Preparation, Optimization, and In-Vitro Evaluation of Brusatol- and Docetaxel-Loaded Nanoparticles for the Treatment of Prostate Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation and Optimization of Stealth Blank Nanoparticles
2.2.2. Initial Screening Using the One-Factor-at-a-Time Method
Factors | Variables |
---|---|
Solvent composition (Organic phase) | Ethyl acetate (EA):Dimethylformamide (DMF) |
Ethyl acetate (EA):Dimethyl sulfoxide (DMSO) | |
Ethyl acetate (EA):Acetonitrile | |
Ethyl acetate (EA):Acetone | |
Ethyl acetate (EA):DMSO:Acetone | |
Solvent ratio (EA: other solvent) (Total volume = 2 mL) | 1.2:0.8 |
1.4:0.6 | |
1.6:0.4 | |
1.8:0.2 | |
mPEG-PLGA concentration (mg/2 mL) | 20, 50, 75, 100, 150 |
Organic: Aqueous ratio | 2:8 |
2:10 | |
2:12 | |
2:14 | |
2:16 | |
Polyvinyl alcohol concentration (%) | 0.25, 0.5, 1.0, 2.0, 3.0 |
Sonication pulse rate (on:off) | 7:3, 8:2; 9:1 |
Amplitude (%) | 25, 30, 35, 40 |
Sonication time (minutes) | 2.5, 5, 7.5, 10 |
2.2.3. Full Factorial Statistical Experimental Design
2.3. Preparation of Stealth Brusatol- and Docetaxel-Loaded Nanoparticles
2.3.1. Evaluation of Particle and Zeta Potential
2.3.2. Morphological Studies
2.3.3. Infrared Spectroscopy Analysis
2.3.4. Drug Content Determination
2.3.5. Release Profile of Docetaxel- and Brusatol-Loaded Nanoparticles
2.4. Cell Culture Experiments
2.4.1. Combination Index Determination
2.4.2. Viable Cell Count and In Vitro Cytotoxicity
2.4.3. Flow Cytometry Studies
Cell Cycle Arrest Analysis
Caspase 3/7 Activity Assay
Immunoblot Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Screening of Formulation and Process Variables Using the One-Factor-at-a-Time Approach
3.2. Design of Experiments—Full Factorial Statistical Experimental Design
3.3. Regression Equation
3.4. Nanoparticle Morphology, Particle Size, and Zeta Potential Characterization
3.5. Drug-Loading Studies
3.6. FT-IR Spectroscopy Evaluation
3.7. Drug Release Studies
3.8. Evaluation of Cytotoxicity of Pure Drugs and Determination of Combination Index
3.9. Cytotoxicity Evaluations of Brusatol- and Docetaxel-Loaded Nanoparticle Formulations
3.9.1. Viable Cell Count and In Vitro Cytotoxicity
3.9.2. Cell Cycle Analysis
3.9.3. Caspase-3/7 Activity
3.9.4. Immunoblotting Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American Cancer Society. Cancer Facts & Figures 2023; American Cancer Society: Atlanta, GA, USA, 2023. [Google Scholar]
- National Cancer Institute. SEER Cancer Stat Facts: Prostate Cancer. Available online: https://seer.cancer.gov/statfacts/html/prost.html (accessed on 3 May 2023).
- Liang, Y.; Rong, E.; Qian, J.; Ma, C.; Hu, J. Transcriptome subtyping of metastatic Castration Resistance Prostate Cancer (mCRPC) for the precision therapeutics: An in silico analysis. Prostate Cancer Prostatic Dis. 2022, 25, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Henríquez, I.; Roach, M., III; Morgan, T.M.; Bossi, A.; Gómez, J.A.; Abuchaibe, O.; Couñago, F. Current and Emerging Therapies for Metastatic Castration-Resistant Prostate Cancer (mCRPC). Biomedicines 2021, 9, 1247. [Google Scholar] [CrossRef]
- Autio, K.A.; Dreicer, R.; Anderson, J.; Garcia, J.A.; Alva, A.; Hart, L.L.; Milowsky, M.I.; Posadas, E.M.; Ryan, C.J.; Graf, R.P.; et al. Safety and Efficacy of BIND-014, a Docetaxel Nanoparticle Targeting Prostate-Specific Membrane Antigen for Patients with Metastatic Castration-Resistant Prostate Cancer A Phase 2 Clinical Trial. JAMA Oncol. 2018, 4, 1344–1351. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Baochen, Z.; Yue, Z.; Cheng, W.; Yali, W.; Zongxi, S.; Wantong, Z.; Yang, L.; Shouying, D. Network Pharmacology-Based identification of pharmacological mechanism of SQFZ injection in combination with Docetaxel on lung cancer. Sci. Rep. 2019, 9, 4533. [Google Scholar] [CrossRef]
- Sekino, Y.; Teishima, J. Molecular mechanisms of docetaxel resistance in prostate cancer. Cancer Drug Resist. 2020, 3, 676–685. [Google Scholar] [CrossRef] [PubMed]
- Shuai, W.; Wang, G.; Zhang, Y.; Bu, F.; Zhang, S.; Miller, D.D.; Li, W.; Ouyang, L.; Wang, Y. Recent Progress on Tubulin Inhibitors with Dual Targeting Capabilities for Cancer Therapy. J. Med. Chem. 2021, 64, 7963–7990. [Google Scholar] [CrossRef]
- Plana, D.; Palmer, A.C.; Sorger, P.K. Independent Drug Action in Combination Therapy: Implications for Precision Oncology. Cancer Discov. 2022, 12, 606–624. [Google Scholar] [CrossRef]
- Hu, C.J.; Aryal, S.; Zhang, L. Nanoparticle-assisted combination therapies for effective cancer treatment. Ther. Deliv. 2010, 1, 323–334. [Google Scholar] [CrossRef]
- Wang, H.; Huang, Y. Combination therapy based on nano codelivery for overcoming cancer drug resistance. Med. Drug Disc. 2020, 6, 100024. [Google Scholar] [CrossRef]
- Jaaks, P.; Coker, E.A.; Vis, D.J.; Edwards, O.; Carpenter, E.F.; Leto, S.M.; Dwane, L.; Sassi, F.; Lightfoot, H.; Barthorpe, S.; et al. Effective drug combinations in breast, colon and pancreatic cancer cells. Nature 2022, 603, 166–173. [Google Scholar] [CrossRef]
- Ren, D.; Villeneuve, N.F.; Jiang, T.; Wu, T.; Lau, A.; Toppin, H.A.; Zhang, D.D. Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism. Proc. Natl. Acad. Sci. USA 2011, 108, 1433–1438. [Google Scholar] [CrossRef] [PubMed]
- Olayanju, A.; Copple, I.M.; Bryan, H.K.; Edge, G.T.; Sison, R.L. Brustaol provokes a rapid and transient inhibition of Nrf2 signaling and sensitizes mammalian cells to chemical toxicity-implications for therapeutic targeting of Nrf2. Free Radic. Biol. Med. 2015, 78, 202–212. [Google Scholar]
- Hayes, J.D.; McMahon, M. NRF2 and KEAP1 mutations: Permanent activation of an adaptive response in cancer. Trends Biochem. Sci. 2008, 34, 176–188. [Google Scholar] [CrossRef] [PubMed]
- Ye, R.; Dai, N.; He, Q.; Guo, P.; Xiang, Y.; Zhang, Q.; Hong, Z.; Zhang, Q. Comprehensive anti-tumor effect of Brusatol through inhibition of cell viability and promotion of apoptosis caused by autophagy via the PI3K/Akt/mTOR pathway in hepatocellular carcinoma. Biomed. Pharmacother. 2018, 105, 962–973. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Tian, Z.; Guo, R.; Ren, F. Nrf2 inhibitor, brusatol in combination with trastuzumab exerts synergistic antitumor activity in HER2-positive cancers by inhibiting Nrf2/HO-1 and HER2-AKT/ERK1/2 pathways. Oxid. Med. Cell. Longev. 2020, 2020, 9867595. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Lai, Z.Q.; Leung, A.W.; Leung, P.S.; Li, Z.S.; Lin, Z.X. Exploring brusatol as a new anti-pancreatic cancer adjuvant: Biological evaluation and mechanistic studies. Oncotarget 2017, 8, 84974. [Google Scholar] [CrossRef]
- Xiang, Y.; Ye, W.; Huang, C.; Yu, D.; Chen, H.; Deng, T.; Zhang, F.; Lou, B.; Zhang, J.; Shi, K.; et al. Brusatol enhances the chemotherapy efficacy of gemcitabine in pancreatic cancer via the Nrf2 signalling pathway. Oxid. Med. Cell. Longev. 2018, 2018, 2360427. [Google Scholar] [CrossRef]
- Adesina, S.K.; Reid, T.E. Nanoparticle formulation of brusatol: A novel therapeutic option for cancers. J. Pharm. Drug Deliv. Res. 2018, 7, 1. [Google Scholar] [CrossRef]
- Bovilla, V.R.; Kuruburu, M.G.; Bettada, V.G.; Krishnamurthy, J.; Sukocheva, O.A.; Thimmulappa, R.K.; Shivananju, N.S.; Balakrishna, J.P.; Madhunapantula, S.V. Targeted inhibition of anti-inflammatory regulator Nrf2 results in breast cancer retardation in vitro and in vivo. Biomedicines 2021, 9, 1119. [Google Scholar] [CrossRef]
- Xing, S.; Nong, F.; Wang, Y.; Huang, D.; Qin, J.; Chen, Y.F.; He, D.H.; Wu, P.E.; Huang, H.; Zhan, R.; et al. Brusatol has therapeutic efficacy in non-small cell lung cancer by targeting Skp1 to inhibit cancer growth and metastasis. Pharmacol. Res. 2022, 176, 106059. [Google Scholar] [CrossRef]
- Yao, Y.; Zhou, Y.; Liu, L.; Xu, Y.; Chen, Q.; Wang, Y.; Wu, S.; Deng, Y.; Zhang, J.; Shao, A. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front. Mol. Biosci. 2020, 7, 193. [Google Scholar] [CrossRef] [PubMed]
- Hines, D.J.; Kaplan, D.L. Poly (lactic-co-glycolic) acid– controlled-release systems: Experimental and modeling insights. Crit. Rev. Ther. Drug Carr. Syst. 2013, 30, 257–276. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Cheng, D.; Niu, B.; Wang, X.; Wu, X.; Wang, A. Properties of Poly (Lactic-co-Glycolic Acid) and Progress of Poly (Lactic-co-Glycolic Acid)-Based Biodegradable Materials in Biomedical Research. Pharmaceuticals 2023, 16, 454. [Google Scholar] [CrossRef] [PubMed]
- Ejigah, V.; Owoseni, O.; Bataille-Backer, P.; Ogundipe, O.D.; Fisusi, F.A.; Adesina, S.K. Approaches to Improve Macromolecule and Nanoparticle Accumulation in the Tumor Microenvironment by the Enhanced Permeability and Retention Effect. Polymers 2022, 14, 2601. [Google Scholar] [CrossRef] [PubMed]
- Adesina, S.K.; Wight, S.A.; Akala, E.O. Optimization of the fabrication of novel stealth PLA-based nanoparticles by dispersion polymerization using D-optimal mixture design. Drug Dev. Ind. Pharm. 2014, 40, 1547–1556. [Google Scholar] [CrossRef] [PubMed]
- Amin, H.; Osman, S.K.; Mohammed, A.M.; Zayed, G. Gefitinib-loaded starch nanoparticles for battling lung cancer: Optimization by full factorial design and in vitro cytotoxicity evaluation. Saudi Pharm. J. 2023, 31, 29–54. [Google Scholar] [CrossRef] [PubMed]
- Ramalho, M.J.; Loureiro, J.A.; Coelho, M.A.N.; Pereira, M.C. Factorial Design as a Tool for the Optimization of PLGA Nanoparticles for the Co-Delivery of Temozolomide and O6-Benzylguanine. Pharmaceutics 2019, 11, 401. [Google Scholar] [CrossRef]
- Hernández-Giottonini, K.Y.; Rodríguez-Córdova, R.J.; Gutiérrez-Valenzuela, C.A.; Peñuñuri-Miranda, O.; Zavala-Rivera, P.; Guerrero-Germán, P.; Lucero-Acuña, A. PLGA nanoparticle preparations by emulsification and nanoprecipitation techniques: Effects of formulation parameters. RSC Adv. 2020, 10, 4218–4231. [Google Scholar] [CrossRef]
- Berko, Y.A.; Funmilola, A.F.; Akala, E.O. Fabrication of Paclitaxel and 17AAG-loaded Poly-ε-Caprolactone Nanoparticles for Breast Cancer Treatment. J. Pharm. Drug Deliv. Res. 2021, 10, 196. [Google Scholar]
- Almuzaini, N.; Moore, M.; Robert-Guroff, M.; Thomas, M.A. Disruption of NBS1/MRN Complex Formation by E4orf3 Supports NF-κB That Licenses E1B55K-Deleted Adenovirus-Infected Cells to Accumulate DNA> 4n. Microbiol. Spectr. 2022, 10, e01881-21. [Google Scholar] [CrossRef]
- Seredick, B.; Archer, C.; Bradford, J.; Olszowy, M.W. Monitor Caspase 3/7 Activity without Cell Fixation: A Novel Apoptosis Reagent from Molecular Probes. 2013. Available online: https://assets.thermofisher.com/TFS-Assets/BID/posters/seredick-cellevent-cyto-2013.pdf (accessed on 5 September 2023).
- AAT Bioquest, Inc. Quest Graph™ IC50 Calculator. Available online: https://www.aatbio.com/tools/ic50-calculator (accessed on 21 January 2023).
- Mitchell, M.J.; Billingsley, M.M.; Haley, R.M. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124. [Google Scholar] [CrossRef] [PubMed]
- Baranov, M.V.; Kumar, M.; Sacanna, S.; Thutupalli, S.; Van den Bogaart, G. Modulation of immune responses by particle size and shape. Front. Immunol. 2021, 11, 3854. [Google Scholar] [CrossRef] [PubMed]
- Di, J.; Gao, X.; Du, Y.; Zhang, H.; Gao, J.; Zheng, A. Size, shape, charge and “stealthy” surface: Carrier properties affect the drug circulation time in vivo. Asian J. Pharm. Sci. 2021, 16, 444–458. [Google Scholar] [CrossRef]
- Sindhwani, S.; Syed, A.M.; Ngai, J.; Kingston, B.R.; Maiorino, L.; Rothschild, J.; MacMillan, P.; Zhang, Y.; Rajesh, N.U.; Hoang, T.; et al. The entry of nanoparticles into solid tumours. Nat. Mater. 2020, 19, 566–575. [Google Scholar] [CrossRef] [PubMed]
- Pandit, S.; Dutta, D.; Nie, S. Active transcytosis and new opportunities for cancer nanomedicine. Nat. Mater. 2020, 19, 478–480. [Google Scholar] [CrossRef] [PubMed]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; HasanzadehDavarani, F.; Javanmard, R.; Dokhani, A.; Mozafari, M.R. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef]
- Cheng, J.; Teply, B.A.; Sherifi, I.; Sung, J.; Luther, G.; Gu, F.X.; Levy-Nissenbaum, E.; Radovic-Moreno, A.F.; Langer, R.; Farokhzad, O.C. Formulation of functionalized PLGA–PEG nanoparticles for in vivo targeted drug delivery. Biomaterials 2007, 28, 869–876. [Google Scholar] [CrossRef]
- Sharma, N.; Madan, P.; Lin, S. Effect of process and formulation variables on the preparation of parenteral paclitaxel-loaded biodegradable polymeric nanoparticles: A co-surfactant study. Asian J. Pharm. Sci. 2016, 11, 404–416. [Google Scholar] [CrossRef]
- Soomherun, N.; Kreua-Ongarjnukool, N.; Chumnanvej, S.; Thumsing, S. Encapsulation of Nicardipine Hydrochloride and Release from Biodegradable Poly(D,L-lactic-co-glycolic acid) Microparticles by Double Emulsion Process: Effect of Emulsion Stability and Different Parameters on Drug Entrapment. Int. J. Biomater. 2017, 2017, 1743765. [Google Scholar] [CrossRef]
- Gutema, E.M.; Gopal, M.; Lemu, H. Temperature Optimization by Using Response Surface Methodology and Desirability Analysis of Aluminium 6061. Materials 2022, 15, 5892. [Google Scholar] [CrossRef]
- Makita-Chingombe, F.; Kutscher, H.L.; DiTursi, S.L.; Morse, G.D.; Maponga, C.C. Poly (lactic-co-glycolic) acid-chitosan dual loaded nanoparticles for antiretroviral nanoformulations. J. Drug Deliv. 2016, 2016, 3810175. [Google Scholar] [CrossRef] [PubMed]
- Çalış, S.; Atar, K.Ö.; Arslan, F.B.; Eroğlu, H.; Çapan, Y. Nanopharmaceuticals as Drug-Delivery Systems: For, Against, and Current Applications. In Nanocarriers for Drug Delivery; Elsevier: Amsterdam, The Netherlands, 2019; pp. 133–154. [Google Scholar]
- Sohail, M.F.; Rehman, M.; Sarwar, H.S.; Naveed, S.; Salman, O.; Bukhari, N.I.; Hussain, I.; Webster, T.J.; Shahnaz, G. Advancements in the oral delivery of Docetaxel: Challenges, current state-of-the-art and future trends. Intl. J. Nanomed. 2018, 13, 3145. [Google Scholar] [CrossRef]
- Zhang, J.; Fang, X.; Li, Z.; Chan, H.F.; Lin, Z.; Wang, Y.; Chen, M. Redox-sensitive micelles composed of disulfide-linked Pluronic-linoleic acid for enhanced anticancer efficiency of brusatol. Int. J. Nanomed. 2018, 13, 939. [Google Scholar] [CrossRef] [PubMed]
- Maderuelo, C.; Zarzuelo, A.; Lanao, J.M. Critical factors in the release of drugs from sustained release hydrophilic matrices. J. Control. Release 2011, 154, 2–19. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Zhang, W.; Wang, J.; Chen, P.; Jin, J. Effect of docetaxel on the regulation of proliferation and apoptosis of human prostate cancer cells. Mol. Med. Rep. 2019, 19, 3864–3870. [Google Scholar] [CrossRef] [PubMed]
- Chou, T.C.; Paul, T. Quantitative analysis of dose-effect relationships: The combined effects of multiple drugs or enzyme inhibitors. Adv. Enzym. Regul. 1984, 22, 27–55. [Google Scholar] [CrossRef]
- Chou, T.C. The combination index (CI < 1) as the definition of synergism and of synergy claims. Synergy 2018, 7, 49–50. [Google Scholar]
- Chou, T.C. Drug combination studies and their synergy quantification using the Chou-Talalay method synergy quantification method. Cancer Res. 2010, 70, 440–446. [Google Scholar] [CrossRef]
- Cheng, C.; Yuan, F.; Chen, X.P.; Zhang, W.; Zhao, X.L.; Jiang, Z.P.; Zhou, H.H.; Zhou, G.; Cao, S. Inhibition of Nrf2-mediated glucose metabolism by brusatol synergistically sensitizes acute myeloid leukemia to Ara-C. Biomed. Pharm. 2021, 142, 111652. [Google Scholar] [CrossRef]
- Jorge, J.; Magalhães, N.; Alves, R.; Lapa, B.; Gonçalves, A.C.; Sarmento-Ribeiro, A.B. Antitumor Effect of Brusatol in Acute Lymphoblastic Leukemia Models Is Triggered by Reactive Oxygen Species Accumulation. Biomedicines 2022, 10, 2207. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, H.; Jing, H.; Cui, L. Highly Efficient Labeling of Human Lung Cancer Cells Using Cationic Poly-l-lysine-Assisted Magnetic Iron Oxide Nanoparticles. Nano-Micro Lett. 2015, 7, 374–384. [Google Scholar] [CrossRef] [PubMed]
- Pei, Y.; Hwang, N.; Lang, F.; Zhou, L.; Wong, J.H.Y.; Singh, R.K.; Jha, H.C.; El-Deiry, W.S.; Du, Y.; Robertson, E.S. Quassinoidanalogs with enhanced efficacy for treatment of hematologic malignancies target the PI3Kγ isoform. Commun. Biol. 2020, 3, 267. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Chung, J.Y.; Lee, S.G.; Kim, Y.J.; Park, J.E.; Yun, J.; Park, Y.C.; Kim, B.G.; Yoo, Y.H.; Kim, J.M. Interferes with microtubule-stabilizing agent-induced apoptosis in prostate and colorectal cancer cells. Int. J. Mol. Med. 2013, 31, 1388–1394. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, A.; Srivastava, S.K.; Singh, S.; Arora, S.; Tyagi, N.; Andrews, J.; McClellan, S.; Carter, J.E.; Singh, A.P. CXCL12/CXCR4 signaling counteracts docetaxel-induced microtubule stabilization via p21-activated kinase 4-dependent activation of LIM domain kinase 1. Oncotarget 2014, 5, 11490. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; Lin, Z.Q.; Liu, B.; Wei, Y.Q. Caspase-mediated programmed cell death pathways as potential therapeutic targets in cancer. Cell Prolif. 2012, 45, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Kesavardhana, S.; Malireddi, R.S.; Kanneganti, T.D. Caspases in cell death, inflammation, and pyroptosis. Ann. Rev. Immunol. 2020, 38, 567–595. [Google Scholar] [CrossRef] [PubMed]
- Hengartner, M.O. The biochemistry of apoptosis. Nature 2000, 407, 770–776. [Google Scholar] [CrossRef]
- Mhaidat, N.M.; Wang, Y.; Kiejda, K.A.; Zhang, X.D.; Hersey, P. Docetaxel-induced apoptosis in melanoma cells is dependent on activation of caspase-2. Mol. Cancer Ther. 2007, 6, 752–761. [Google Scholar] [CrossRef]
- Mediavilla-Varela, M.; Pacheco, F.J.; Almaguel, F.; Perez, J.; Sahakian, E.; Daniels, T.R.; Leoh, L.S.; Padilla, A.; Wall, N.R.; Lilly, M.B.; et al. Docetaxel-induced prostate cancer cell death involves concomitant activation of caspase and lysosomal pathways and is attenuated by LEDGF/p75. Mol. Cancer 2009, 8, 68. [Google Scholar] [CrossRef]
- Liu, X.; Yang, W.; Guan, Z.; Yu, W.; Fan, B.; Xu, N.; Liao, D.J. There are only four basic modes of cell death, although there are many ad-hoc variants adapted to different situations. Cell Biosci. 2018, 8, 6. [Google Scholar] [CrossRef]
- Tait, S.W.; Ichim, G.; Green, D.R. Die another way–non-apoptotic mechanisms of cell death. J. Cell Sci. 2014, 127, 2135–2144. [Google Scholar] [CrossRef] [PubMed]
- Hotchkiss, R.S.; Strasser, A.; McDunn, J.E.; Swanson, P.E. Cell death. N. Engl. J. Med. 2009, 361, 1570–1583. [Google Scholar] [CrossRef] [PubMed]
- Garg, H.; Suri, P.; Gupta, J.C.; Talwar, G.P.; Dubey, S. Survivin: A unique target for tumor therapy. Cancer Cell Int. 2016, 16, 49. [Google Scholar] [CrossRef] [PubMed]
- Mita, A.C.; Mita, M.M.; Nawrocki, S.T.; Giles, F.J. Survivin: Key regulator of mitosis and apoptosis and novel target for cancer therapeutics. Clin. Cancer Res. 2008, 14, 5000–5005. [Google Scholar] [CrossRef] [PubMed]
- Han, T.L.; Sha, H.; Ji, J.; Li, Y.T.; Wu, D.S.; Lin, H.; Hu, B.; Jiang, Z.X. Depletion of Survivin suppresses docetaxel-induced apoptosis in HeLa cells by facilitating mitotic slippage. Sci. Rep. 2021, 11, 2283. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekar, T.; Yang, J.C.; Gao, A.C.; Evans, C.P. Mechanisms of resistance in castration-resistant prostate cancer (CRPC). Transl. Androl. Urol. 2015, 4, 365. [Google Scholar] [PubMed]
- Liang, H.; Zhang, L.; Xu, R.; Ju, X.L. Silencing of survivin using YM155 induces apoptosis and chemosensitization in neuroblastomas cells. Eur. Rev. Med. Pharmacol. Sci. 2013, 17, 2909–2915. [Google Scholar]
- Nakahara, T.; Takeuchi, M.; Kinoyama, I.; Minematsu, T.; Shirasuna, K.; Matsuhisa, A.; Kita, A.; Tominaga, F.; Yamanaka, K.; Kudoh, M.; et al. YM155, a novel small-molecule survivin suppressant, induces regression of established human hormone-refractory prostate tumor xenografts. Cancer Res. 2007, 67, 8014–8021. [Google Scholar] [CrossRef]
- Altieri, D.C. Survivin, versatile modulation of cell division and apoptosis in cancer. Oncogene 2003, 22, 8581–8589. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, H.; Li, R.; Guo, Y.; Zheng, R. High expression of survivin predicts poor prognosis in cervical squamous cell carcinoma treated with paclitaxel and carboplatin. Medicine 2019, 98, e15607. [Google Scholar] [CrossRef]
- Jaiswal, P.K.; Goel, A.; Mittal, R.D. Survivin: A molecular biomarker in cancer. Indian J. Med. Res. 2015, 141, 389. [Google Scholar] [PubMed]
- Fenstermaker, R.A.; Figel, S.A.; Qiu, J.; Barone, T.A.; Dharma, S.S.; Winograd, E.K.; Galbo, P.M.; Wiltsie, L.M.; Ciesielski, M.J. Survivin Monoclonal Antibodies Detect Survivin Cell Surface Expression and Inhibit Tumor Growth In Vivo. Clin. Cancer Res. 2018, 24, 2642–2652. [Google Scholar] [CrossRef] [PubMed]
- Vartanian, S.; Ma, T.P.; Lee, J.; Haverty, P.M.; Kirkpatrick, D.S.; Yu, K.; Stokoe, D. Application of Mass Spectrometry Profiling to Establish Brusatol as an Inhibitor of Global Protein Synthesis. Mol. Cell. Proteom. 2016, 15, 1220–1231. [Google Scholar] [CrossRef] [PubMed]
Formulation | Docetaxel (mg) | Brusatol (mg) | Drug:Polymer (%) |
---|---|---|---|
1 | 7 | 3 | 20% |
2 | 6 | 4 | 20% |
3 | 5 | 5 | 20% |
4 | 4 | 6 | 20% |
5 | 2.5 | 7.5 | 20% |
6 | 3 | 7 | 20% |
7 | 2 | 8 | 20% |
8 | 1 | 9 | 20% |
9 | 4.5 | 10.5 | 30% |
10 | 3 | 12 | 30% |
Formulation Factor | Variation | Size (nm) | Process Factor | Variation | Size (nm) |
---|---|---|---|---|---|
Solvent composition | Ethyl acetate:DMF | 202.8 | Pulse (on/off, sec) | No pulse | 188.7 |
Ethyl acetate:acetone | 206.9 | 7:3 | 230.8 | ||
Ethyl acetate:DMSO | 212.8 | 8:2 | 178.1 | ||
Ethyl acetate:ACN | 207.6 | 9:1 | 175.9 | ||
Solvent ratio | 1.2:0.8 | 371.6 | Amplitude (%) | 25 | 176.9 |
1.4:0.6 | 391 | 30 | 196.1 | ||
1.6:0.4 | 179.2 | 35 | 193.3 | ||
1.8:0.2 | 200.4 | 40 | 203.8 | ||
Polymer conc. | 20 mg/2 mL | 207.1 | Sonic. time (min) | 2.5 | 199.3 |
50 mg/2 mL | 189.6 | 5 | 188.8 | ||
75 mg/2 mL | 185.7 | 7.5 | 186.8 | ||
100 mg/2 mL | 194.5 | 10 | 186.1 | ||
150 mg/2 mL | 355.1 | ||||
Organic:Aqueous | 2:8 | 203 | |||
2:10 | 193.4 | ||||
2:12 | 192.1 | ||||
2:14 | 318.5 | ||||
2:16 | 399.4 | ||||
PVA conc. (%) | 0.25 | 186.9 | |||
0.5 | 182.1 | ||||
1 | 184.5 | ||||
2 | 195 | ||||
3 | 195 |
Formulation | Polymer Conc. (mg/2 mL) | Organic:Aqu | PVA Conc. (%) | Amplitude (%) | Size (nm) | Polydispersity |
---|---|---|---|---|---|---|
1 | 25 | 2|8 | 1.5 | 30 | 225.2 | 0.149 |
2 | 50 | 2|8 | 0.5 | 30 | 212.5 | 0.048 |
3 | 25 | 2|8 | 1.5 | 26 | 230.4 | 0.134 |
4 | 50 | 2|8 | 1.5 | 26 | 201.7 | 0.104 |
5 | 50 | 2|8 | 1.5 | 30 | 206.7 | 0.049 |
6 | 37.5 | 2|10 | 1 | 28 | 195 | 0.081 |
7 | 25 | 2|8 | 0.5 | 30 | 220.5 | 0.064 |
8 | 50 | 2|8 | 1.5 | 30 | 212.9 | 0.058 |
9 | 50 | 2|12 | 0.5 | 30 | 203.3 | 0.067 |
10 | 25 | 2|12 | 1.5 | 26 | 186.7 | 0.128 |
11 | 25 | 2|8 | 1.5 | 26 | 223.8 | 0.105 |
12 | 37.5 | 2|10 | 1 | 28 | 201.8 | 0.088 |
13 | 50 | 2|12 | 1.5 | 26 | 185.6 | 0.032 |
14 | 37.5 | 2|10 | 1 | 28 | 190.6 | 0.116 |
15 | 50 | 2|8 | 0.5 | 26 | 197.8 | 0.089 |
16 | 25 | 2|12 | 1.5 | 30 | 177.3 | 0.102 |
17 | 50 | 2|12 | 0.5 | 30 | 181.6 | 0.059 |
18 | 25 | 2|8 | 1.5 | 30 | 210.5 | 0.098 |
19 | 25 | 2|12 | 1.5 | 26 | 158.4 | 0.08 |
20 | 25 | 2|12 | 0.5 | 30 | 173.3 | 0.114 |
21 | 37.5 | 2|10 | 1 | 28 | 184.9 | 0.046 |
22 | 50 | 2|12 | 1.5 | 30 | 181 | 0.085 |
23 | 25 | 2|12 | 0.5 | 26 | 173.7 | 0.042 |
24 | 25 | 2|8 | 0.5 | 26 | 203.3 | 0.079 |
25 | 50 | 2|8 | 0.5 | 30 | 192.3 | 0.089 |
26 | 25 | 2|12 | 1.5 | 30 | 170.4 | 0.093 |
27 | 37.5 | 2|10 | 1 | 28 | 175.1 | 0.147 |
28 | 25 | 2|8 | 0.5 | 30 | 186 | 0.075 |
29 | 25 | 2|12 | 0.5 | 30 | 167.7 | 0.119 |
30 | 25 | 2|8 | 0.5 | 26 | 181.9 | 0.079 |
31 | 50 | 2|12 | 0.5 | 26 | 173.1 | 0.069 |
32 | 50 | 2|12 | 1.5 | 26 | 172.7 | 0.077 |
33 | 50 | 2|8 | 1.5 | 26 | 184.1 | 0.106 |
34 | 50 | 2|12 | 1.5 | 30 | 176 | 0.061 |
35 | 25 | 2|12 | 0.5 | 26 | 171.7 | 0.105 |
36 | 50 | 2|8 | 0.5 | 26 | 183.8 | 0.138 |
37 | 50 | 2|12 | 0.5 | 26 | 159.6 | 0.071 |
Analysis of Variance | |||||
---|---|---|---|---|---|
Source | DF | Adj SS | Adj MS | F-Value | p-Value |
Model | 6 | 9113.7 | 1518.94 | 10.91 | 0.000 |
Linear | 4 | 7926.1 | 1981.54 | 14.23 | 0.000 |
Pol. Conc. (mg/2 mL) | 1 | 62.7 | 62.72 | 0.45 | 0.507 |
Org:Aqueous | 1 | 6903.1 | 6903.12 | 49.59 | 0.000 |
PVA Conc. (%) | 1 | 528.1 | 528.12 | 3.79 | 0.061 |
Amp (%) | 1 | 432.2 | 432.18 | 3.10 | 0.088 |
2-Way Interactions | 2 | 1187.5 | 593.75 | 4.27 | 0.023 |
Pol. Conc. (mg/2 mL) * Org:Aqueous | 1 | 723.9 | 723.90 | 5.20 | 0.030 |
Org:Aqueous * PVA Conc. (%) | 1 | 463.6 | 463.60 | 3.33 | 0.078 |
Error | 30 | 4176.4 | 139.21 | ||
Curvature | 1 | 4.4 | 4.36 | 0.03 | 0.863 |
Lack-of-Fit | 9 | 1301.2 | 144.58 | 1.01 | 0.466 |
Pure Error | 20 | 2870.8 | 143.54 | ||
Total | 36 | 13,290.1 |
Solution | Pol. Conc. (mg/2 mL) | Org:Aqu | PVA Conc. (%) | Amp (%) | Predicted Particle Size (nm) | Composite Desirability | Experimental Mean Particle Size (nm) |
---|---|---|---|---|---|---|---|
1 | 25 | 0.167 | 0.5 | 26 | 168.333 | 0.868436 | 169.09 |
2 | 50 | 0.1670 | 0.5 | 26 | 175.046 | 0.77953 | 175.15 |
Formulation | Doc (mg) | Bru (mg) | Size (nm) | Doc Loading (%) | Bru Loading (%) | Drug:Polymer (%) |
---|---|---|---|---|---|---|
1 | 7 | 3 | 201.87 ± 1.40 | 7.84 ± 0.17 | 0.87 ± 0.17 | 20% |
2 | 6 | 4 | 195.70 ± 1.15 | 6.37 ± 0.11 | 0.79 ± 0.07 | 20% |
3 | 5 | 5 | 198.27 ± 2.78 | 6.32 ± 0.11 | 1.14 ± 0.03 | 20% |
4 | 4 | 6 | 182.57 ± 1.90 | 3.73 ± 0.25 | 0.82 ± 0.09 | 20% |
5 | 3 | 7 | 194.97 ± 0.75 | 2.49 ± 0.13 | 0.79 ± 0.08 | 20% |
6 | 2.5 | 7.5 | 184.80 ± 1.30 | 2.04 ± 0.04 | 0.89 ± 0.02 | 20% |
7 | 2 | 8 | 188.80 ± 0.80 | 1.41 ± 0.17 | 0.99 ± 0.15 | 20% |
8 | 1 | 9 | 193.83 ± 1.59 | 0.70 ± 0.06 | 1.48 ± 0.28 | 20% |
9 | 4.5 | 10.5 | 185.07 ± 3.55 | 3.33 ± 0.96 | 0.89 ± 0.19 | 30% |
10 | 3 | 12 | 183.03 ± 5.66 | 1.88 ± 0.57 | 0.92 ± 0.30 | 30% |
Total Dose (nM) | CI in LNCaP Cells | CI in PC-3 Cells |
---|---|---|
5.0 | 0.33061 | 0.10535 |
10.0 | 0.59098 | 0.18948 |
20.0 | 0.64905 | 0.33766 |
40.0 | 0.76064 | 0.29589 |
80.0 | 0.79381 | 0.55168 |
160.0 | 0.95830 | 0.99662 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adekiya, T.A.; Moore, M.; Thomas, M.; Lake, G.; Hudson, T.; Adesina, S.K. Preparation, Optimization, and In-Vitro Evaluation of Brusatol- and Docetaxel-Loaded Nanoparticles for the Treatment of Prostate Cancer. Pharmaceutics 2024, 16, 114. https://doi.org/10.3390/pharmaceutics16010114
Adekiya TA, Moore M, Thomas M, Lake G, Hudson T, Adesina SK. Preparation, Optimization, and In-Vitro Evaluation of Brusatol- and Docetaxel-Loaded Nanoparticles for the Treatment of Prostate Cancer. Pharmaceutics. 2024; 16(1):114. https://doi.org/10.3390/pharmaceutics16010114
Chicago/Turabian StyleAdekiya, Tayo Alex, Madison Moore, Michael Thomas, Gabriel Lake, Tamaro Hudson, and Simeon K. Adesina. 2024. "Preparation, Optimization, and In-Vitro Evaluation of Brusatol- and Docetaxel-Loaded Nanoparticles for the Treatment of Prostate Cancer" Pharmaceutics 16, no. 1: 114. https://doi.org/10.3390/pharmaceutics16010114
APA StyleAdekiya, T. A., Moore, M., Thomas, M., Lake, G., Hudson, T., & Adesina, S. K. (2024). Preparation, Optimization, and In-Vitro Evaluation of Brusatol- and Docetaxel-Loaded Nanoparticles for the Treatment of Prostate Cancer. Pharmaceutics, 16(1), 114. https://doi.org/10.3390/pharmaceutics16010114