkylsaccharide Permeation Enhancers" Pharmaceutics 15, no. 8: 2119. https://doi.org/10.3390/pharmaceutics15082119
APA StyleMadden, S., Carrazana, E., & Rabinowicz, A. L. (2023). Optimizing Absorption for Intranasal Delivery of Drugs Targeting the Central Nervous System Using Alkylsaccharide Permeation Enhancers. Pharmaceutics, 15(8), 2119. https://doi.org/10.3390/pharmaceutics15082119