Development of Halloysite Nanohybrids-Based Films: Enhancing Mechanical and Hydrophilic Properties for Wound Healing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of the Nanohybrids (NHs)
2.2.2. Preparation of CS/HC Films and Their Loading with NHs
2.2.3. Thickness and Weight Measurements
2.2.4. Mechanical Properties
2.2.5. Scanning Electron Microscopy (SEM) and Energy Dispersion Spectroscopy (EDS)
2.2.6. Atomic Force Microscopy (AFM)
2.2.7. Nanoindentation Measurements
2.2.8. Structural Characterization
2.2.9. Surface Thermodynamics
2.2.10. In Vitro Cytotoxicity Test/Assay
2.2.11. Statistical Analysis
3. Results and Discussion
3.1. Thickness and Weight Measurements
3.2. Mechanical Properties
3.3. Scanning Electron Microscopy (SEM) and Energy Dispersion Spectroscopy (EDS)
3.4. Atomic Force Microscopy (AFM)
3.4.1. Topographic Measurements and Imaging
3.4.2. Force Spectroscopy
3.4.3. Conductive AFM Measurements
3.5. Nanoindentation Measurements
3.6. Structural Characterization
3.6.1. Infrared Spectroscopy
3.6.2. Thermogravimetric Analysis (TGA)
3.7. Surface Thermodynamics
3.8. In Vitro Cytotoxicity Test/Assay
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, M.; Xia, W.; Khoong, Y.M.; Huang, L.; Huang, X.; Liang, H.; Zhao, Y.; Mao, J.; Yu, H.; Zan, T. Smart and Versatile Biomaterials for Cutaneous Wound Healing. Biomater. Res. 2023, 27, 87. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, H.N.; Hardman, M.J. Wound Healing: Cellular Mechanisms and Pathological Outcomes. Open Biol. 2020, 10, 200223. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Lu, Y.; Zhan, R.; Qian, W.; Luo, G. Nanomaterials and Nanomaterials-Based Drug Delivery to Promote Cutaneous Wound Healing. Adv. Drug Deliv. Rev. 2023, 193, 114670. [Google Scholar] [CrossRef] [PubMed]
- Olsson, M.; Järbrink, K.; Divakar, U.; Bajpai, R.; Upton, Z.; Schmidtchen, A.; Car, J. The Humanistic and Economic Burden of Chronic Wounds: A Systematic Review. Wound Repair Regen. 2019, 27, 114–125. [Google Scholar] [CrossRef] [PubMed]
- Sen, C.K. Human Wounds and Its Burden: An Updated Compendium of Estimates. Adv. Wound Care 2019, 8, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Kolimi, P.; Narala, S.; Nyavanandi, D.; Youssef, A.A.A.; Dudhipala, N. Innovative Treatment Strategies to Accelerate Wound Healing: Trajectory and Recent Advancements. Cells 2022, 11, 2439. [Google Scholar] [CrossRef]
- Lindholm, C.; Searle, R. Wound Management for the 21st Century: Combining Effectiveness and Efficiency. Int. Wound J. 2016, 13, 5–15. [Google Scholar] [CrossRef]
- Long, L.; Liu, W.; Hu, C.; Yang, L.; Wang, Y. Construction of Multifunctional Wound Dressings with Their Application in Chronic Wound Treatment. Biomater. Sci. 2022, 10, 4058–4076. [Google Scholar] [CrossRef]
- Wijesooriya, L.I.; Waidyathilake, D. Antimicrobial Properties of Nonantibiotic Agents for Effective Treatment of Localized Wound Infections: A Minireview. Int. J. Low. Extrem. Wounds 2022, 21, 207–218. [Google Scholar] [CrossRef]
- Bhatnagar, P.; Law, J.X.; Ng, S.-F. Delivery Systems for Platelet Derived Growth Factors in Wound Healing: A Review of Recent Developments and Global Patent Landscape. J. Drug Deliv. Sci. Technol. 2022, 71, 103270. [Google Scholar] [CrossRef]
- Li, W.; Hu, J.; Chen, C.; Li, X.; Zhang, H.; Xin, Y.; Tian, Q.; Wang, S. Emerging Advances in Hydrogel-Based Therapeutic Strategies for Tissue Regeneration. Regen. Ther. 2023, 24, 459–471. [Google Scholar] [CrossRef] [PubMed]
- Zong, Q.; Chen, H.; Zhao, Y.; Wang, J.; Wu, J. Bioactive Carbon Dots for Tissue Engineering Applications. Smart Mater. Med. 2024, 5, 1–14. [Google Scholar] [CrossRef]
- Tian, G.; Wang, Z.; Huang, Z.; Xie, Z.; Xia, L.; Zhang, Y. Clays and Wound Healing. Materials 2024, 17, 1691. [Google Scholar] [CrossRef] [PubMed]
- Ovincy, C.; Babel, S.; Baral, S.; Poudel, S.; Jain, S. Clay Therapy in Wound Healing: A Brief Review of the Literature. J. Wound Manag. Res. 2024, 20, 1–8. [Google Scholar] [CrossRef]
- Swain, R.; Nandi, S.; Mohapatra, S.; Mallick, S. Engineered Clay-Polymer Composite for Biomedical Drug Delivery and Future Challenges: A Survey. Curr. Drug Deliv. 2024, 21, 645–661. [Google Scholar] [CrossRef]
- Massaro, M.; Ciani, R.; Cinà, G.; Colletti, C.G.; Leone, F.; Riela, S. Antimicrobial Nanomaterials Based on Halloysite Clay Mineral: Research Advances and Outlook. Antibiotics 2022, 11, 1761. [Google Scholar] [CrossRef]
- García-Villén, F.; Souza, I.M.S.; de Melo Barbosa, R.; Borrego-Sánchez, A.; Sánchez-Espejo, R.; Ojeda-Riascos, S.; Iborra, C.V. Natural Inorganic Ingredients in Wound Healing. Curr. Pharm. Des. 2020, 26, 621–641. [Google Scholar] [CrossRef]
- Tungare, K.; Gupta, J.; Bhori, M.; Garse, S.; Kadam, A.; Jha, P.; Jobby, R.; Amanullah, M.; Vijayakumar, S. Nanomaterial in Controlling Biofilms and Virulence of Microbial Pathogens. Microb. Pathog. 2024, 192, 106722. [Google Scholar] [CrossRef]
- Valentino, C.; Martínez Rodríguez, T.; Borrego-Sánchez, A.; Hernández Benavides, P.; Arrebola Vargas, F.; Paredes, J.M.; Rossi, S.; Sainz Díaz, C.I.; Sandri, G.; Grisoli, P.; et al. Characterization and Molecular Modelling of Non-Antibiotic Nanohybrids for Wound Healing Purposes. Pharmaceutics 2023, 15, 1140. [Google Scholar] [CrossRef]
- Valentino, C.; Rodríguez, T.M.; Benavides, P.H.; Vargas, F.A.; Paredes, J.M.; Rossi, S.; Sandri, G.; Medina Pérez, M.d.M.; Aguzzi, C. Human Lactoferrin-Clay Mineral Nanohybrids as Emerging Green Biomaterials: A Physicochemical Characterization. Appl. Clay Sci. 2023, 243, 107085. [Google Scholar] [CrossRef]
- Gkouma, E.; Gianni, E.; Avgoustakis, K.; Papoulis, D. Applications of Halloysite in Tissue Engineering. Appl. Clay Sci. 2021, 214, 106291. [Google Scholar] [CrossRef]
- Biddeci, G.; Spinelli, G.; Colomba, P.; Di Blasi, F. Nanomaterials: A Review about Halloysite Nanotubes, Properties, and Application in the Biological Field. Int. J. Mol. Sci. 2022, 23, 11518. [Google Scholar] [CrossRef] [PubMed]
- Tipa, C.; Cidade, M.T.; Borges, J.P.; Costa, L.C.; Silva, J.C.; Soares, P.I.P. Clay-Based Nanocomposite Hydrogels for Biomedical Applications: A Review. Nanomaterials 2022, 12, 3308. [Google Scholar] [CrossRef] [PubMed]
- Mobaraki, M.; Karnik, S.; Li, Y.; Mills, D.K. Therapeutic Applications of Halloysite. Appl. Sci. 2021, 12, 87. [Google Scholar] [CrossRef]
- Biddeci, G.; Spinelli, G.; Colomba, P.; Di Blasi, F. Halloysite Nanotubes and Sepiolite for Health Applications. Int. J. Mol. Sci. 2023, 24, 4801. [Google Scholar] [CrossRef]
- Wong, L.W.; Tan, J.B.L. Halloysite Nanotube-Polymer Nanocomposites: A Review on Fabrication and Biomedical Applications. J. Manuf. Process 2024, 118, 76–88. [Google Scholar] [CrossRef]
- Liao, J.; Wang, H.; Liu, N.; Yang, H. Functionally Modified Halloysite Nanotubes for Personalized Bioapplications. Adv. Colloid. Interface Sci. 2023, 311, 102812. [Google Scholar] [CrossRef]
- Gobi, R.; Ravichandiran, P.; Babu, R.S.; Yoo, D.J. Biopolymer and Synthetic Polymer-Based Nanocomposites in Wound Dressing Applications: A Review. Polymers 2021, 13, 1962. [Google Scholar] [CrossRef]
- Ijaz, F.; Tahir, H.M.; Ali, S.; Ali, A.; Khan, H.A.; Muzamil, A.; Manzoor, H.H.; Qayyum, K.A. Biomolecules Based Hydrogels and Their Potential Biomedical Applications: A Comprehensive Review. Int. J. Biol. Macromol. 2023, 253, 127362. [Google Scholar] [CrossRef]
- Zheng, B.-D.; Gan, L.; Tian, L.-Y.; Chen, G.-H. Protein/Polysaccharide-Based Hydrogels Loaded Probiotic-Mediated Therapeutic Systems: A Review. Int. J. Biol. Macromol. 2023, 253, 126841. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Che, Y.; Zhou, R.; Wang, L.; Huang, J.; Kong, W.; Liu, C.; Guo, L.; Tang, Y.; Wang, X.; et al. Research Progress of Natural Polysaccharide-Based and Natural Protein-Based Hydrogels for Bacteria-Infected Wound Healing. Chem. Eng. J. 2024, 496, 153803. [Google Scholar] [CrossRef]
- Zubair, M.; Hussain, A.; Shahzad, S.; Arshad, M.; Ullah, A. Emerging Trends and Challenges in Polysaccharide Derived Materials for Wound Care Applications: A Review. Int. J. Biol. Macromol. 2024, 270, 132048. [Google Scholar] [CrossRef] [PubMed]
- Gholap, A.D.; Rojekar, S.; Kapare, H.S.; Vishwakarma, N.; Raikwar, S.; Garkal, A.; Mehta, T.A.; Jadhav, H.; Prajapati, M.K.; Annapure, U. Chitosan Scaffolds: Expanding Horizons in Biomedical Applications. Carbohydr. Polym. 2024, 323, 121394. [Google Scholar] [CrossRef] [PubMed]
- Falsafi, S.R.; Topuz, F.; Bajer, D.; Mohebi, Z.; Shafieiuon, M.; Heydari, H.; Rawal, S.; Sathiyaseelan, A.; Wang, M.-H.; Khursheed, R.; et al. Metal Nanoparticles and Carbohydrate Polymers Team up to Improve Biomedical Outcomes. Biomed. Pharmacother. 2023, 168, 115695. [Google Scholar] [CrossRef]
- Haririan, Y.; Asefnejad, A.; Hamishehkar, H.; Farahpour, M.R. Carboxymethyl Chitosan-Gelatin-Mesoporous Silica Nanoparticles Containing Myrtus communis L. Extract as a Novel Transparent Film Wound Dressing. Int. J. Biol. Macromol. 2023, 253, 127081. [Google Scholar] [CrossRef]
- Pramanik, S.; Aggarwal, A.; Kadi, A.; Alhomrani, M.; Alamri, A.S.; Alsanie, W.F.; Koul, K.; Deepak, A.; Bellucci, S. Chitosan Alchemy: Transforming Tissue Engineering and Wound Healing. RSC Adv. 2024, 14, 19219–19256. [Google Scholar] [CrossRef]
- Bonde, S.; Chandarana, C.; Prajapati, P.; Vashi, V. A Comprehensive Review on Recent Progress in Chitosan Composite Gels for Biomedical Uses. Int. J. Biol. Macromol. 2024, 272, 132723. [Google Scholar] [CrossRef]
- Mawazi, S.M.; Kumar, M.; Ahmad, N.; Ge, Y.; Mahmood, S. Recent Applications of Chitosan and Its Derivatives in Antibacterial, Anticancer, Wound Healing, and Tissue Engineering Fields. Polymers 2024, 16, 1351. [Google Scholar] [CrossRef]
- Sibilla, S.; Godfrey, M.; Brewer, S.; Budh-Raja, A.; Genovese, L. An Overview of the Beneficial Effects of Hydrolysed Collagen as a Nutraceutical on Skin Properties: Scientific Background and Clinical Studies. Open Nutraceuticals J. 2015, 8, 29–42. [Google Scholar] [CrossRef]
- León-López, A.; Morales-Peñaloza, A.; Martínez-Juárez, V.M.; Vargas-Torres, A.; Zeugolis, D.I.; Aguirre-Álvarez, G. Hydrolyzed Collagen—Sources and Applications. Molecules 2019, 24, 4031. [Google Scholar] [CrossRef] [PubMed]
- Williams, L.B. Antibacterial Clays: Scientific Investigations of Their Practical Applications in Medicine. In Practical Applications of Medical Geology; Springer International Publishing: Cham, Switzerland, 2021; pp. 671–696. [Google Scholar]
- Wang, X.; Zhang, H.J.; Yang, Y.; Chen, Y.; Zhu, X.; You, X. Biopolymer-Based Self-Healing Hydrogels: A Short Review. Giant 2023, 16, 100188. [Google Scholar] [CrossRef]
- Infurna, G.; Cavallaro, G.; Lazzara, G.; Milioto, S.; Dintcheva, N.T. Bionanocomposite Films Containing Halloysite Nanotubes and Natural Antioxidants with Enhanced Performance and Durability as Promising Materials for Cultural Heritage Protection. Polymers 2020, 12, 1973. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, N.; Mishra, G.; Yadav, T.; Srivastava, N.; Maurya, V.K.; Saxena, S.K. Fabrication and Evaluation of Basil Essential Oil-Loaded Halloysite Nanotubes in Chitosan Nanocomposite Film and Its Application in Food Packaging. Antibiotics 2022, 11, 1820. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Wu, L.; Li, Y.; Li, H. Preparation and Characterization of Chitosan/Halloysite Nanotubes Composite Film with Ethylene Scavenging and Gas Resistance for Active Food Packaging. J. Food Saf. 2023, 43, e13027. [Google Scholar] [CrossRef]
- Cavallaro, G.; Lazzara, G.; Milioto, S. Nanocomposites Based on Halloysite Nanotubes and Sulphated Galactan from Red Seaweed Gloiopeltis: Properties and Delivery Capacity of Sodium Diclofenac. Int. J. Biol. Macromol. 2023, 234, 123645. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, L.; Xu, J.; Ning, H.; Lu, L. Development of Chitosan-Based Antibacterial and Antioxidant Bioactive Film Incorporated with Carvacrol-Loaded Modified Halloysite Nanotube. Food Hydrocoll. 2023, 145, 109102. [Google Scholar] [CrossRef]
- Ali, M.; Mir, S.; Atanase, L.I.; Abid, O.-U.-R.; Kazi, M. Chitosan–PVA–PVP/Nano-Clay Composite: A Promising Tool for Controlled Drug Delivery. RSC Adv. 2024, 14, 15777–15790. [Google Scholar] [CrossRef]
- Wang, X.; Mu, B.; Zhang, H.; Du, Y.; Yang, F.; Wang, A. Incorporation of Mixed-Dimensional Palygorskite Clay into Chitosan/Polyvinylpyrrolidone Nanocomposite Films for Enhancing Hemostatic Activity. Int. J. Biol. Macromol. 2023, 237, 124213. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, X.; Li, Y.; Yang, F.; Liu, X.; Wang, A. Dencichine/Palygorskite Nanocomposite Incorporated Chitosan/Polyvinylpyrrolidone Film for Accelerating Wound Hemostasis. Int. J. Biol. Macromol. 2024, 275, 133399. [Google Scholar] [CrossRef]
- Martínez Rodríguez, T.; Valentino, C.; Rodríguez Pozo, F.R.; Hernández Benavides, P.; Arrebola Vargas, F.; Paredes, J.M.; Sainz-Díaz, C.I.; Iglesias, G.R.; Rossi, S.; Sandri, G.; et al. Formulative Study and Characterization of Novel Biomaterials Based on Chitosan/Hydrolyzed Collagen Films. J. Funct. Biomater. 2024, 15, 69. [Google Scholar] [CrossRef]
- Preis, M.; Knop, K.; Breitkreutz, J. Mechanical Strength Test for Orodispersible and Buccal Films. Int. J. Pharm. 2014, 461, 22–29. [Google Scholar] [CrossRef]
- Checa, A.G.; Linares, F.; Grenier, C.; Griesshaber, E.; Rodríguez-Navarro, A.B.; Schmahl, W.W. The Argonaut Constructs Its Shell via Physical Self-Organization and Coordinated Cell Sensorial Activity. iScience 2021, 24, 103288. [Google Scholar] [CrossRef] [PubMed]
- Prescilla-Ledezma, A.; Linares, F.; Ortega-Muñoz, M.; Retana Moreira, L.; Jódar-Reyes, A.B.; Hernandez-Mateo, F.; Santoyo-Gonzalez, F.; Osuna, A. Molecular Recognition of Surface Trans-Sialidases in Extracellular Vesicles of the Parasite Trypanosoma Cruzi Using Atomic Force Microscopy (AFM). Int. J. Mol. Sci. 2022, 23, 7193. [Google Scholar] [CrossRef] [PubMed]
- Linares, F.; García-Fernández, E.; López-Garzón, F.J.; Domingo-García, M.; Orte, A.; Rodríguez-Diéguez, A.; Galindo, M.A. Multifunctional Behavior of Molecules Comprising Stacked Cytosine–Ag I –Cytosine Base Pairs; towards Conducting and Photoluminescence Silver-DNA Nanowires. Chem. Sci. 2019, 10, 1126–1137. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.parksystems.com (accessed on 24 September 2024).
- Yu, H.H.; Lim, J.-A.; Lee, K.-B.; Lee, Y. Improved Measurements of the Physical Properties of Oriental Lacquers Using Atomic Force Microscopy and a Nanoindenter. Polymers 2021, 13, 1395. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology. J. Mater. Res. 2004, 19, 3–20. [Google Scholar] [CrossRef]
- van Oss, C.J. Interfacial Forces in Aqueous Media; CRC Press: Boca Raton, FL, USA, 2006; ISBN 9780429134418. [Google Scholar]
- Durán, J.D.G.; Ontiveros, A.; Delgado, A.V.; González-Caballero, F.; Chibowski, E. A Study on the Adhesion of Calcium Carbonate to Glass. Energy Balance in the Deposition Process. J. Adhes. Sci. Technol. 1996, 10, 847–868. [Google Scholar] [CrossRef]
- Adamson, A.W. Physical Chemistry of Surfaces, 5th ed.; John Wiley & Sons: New York, NY, USA, 1990. [Google Scholar]
- ISO 10993-12; Biological evaluation of medical devices—Part 12: Sample preparation and reference materials. International Organization for Standardization: Geneva, Switzerland, 2012.
- Caner, C.; Rahvali, F.; Yüceer, M.; Oral, A. Effects of Types and Concentrations of Modified Cloisite Clays on Properties of Chitosan Nanocomposites for Food Packaging. Polym. Adv. Technol. 2023, 34, 2248–2260. [Google Scholar] [CrossRef]
- Slouf, M.; Strachota, B.; Strachota, A.; Gajdosova, V.; Bertschova, V.; Nohava, J. Macro-, Micro- and Nanomechanical Characterization of Crosslinked Polymers with Very Broad Range of Mechanical Properties. Polymers 2020, 12, 2951. [Google Scholar] [CrossRef]
- Arias, J.L.; López-Viota, M.; Ruiz, M.A.; López-Viota, J.; Delgado, A.V. Development of Carbonyl Iron/Ethylcellulose Core/Shell Nanoparticles for Biomedical Applications. Int. J. Pharm. 2007, 339, 237–245. [Google Scholar] [CrossRef] [PubMed]
- García-García, G.; Lázaro, M.; Cenalmor, A.; García-Álvarez, I.; Iglesias, G.R.; Arias, J.L. Cluster/Shell Citrate-Fe3O4/Chitosan Nanoparticles for Enhancing Heating Efficiency in Combined Magnetic and Photothermal Therapy. Ceram. Int. 2024, 50, 36295–36305. [Google Scholar] [CrossRef]
- Atkin, L. Chronic Wounds: The Challenges of Appropriate Management. Br. J. Community Nurs. 2019, 24, S26–S32. [Google Scholar] [CrossRef] [PubMed]
- Marmur, A. From Hygrophilic to Superhygrophobic: Theoretical Conditions for Making High-Contact-Angle Surfaces from Low-Contact-Angle Materials. Langmuir 2008, 24, 7573–7579. [Google Scholar] [CrossRef] [PubMed]
Film | CS (% w/v) | HC (% w/v) | Span® 85 (% w/v) | Plasticizer (g) | NHs (% w/w) * | |||
---|---|---|---|---|---|---|---|---|
gly | PEG 1500 | HAL-CHX | HAL-hLF | |||||
Group 1 | F1 | 1 | 2 | - | 0.6 | - | - | - |
F1-10 | 1 | 2 | 0.05 | 0.6 | - | 5 | 5 | |
F1-20 | 1 | 2 | 0.05 | 0.6 | - | 10 | 10 | |
Group 2 | F2 | 1 | 2 | - | 0.6 | 0.6 | - | - |
F2-10 | 1 | 2 | 0.05 | 0.6 | 0.6 | 5 | 5 | |
F2-20 | 1 | 2 | 0.05 | 0.6 | 0.6 | 10 | 10 |
Film | Thickness (μm) | Weight (mg) | |
---|---|---|---|
Group 1 | F1 | 128.39 ± 0.07 | 375.18 ± 0.01 |
F1-10 | 179.00 ± 0.03 | 423.66 ± 0.00 | |
F1-20 | 228.90 ± 0.06 | 428.16 ± 0.01 | |
Group 2 | F2 | 152.31 ± 0.07 | 453.97 ± 0.01 |
F2-10 | 185.29 ± 0.02 | 483.68 ± 0.02 | |
F2-20 | 271.88 ± 0.12 | 556.82 ± 0.04 |
Film | TS (MPa) | EB (%) | |
---|---|---|---|
Group 1 | F1 | 0.93 a ± 0.10 | 102.8 a’ ± 6.4 |
F1-10 | 0.66 b ± 0.14 | 124.5 b’ ± 12.3 | |
F1-20 | 0.54 c ± 0.11 | 104.6 c’ ± 9.5 | |
Group 2 | F2 | 0.62 d ± 0.12 | 84.0 d’ ± 6.3 |
F2-10 | 0.54 e ± 0.12 | 101.8 e’ ± 12.4 | |
F2-20 | 0.42 f ± 0.07 | 93.3 f’ ± 10.1 |
Film | Stiffness (nN) | Young’s Modulus (nPa) | Adhesion Force (nN) | |
---|---|---|---|---|
Group 1 | F1 | 712.07 ± 16.35 | 81.82 ± 19.32 | 375.52 ± 96.82 |
F1-10 | 701.71 ± 19.71 | 141.95 ± 34.55 | 900.03 ± 357.44 | |
F1-20 | 701.72 ± 24.42 | 46.02 ± 21.19 | 1878.83 ± 686.06 | |
Group 2 | F2 | 728.75 ± 31.04 | 145.23 ± 47.53 | 518.87 ± 174.28 |
F2-10 | 738.76 ± 23.73 | 130.11 ± 42.29 | 2046.15 ± 860.68 | |
F2-20 | 683.81 ± 47.56 | 93.44 ± 47.56 | 1376.41 ± 739.92 |
Film | H (GPa) | Er (GPa) | |
---|---|---|---|
Group 1 | F1 | 0.011 a ± 0.00 | 0.219 a’ ± 0.01 |
F1-10 | 0.017 b ± 0.00 | 0.341 b’ ± 0.02 | |
F1-20 | 0.016 c ± 0.01 | 0.359 c’ ± 0.09 | |
Group 2 | F2 | 0.006 d ± 0.00 | 0.125 d’ ± 0.01 |
F2-10 | 0.012 e ± 0.00 | 0.209 e’ ± 0.02 | |
F2-20 | 0.018 f ± 0.01 | 0.321 f’ ± 0.09 |
Film | Contact Angle (θ, Degrees) | Surface Free Energy Components (mJ/m2) | |||||
---|---|---|---|---|---|---|---|
H2O | Formamide | Diiodomethane | γSLW | γS+ | γS- | ||
Group 1 | F1 | 83.2 ± 6.3 | 67.9 ± 6.4 | 98.2 ± 8.2 | 9.35 ± 3.08 | 7.31 ± 0.70 | 6.42 ± 2.26 |
F1-10 | 48.8 ± 8.7 | 76.1 ± 12.6 | 81.5 ± 2.5 | 16.74 ± 1.24 | 0.16 ± 0.71 | 73.60 ± 3.37 | |
F1-20 | 58.5 ± 5.5 | 74.0 ± 4.1 | 50.5 ± 6.3 | 33.98 ± 3.54 | 2.70 ± 0.25 | 52.30 ± 5.55 | |
Group 2 | F2 | 87.3 ± 7.2 | 91.3 ± 6.6 | 129.2 ± 9.5 | 1.71 ± 1.20 | 4.92 ± 0.24 | 17.01 ± 4.42 |
F2-10 | 58.9 ± 3.8 | 73.7 ± 5.0 | 62.1 ± 7.0 | 27.36 ± 4.04 | 0.98 ± 0.02 | 50.24 ± 0.97 | |
F2-20 | 49.7 ± 2.9 | 57.5 ± 5.4 | 48.8 ± 5.5 | 34.93 ± 3.05 | 0.17 ± 0.11 | 46.65 ± 1.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez Pozo, F.R.; Ianev, D.; Martínez Rodríguez, T.; Arias, J.L.; Linares, F.; Gutiérrez Ariza, C.M.; Valentino, C.; Arrebola Vargas, F.; Hernández Benavides, P.; Paredes, J.M.; et al. Development of Halloysite Nanohybrids-Based Films: Enhancing Mechanical and Hydrophilic Properties for Wound Healing. Pharmaceutics 2024, 16, 1258. https://doi.org/10.3390/pharmaceutics16101258
Rodríguez Pozo FR, Ianev D, Martínez Rodríguez T, Arias JL, Linares F, Gutiérrez Ariza CM, Valentino C, Arrebola Vargas F, Hernández Benavides P, Paredes JM, et al. Development of Halloysite Nanohybrids-Based Films: Enhancing Mechanical and Hydrophilic Properties for Wound Healing. Pharmaceutics. 2024; 16(10):1258. https://doi.org/10.3390/pharmaceutics16101258
Chicago/Turabian StyleRodríguez Pozo, Francisco Ramón, Daiana Ianev, Tomás Martínez Rodríguez, José L. Arias, Fátima Linares, Carlos Miguel Gutiérrez Ariza, Caterina Valentino, Francisco Arrebola Vargas, Pablo Hernández Benavides, José Manuel Paredes, and et al. 2024. "Development of Halloysite Nanohybrids-Based Films: Enhancing Mechanical and Hydrophilic Properties for Wound Healing" Pharmaceutics 16, no. 10: 1258. https://doi.org/10.3390/pharmaceutics16101258
APA StyleRodríguez Pozo, F. R., Ianev, D., Martínez Rodríguez, T., Arias, J. L., Linares, F., Gutiérrez Ariza, C. M., Valentino, C., Arrebola Vargas, F., Hernández Benavides, P., Paredes, J. M., Medina Pérez, M. d. M., Rossi, S., Sandri, G., & Aguzzi, C. (2024). Development of Halloysite Nanohybrids-Based Films: Enhancing Mechanical and Hydrophilic Properties for Wound Healing. Pharmaceutics, 16(10), 1258. https://doi.org/10.3390/pharmaceutics16101258