Development of Liposomes That Target Axon Terminals Encapsulating Berberine in Cultured Primary Neurons
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the LPs
2.3. Cell Cultures
2.4. Culture of Primary Neurons
2.5. Assessment of Cellular Uptake Using a Fluorescence Activated Cell Sorter (FACS)
2.6. Cell Imaging Using Confocal Laser Scanning Microscopy (CLSM)
2.7. Measurement of Neurite Length
2.8. Statistical Analysis
3. Results
3.1. Preparation of the Axon Terminal-Targeting LPs Using the Lipid Film Hydration Method
3.2. Assessment of LP Uptake after Sample Treatment
3.3. Observation of LPs in Subcellular Localization after the Treatment of Samples
3.4. Evaluating the Dynamics of Axonal Mitochondria in the Samples following Treatment
3.5. Evaluation of Axonal Outgrowth following the Treatment of Samples
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zheng, Y.R.; Zhang, X.N.; Chen, Z. Mitochondrial transport serves as a mitochondrial quality control strategy in axons: Implications for central nervous system disorders. CNS Neurosci. Ther. 2019, 25, 876–886. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.T.; Huang, N.; Sheng, Z.H. Programming axonal mitochondrial maintenance and bioenergetics in neurodegeneration and regeneration. Neuron 2022, 110, 1899–1923. [Google Scholar] [CrossRef] [PubMed]
- Gutnick, A.; Banghart, M.R.; West, E.R.; Schwarz, T.L. The light-sensitive dimerizer zapalog reveals distinct modes of immobilization for axonal mitochondria. Nature 2019, 21, 768–777. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.; Li, S.; Xie, Y.; Han, Q.; Xu, X.-M.; Sheng, Z.-H. Reprogramming an energetic AKT-PAK5 axis boosts axon energy supply and facilitates neuron survival and regeneration after injury and ischemia. Curr. Biol. 2021, 31, 3098–3114.e7. [Google Scholar] [CrossRef] [PubMed]
- Tao, K.; Matsuki, N.; Koyama, R. AMP-activated protein kinase mediates activity-dependent axon branching by recruiting mitochondria to axon. Dev. Neurobiol. 2014, 74, 557–573. [Google Scholar] [CrossRef]
- Devine, M.J.; Kittler, J.T. Mitochondria at the neuronal presynapse in health and disease. Nat. Rev. Neurosci. 2018, 19, 63–80. [Google Scholar] [CrossRef]
- Smith, G.M.; Gallo, G. The role of mitochondria in axon development and regeneration. Dev. Neurobiol. 2018, 78, 221–237. [Google Scholar] [CrossRef]
- Zhou, B.; Yu, P.; Lin, M.-Y.; Sun, T.; Chen, Y.; Sheng, Z.-H. Facilitation of axon regeneration by enhancing mitochondrial transport and rescuing energy deficits. J. Cell Biol. 2016, 214, 103–119. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, C.; Cao, G.; Guo, L.; Zhang, S.; Liang, Y.; Zhang, W. Berberine modulates amyloid-beta peptide generation by activating AMP-activated protein kinase. Neuropharmacology 2017, 125, 408–417. [Google Scholar] [CrossRef]
- Han, A.M.; Heo, H.; Kwon, Y.K.; Bellia, F.; Calabrese, V.; Guarino, F.; Cavallaro, M.; Cornelius, C.; De Pinto, V.; Rizzarelli, E.; et al. Berberine Promotes Axonal Regeneration in Injured Nerves of the Peripheral Nervous System. J. Med. Food 2012, 15, 413–417. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, J.; Abid, M.D.N.; Yan, H.; Huang, H.; Wan, L.; Feng, Z.; Chen, J. Berberine Attenuates Axonal Transport Impairment and Axonopathy Induced by Calyculin A in N2a Cells. PLoS ONE 2014, 9, e93974. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Cao, Y.; Cheng, K.; Xu, B.; Wang, T.; Yang, Q.; Feng, X.; Xia, Q. Berberine regulates neurite outgrowth through AMPK-dependent pathways by lowering energy status. Exp. Cell Res. 2015, 334, 194–206. [Google Scholar] [CrossRef] [PubMed]
- Savchenko, A.; Braun, G.B.; Molokanova, E. Nanostructured Antagonist of Extrasynaptic NMDA Receptors. Nano Lett. 2016, 16, 5495–5502. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Chau, Y. Polymeric nanoparticles decorated with BDNF-derived peptide for neuron-targeted delivery of PTEN inhibitor. Eur. J. Pharm. Sci. 2018, 124, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Khalil, I.A.; Kogure, K.; Futaki, S.; Hama, S.; Akita, H.; Ueno, M.; Kishida, H.; Kudoh, M.; Mishina, Y.; Kataoka, K.; et al. Octaarginine-modified multifunctional envelope-type nanoparticles for gene delivery. Gene Ther. 2007, 14, 682–689. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Akita, H.; Kamiya, H.; Kogure, K.; Yamamoto, T.; Shinohara, Y.; Yamashita, K.; Kobayashi, H.; Kikuchi, H.; Harashima, H. MITO-Porter: A liposome-based carrier system for delivery of macromolecules into mitochondria via membrane fusion. Biochim. Biophys. Acta Biomembr. 2008, 1778, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Hori, I.; Harashima, H.; Yamada, Y. Development of a Mitochondrial Targeting Lipid Nanoparticle Encapsulating Berberine. Int. J. Mol. Sci. 2023, 24, 903. [Google Scholar] [CrossRef]
- Matsumoto, N.; Hori, I.; Kajita, M.K.; Murase, T.; Nakamura, W.; Tsuji, T.; Miyake, S.; Inatani, M.; Konishi, Y. Intermitochondrial signaling regulates the uniform distribution of stationary mitochondria in axons. Mol. Cell. Neurosci. 2022, 119, 103704. [Google Scholar] [CrossRef]
- Seno, T.; Ikeno, T.; Mennya, K.; Kurishita, M.; Sakae, N.; Sato, M.; Takada, H.; Konishi, Y. Kinesin-1 sorting in axons controls the differential retraction of arbor terminals. J. Cell Sci. 2016, 129, 3499–3510. [Google Scholar] [CrossRef]
- Sterky, F.H.; Trotter, J.H.; Lee, S.-J.; Recktenwald, C.V.; Du, X.; Zhou, B.; Zhou, P.; Schwenk, J.; Fakler, B.; Südhof, T.C. Carbonic anhydrase-related protein CA10 is an evolutionarily conserved pan-neurexin ligand. Proc. Natl. Acad. Sci. USA 2017, 114, E1253–E1262. [Google Scholar] [CrossRef]
- Suzuki, K.; Elegheert, J.; Song, I.; Sasakura, H.; Senkov, O.; Matsuda, K.; Kakegawa, W.; Clayton, A.J.; Chang, V.T.; Ferrer-Ferrer, M.; et al. A synthetic synaptic organizer protein restores glutamatergic neuronal circuits. Science 2020, 369, eabb4853. [Google Scholar] [CrossRef] [PubMed]
- Wierda, K.D.B.; Toft-Bertelsen, T.L.; Gøtzsche, C.R.; Pedersen, E.; Korshunova, I.; Nielsen, J.; Bang, M.L.; Kønig, A.B.; Owczarek, S.; Gjørlund, M.D.; et al. The soluble neurexin-1beta ectodomain causes calcium influx and augments dendritic outgrowth and synaptic transmission. Sci. Rep. 2020, 10, 18041. [Google Scholar] [CrossRef] [PubMed]
- Wilson, S.C.; White, K.I.; Zhou, Q.; A Pfuetzner, R.; Choi, U.B.; Südhof, T.C.; Brunger, A.T. Structures of neurexophilin–neurexin complexes reveal a regulatory mechanism of alternative splicing. EMBO J. 2019, 38, e101603. [Google Scholar] [CrossRef] [PubMed]
- Ferrer-Lorente, R.; Lozano-Cruz, T.; Fernández-Carasa, I.; Miłowska, K.; de la Mata, F.J.; Bryszewska, M.; Raya, A. Cationic Carbosilane Dendrimers Prevent Abnormal alpha-Synuclein Accumulation in Parkinson’s Disease Patient-Specific Dopamine Neurons. Biomacromolecules 2021, 22, 4582–4591. [Google Scholar] [CrossRef] [PubMed]
- Rungta, R.L.; Choi, H.B.; Lin, P.J.; Ko, R.W.; Ashby, D.; Nair, J.; Manoharan, M.; Cullis, P.R.; MacVicar, B.A. Lipid Nanoparticle Delivery of siRNA to Silence Neuronal Gene Expression in the Brain. Mol. Ther. Nucleic Acids 2013, 2, e136. [Google Scholar] [CrossRef]
- Sheng, Z.H. The Interplay of Axonal Energy Homeostasis and Mitochondrial Trafficking and Anchoring. Trends Cell Biol. 2017, 27, 403–416. [Google Scholar] [CrossRef]
- Lima, V.S.; Guimarães, A.T.B.; Araújo, A.P.d.C.; Estrela, F.N.; da Silva, I.C.; de Melo, N.F.S.; Fraceto, L.F.; Malafaia, G. Depression, anxiety-like behavior, and memory impairment in mice exposed to chitosan-coated zein nanoparticles. Environ. Sci. Pollut. Res. 2019, 26, 10641–10650. [Google Scholar] [CrossRef]
Compounds | Sequence |
---|---|
CAP10 [16] | MEIVWEVLFLLQANFIVCISAQQNSPKIHEGWWAYKEVVQGSFVPVPSFWGLVNSAWNLCSVGKRQSPVNIETSHMIFDPFLTPLRINTGGRKVSGTMYNTGRHVSLRLDKEHLVNISGGPMTYSHRLEEIRLHFGSEDSQGSEHLLNGQAFSGEVQLIHYNHELYTNVTEAAKSPNGLVVVSIFIKVSDSSNPFLNRMLNRDTITRITYKNDAYLLQGLNIEELYPETSSFITYDGSMTIPPCYETASWIIMNKPVYITRMQMHSLRLLSQNQPSQIFLSMSDNFRPVQPLNNRCIRTNINFSLQGKDCPNNRAQKLQYRVNEWLLK |
CRR [17] | QNETEPIVLEGKCLVVCDSNPTGTALGI |
Neurexide [18] | ARPSTRADRA |
Neurexin binding site [19] | MQAACWYVLLLLQPTVYLVTCANLTNGGKSELLKSGSSKSTLKHIWTESSKDLSISRLLSQTFRGKENDTDLDLRYDTPEPYSEQDLWDWLRNSTDLQEPRPRAKRRPIVKTGKFKKMFGWGDFHSNIKTVKLNLLITGKIVDHGNGTFSVYFRHNSTGQGNVSVSLVPPTKIVEFDLAQQTVIDAKDSKSFNCRIEYEKVDKATKNTLNYDPSKTCYQEQTQSHVSWLCSKPFKVICIYISFYSTDYKLVQKVCPDYNYHSDTPYFPSG |
LP Type | Diameters (nm) | Polydispersity Index (PdI) | ζ-Potential (mV) | Peptide Sequence |
---|---|---|---|---|
LP | 102 ± 4.0 | 0.21 ± 0.03 | −5.3 ± 1.4 | - |
CAP-LP | 276 ± 29 | 0.57 ± 0.09 | −1.9 ± 0.5 | SLQGKDCPNN |
CRR-LP | 138 ± 14 | 0.22 ± 0.02 | −3.7 ± 1.0 | LEGKCLVVCD |
NRX-LP | 99 ± 3.0 | 0.25 ± 0.03 | 22 ± 0.6 | ARPSTRADRA |
NBS-LP | 109 ± 4.0 | 0.24 ± 0.01 | −2.4 ± 1.2 | GDFHSNIKT |
MITO-Porter | 93 ± 1.0 | 0.28 ± 0.04 | 25 ± 1.9 | RRRRRRRR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hori, I.; Harashima, H.; Yamada, Y. Development of Liposomes That Target Axon Terminals Encapsulating Berberine in Cultured Primary Neurons. Pharmaceutics 2024, 16, 49. https://doi.org/10.3390/pharmaceutics16010049
Hori I, Harashima H, Yamada Y. Development of Liposomes That Target Axon Terminals Encapsulating Berberine in Cultured Primary Neurons. Pharmaceutics. 2024; 16(1):49. https://doi.org/10.3390/pharmaceutics16010049
Chicago/Turabian StyleHori, Ikuma, Hideyoshi Harashima, and Yuma Yamada. 2024. "Development of Liposomes That Target Axon Terminals Encapsulating Berberine in Cultured Primary Neurons" Pharmaceutics 16, no. 1: 49. https://doi.org/10.3390/pharmaceutics16010049
APA StyleHori, I., Harashima, H., & Yamada, Y. (2024). Development of Liposomes That Target Axon Terminals Encapsulating Berberine in Cultured Primary Neurons. Pharmaceutics, 16(1), 49. https://doi.org/10.3390/pharmaceutics16010049