Annatto (Bixa orellana)-Based Nanostructures for Biomedical Applications—A Systematic Review
Abstract
:1. Introduction
2. Methodology
2.1. Protocol and Registration
2.2. Eligibility Criteria
2.2.1. Inclusion Criteria
2.2.2. Exclusion Criteria
2.3. Information Sources and Search Strategy
2.4. Study Selection
2.5. Risks of Bias and Quality in Individual Studies
3. Results
3.1. Study Selection
3.2. Characteristics of the Included Studies
3.3. Quality of Individual Studies
3.4. Synthesis of Results
4. Discussion
4.1. Influence of Annatto Products on the Physicochemical Characteristics of Nanostructures
4.2. Therapeutic Efficacy Profile of the Nanostructures Containing Annatto Products
4.2.1. Photoprotective and Healing Activity
4.2.2. Leishmanicidal Activity
4.2.3. Antioxidant and Antimicrobial Activity
4.2.4. Antitumoral Activity
4.3. Toxicity of Annatto Nanostructures
5. Considerations for the Nanostructuring of Annatto Products
6. Limitations
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Majumdar, M.; Shivalkar, S.; Pal, A.; Verma, M.L.; Sahoo, A.K.; Roy, D.N. Nanotechnology for Enhanced Bioactivity of Bioactive Compounds. In Biotechnological Production of Bioactive Compounds; Elsevier: Amsterdam, The Netherlands, 2020; pp. 433–466. [Google Scholar]
- Enayati, A.; Rezaei, A.; Falsafi, S.R.; Rostamabadi, H.; Malekjani, N.; Akhavan-Mahdavi, S.; Kharazmi, M.S.; Jafari, S.M. Bixin-Loaded Colloidal Nanodelivery Systems, Techniques and Applications. Food Chem. 2023, 412, 135479. [Google Scholar] [CrossRef] [PubMed]
- Andréo-Filho, N.; Bim, A.V.K.; Kaneko, T.M.; Kitice, N.A.; Haridass, I.N.; Abd, E.; Santos Lopes, P.; Thakur, S.S.; Parekh, H.S.; Roberts, M.S.; et al. Development and Evaluation of Lipid Nanoparticles Containing Natural Botanical Oil for Sun Protection: Characterization and In Vitro and In Vivo Human Skin Permeation and Toxicity. Ski. Pharmacol. Physiol. 2018, 31, 1–9. [Google Scholar] [CrossRef]
- Muddapur, U.M.; Turakani, B.; Jalal, N.A.; Ashgar, S.S.; Momenah, A.M.; Alshehri, O.M.; Mahnashi, M.H.; Shaikh, I.A.; Khan, A.A.; Dafalla, S.E. Phytochemical Screening of Bixa orellana and Preliminary Antidiabetic, Antibacterial, Antifibrinolytic, Anthelmintic, Antioxidant, and Cytotoxic Activity against Lung Cancer (A549) Cell Lines. J. King Saud Univ.-Sci. 2023, 35, 102683. [Google Scholar] [CrossRef]
- Kusmita, L.; Franyoto, Y.D.; Mutmainah, M.; Puspitaningrum, I.; Nurcahyanti, A.D.R. Bixa orellana L. Carotenoids: Antiproliferative Activity on Human Lung Cancer, Breast Cancer, and Cervical Cancer Cells In Vitro. Nat. Prod. Res. 2022, 36, 6421–6427. [Google Scholar] [CrossRef] [PubMed]
- Medina-Flores, D.; Ulloa-Urizar, G.; Camere-Colarossi, R.; Caballero-García, S.; Mayta-Tovalino, F.; del Valle-Mendoza, J. Antibacterial Activity of Bixa orellana L.(Achiote) against Streptococcus mutans and Streptococcus Sang. Asian Pac. J. Trop. Biomed. 2016, 6, 400–403. [Google Scholar] [CrossRef]
- Ashraf, A.; Ijaz, M.U.; Muzammil, S.; Nazir, M.M.; Zafar, S.; Zihad, S.M.N.K.; Uddin, S.J.; Hasnain, M.S.; Nayak, A.K. The Role of Bixin as Antioxidant, Anti-Inflammatory, Anticancer, and Skin Protecting Natural Product Extracted from Bixa orellana L. Fitoterapia 2023, 169, 105612. [Google Scholar] [CrossRef] [PubMed]
- Selvakumar, V.; Chelliah, R.; Barathikannan, K.; Elahi, F.; Rubab, M.; Sanyal, S.; Yeon, S.J.; Oh, D.H. Seed-Based Oil in Nanomaterials Synthesis and Their Role in Drug Delivery and Other Applications. In Secondary Metabolites Based Green Synthesis of Nanomaterials and Their Applications; Springer Nature: Singapore, 2022. [Google Scholar] [CrossRef]
- Dos Santos, A.E.A.; Dos Santos, F.V.; Freitas, K.M.; Pimenta, L.P.S.; de Oliveira Andrade, L.; Marinho, T.A.; de Avelar, G.F.; da Silva, A.B.; Ferreira, R.V. Cellulose Acetate Nanofibers Loaded with Crude Annatto Extract: Preparation, Characterization, and In Vivo Evaluation for Potential Wound Healing Applications. Mater. Sci. Eng. C 2021, 118, 111322. [Google Scholar] [CrossRef]
- Maitra, B.; Khatun, M.H.; Ahmed, F.; Ahmed, N.; Kadri, H.J.; Rasel, M.Z.U.; Saha, B.K.; Hakim, M.; Kabir, S.R.; Habib, M.R. Biosynthesis of Bixa orellana Seed Extract Mediated Silver Nanoparticles with Moderate Antioxidant, Antibacterial and Antiproliferative Activity. Arab. J. Chem. 2023, 16, 104675. [Google Scholar] [CrossRef]
- Gharpure, S.; Yadwade, R.; Ankamwar, B. Non-Antimicrobial and Non-Anticancer Properties of ZnO Nanoparticles Biosynthesized Using Different Plant Parts of Bixa Orellana. ACS Omega 2022, 7, 1914–1933. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef]
- Page, M.J.; Shamseer, L.; Tricco, A.C. Registration of Systematic Reviews in PROSPERO: 30,000 Records and Counting. Syst. Rev. 2018, 7, 32. [Google Scholar] [CrossRef] [PubMed]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A Web and Mobile App for Systematic Reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef]
- Du Sert, N.P.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U. The ARRIVE Guidelines 2019: Updated Guidelines for Reporting Animal Research. bioRxiv 2019. [Google Scholar] [CrossRef]
- Hooijmans, C.R.; Rovers, M.M.; De Vries, R.B.M.; Leenaars, M.; Ritskes-Hoitinga, M.; Langendam, M.W. SYRCLE’s Risk of Bias Tool for Animal Studies. BMC Med. Res. Methodol. 2014, 14, 43. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Carvalho, H.; Sauma, A.L.R.; do Nascimento, A.L.; de Lima Teixeira, A.V.T.; Gonçalves, D.E.S.; Gomes, L.; da Costa Furtado, G.; da Silva, H.R.; de Souza, G.C.; Pereira, A.C.M. Intramuscular Compatibility of an Injectable Anti-Inflammatory Nanodispersion from a Standardized Bixa orellana Oil (Chronic®): A Toxicological Study in Wistar Rats. Inflammopharmacology 2023, 31, 877–886. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.A.; de Almeida Júnior, R.F.; Onofre, T.S.; Casadei, B.R.; Farias, K.J.S.; Severino, P.; de Oliveira Franco, C.F.; Raffin, F.N.; de Lima e Moura, T.F.A.; de Melo Barbosa, R. Annatto Oil Loaded Nanostructured Lipid Carriers: A Potential New Treatment for Cutaneous Leishmaniasis. Pharmaceutics 2021, 13, 1912. [Google Scholar] [CrossRef] [PubMed]
- Machín, L.; Tamargo, B.; Piñón, A.; Atíes, R.C.; Scull, R.; Setzer, W.N.; Monzote, L. Bixa orellana L.(Bixaceae) and Dysphania ambrosioides (L.) Mosyakin & Clemants (Amaranthaceae) Essential Oils Formulated in Nanocochleates against Leishmania amazonensis. Molecules 2019, 24, 4222. [Google Scholar] [CrossRef]
- Ntohogian, S.; Gavriliadou, V.; Christodoulou, E.; Nanaki, S.; Lykidou, S.; Naidis, P.; Mischopoulou, L.; Barmpalexis, P.; Nikolaidis, N.; Bikiaris, D.N. Chitosan Nanoparticles with Encapsulated Natural and UF-Purified Annatto and Saffron for the Preparation of UV Protective Cosmetic Emulsions. Molecules 2018, 23, 2107. [Google Scholar] [CrossRef]
- dos Santos, A.E.A.; Cotta, T.; Santos, J.P.F.; Camargos, J.S.F.; do Carmo, A.C.C.; Alcântara, E.G.A.; Fleck, C.; Copola, A.G.L.; Nogueira, J.M.; Silva, G.A.B. Bioactive Cellulose Acetate Nanofiber Loaded with Annatto Support Skeletal Muscle Cell Attachment and Proliferation. Front. Bioeng. Biotechnol. 2023, 11, 1116917. [Google Scholar] [CrossRef]
- Caesar, L.K.; Cech, N.B. Synergy and Antagonism in Natural Product Extracts: When 1 + 1 Does Not Equal 2. Nat. Prod. Rep. 2019, 36, 869–888. [Google Scholar] [CrossRef]
- da Silva, A.K.A.; dos Santos, C.R.; Carneiro, M.L.B.; Joanitti, G.A.; Luz, G.V.S.; Rosa, S.S.R.F.; Pinheiro, W.M.; Rosa, M.F.F.; Abreu, P.R.A.; Fukuoka, F.M.G.; et al. Chapter 1—Bixa orellana L. and Its Implications in Human Health: Perspectives and New Trends. In Studies in Natural Products Chemistry; Atta-ur-Rahman, Ed.; Elsevier: Amsterdam, The Netherlands, 2023; Volume 77, pp. 1–36. ISBN 1572-5995. [Google Scholar]
- Zhang, Q.W.; Lin, L.G.; Ye, W.C. Techniques for Extraction and Isolation of Natural Products: A Comprehensive Review. Chin. Med. 2018, 13, 20. [Google Scholar] [CrossRef] [PubMed]
- Akbari, J.; Saeedi, M.; Ahmadi, F.; Hashemi, S.M.H.; Babaei, A.; Yaddollahi, S.; Rostamkalaei, S.S.; Asare-Addo, K.; Nokhodchi, A. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers: A Review of the Methods of Manufacture and Routes of Administration. Pharm. Dev. Technol. 2022, 27, 525–544. [Google Scholar] [CrossRef] [PubMed]
- Clogston, J.D.; Patri, A.K. Zeta Potential Measurement. In Characterization of Nanoparticles Intended for Drug Delivery; Humana Press: Totowa, NJ, USA, 2011; pp. 63–70. [Google Scholar]
- Teja, P.K.; Mithiya, J.; Kate, A.S.; Bairwa, K.; Chauthe, S.K. Herbal Nanomedicines: Recent Advancements, Challenges, Opportunities and Regulatory Overview. Phytomedicine 2022, 96, 153890. [Google Scholar] [CrossRef] [PubMed]
- Passeron, T.; Krutmann, J.; Andersen, M.L.; Katta, R.; Zouboulis, C.C. Clinical and Biological Impact of the Exposome on the Skin. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 4–25. [Google Scholar] [CrossRef] [PubMed]
- Rojo De La Vega, M.; Krajisnik, A.; Zhang, D.D.; Wondrak, G.T. Targeting NRF2 for Improved Skin Barrier Function and Photoprotection: Focus on the Achiote-Derived Apocarotenoid Bixin. Nutrients 2017, 9, 1371. [Google Scholar] [CrossRef]
- Zhang, X.; Meng, Y.; Gong, B.; Wang, T.; Lu, Y.; Zhang, L.; Xue, J. Electrospun Nanofibers for Manipulating Soft Tissue Regeneration. J. Mater. Chem. B 2022, 10, 7281–7308. [Google Scholar] [CrossRef]
- Kumari, D.; Perveen, S.; Sharma, R.; Singh, K. Advancement in Leishmaniasis Diagnosis and Therapeutics: An Update. Eur. J. Pharmacol. 2021, 910, 174436. [Google Scholar] [CrossRef]
- de Souza, A.; Marins, D.S.S.; Mathias, S.L.; Monteiro, L.M.; Yukuyama, M.N.; Scarim, C.B.; Löbenberg, R.; Bou-Chacra, N.A. Promising Nanotherapy in Treating Leishmaniasis. Int. J. Pharm. 2018, 547, 421–431. [Google Scholar] [CrossRef]
- Govardhane, S.; Shende, P. Phthalocyanine-Based Glucose-Responsive Nanocochleates for Dynamic Prevention of β-Cell Damage in Diabetes. J. Liposome Res. 2024, 34, 44–59. [Google Scholar] [CrossRef]
- Gattu, R.; Ramesh, S.S.; Ramesh, S. Role of Small Molecules and Nanoparticles in Effective Inhibition of Microbial Biofilms: A Ray of Hope in Combating Microbial Resistance. Microb. Pathog. 2024, 188, 106543. [Google Scholar] [CrossRef]
- De Macedo, E.F.; Santos, N.S.; Nascimento, L.S.; Mathey, R.; Brenet, S.; de Moura, M.S.; Hou, Y.; Tada, D.B. Interaction between Nanoparticles, Membranes and Proteins: A Surface Plasmon Resonance Study. Int. J. Mol. Sci. 2022, 24, 591. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Pop, A.; Iordache, F.; Stanca, L.; Predoi, G.; Serban, A.I. Oxidative Stress Mitigation by Antioxidants-an Overview on Their Chemistry and Influences on Health Status. Eur. J. Med. Chem. 2021, 209, 112891. [Google Scholar] [CrossRef] [PubMed]
- Sharma Yashwant Singh Parmar, V.; Thakur Yashwant Singh Parmar, S.; Singh Parmar, Y. Evaluation of Antimicrobial and Antioxidant Effect of Biosynthesized Silver Nanoparticles from Sapindus Mukorossi Pericarp Extract; Research Square: Durham, NC, USA, 2024. [Google Scholar] [CrossRef]
- Quintero Quiroz, J.; Naranjo Duran, A.M.; Silva Garcia, M.; Ciro Gomez, G.L.; Rojas Camargo, J.J. Ultrasound-Assisted Extraction of Bioactive Compounds from Annatto Seeds, Evaluation of Their Antimicrobial and Antioxidant Activity, and Identification of Main Compounds by LC/ESI-MS Analysis. Int. J. Food Sci. 2019, 2019, 3721828. [Google Scholar] [CrossRef] [PubMed]
- Khursheed, R.; Dua, K.; Vishwas, S.; Gulati, M.; Jha, N.K.; Aldhafeeri, G.M.; Alanazi, F.G.; Goh, B.H.; Gupta, G.; Paudel, K.R. Biomedical Applications of Metallic Nanoparticles in Cancer: Current Status and Future Perspectives. Biomed. Pharmacother. 2022, 150, 112951. [Google Scholar] [CrossRef] [PubMed]
- Soerjomataram, I.; Bray, F. Planning for Tomorrow: Global Cancer Incidence and the Role of Prevention 2020–2070. Nat. Rev. Clin. Oncol. 2021, 18, 663–672. [Google Scholar] [CrossRef] [PubMed]
- da Silva, P.B.; Machado, R.T.A.; Pironi, A.M.; Alves, R.C.; De Araújo, P.R.; Dragalzew, A.C.; Dalberto, I.; Chorilli, M. Recent Advances in the Use of Metallic Nanoparticles with Antitumoral Action-Review. Curr. Med. Chem. 2019, 26, 2108–2146. [Google Scholar] [CrossRef]
- Alphandéry, E. Natural Metallic Nanoparticles for Application in Nano-Oncology. Int. J. Mol. Sci. 2020, 21, 4412. [Google Scholar] [CrossRef]
- Berehu, H.M.; Anupriya, S.; Khan, M.I.; Chakraborty, R.; Lavudi, K.; Penchalaneni, J.; Mohapatra, B.; Mishra, A.; Patnaik, S. Cytotoxic Potential of Biogenic Zinc Oxide Nanoparticles Synthesized From Swertia Chirayita Leaf Extract on Colorectal Cancer Cells. Front. Bioeng. Biotechnol. 2021, 9, 788527. [Google Scholar] [CrossRef]
- Stohs, S.J. Safety and Efficacy of Bixa orellana (Achiote, Annatto) Leaf Extracts. Phytother. Res. 2014, 28, 956–960. [Google Scholar] [CrossRef]
- Zegarra, L.; Vaisberg, A.; Loza, C.; Aguirre, R.L.; Campos, M.; Fernandez, I.; Talla, O.; Villegas, L. Double-Blind Randomized Placebo-Controlled Study of Bixa orellana in Patients with Lower Urinary Tract Symptoms Associated to Benign Prostatic Hyperplasia. Int. Braz. J. Urol. 2007, 33, 493–501. [Google Scholar] [CrossRef]
- Najahi-Missaoui, W.; Arnold, R.D.; Cummings, B.S. Safe Nanoparticles: Are We There Yet? Int. J. Mol. Sci. 2020, 22, 385. [Google Scholar] [CrossRef] [PubMed]
- Jurić, S.; Jurić, M.; Siddique, M.A.B.; Fathi, M. Vegetable Oils Rich in Polyunsaturated Fatty Acids: Nanoencapsulation Methods and Stability Enhancement. Food Rev. Int. 2020, 38, 32–69. [Google Scholar] [CrossRef]
- Mosaddik, A.; Ravinayagam, V.; Elaanthikkal, S.; Fessi, H.; Badri, W.; Elaissari, A. Development and Use of Polymeric Nanoparticles for the Encapsulation and Administration of Plant Extracts. In Natural Products as Source of Molecules with Therapeutic Potential: Research & Development, Challenges and Perspectives; Cechinel Filho, V., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 391–463. ISBN 978-3-030-00545-0. [Google Scholar]
- Gali, L.; Pirozzi, A.; Donsì, F. Biopolymer- and Lipid-Based Carriers for the Delivery of Plant-Based Ingredients. Pharmaceutics 2023, 15, 927. [Google Scholar] [CrossRef]
- Taouzinet, L.; Djaoudene, O.; Fatmi, S.; Bouiche, C.; Amrane-Abider, M.; Bougherra, H.; Rezgui, F.; Madani, K. Trends of Nanoencapsulation Strategy for Natural Compounds in the Food Industry. Processes 2023, 11, 1459. [Google Scholar] [CrossRef]
- Jadhav, R.R.; Khare, D. Green Biotherapeutics: Overcoming Challenges in Plant-Based Expression Platforms. Plant Biotechnol. Rep. 2024, 18, 465–486. [Google Scholar] [CrossRef]
- Bodiwala, K.B.; Banker, N.; Lalwani, R.; Shah, M.B.; Gajjar, A.K. Quality Control Methods for Fruit Extracts of Kigelia Africana Using High Performance Thin Layer Chromatography. Nat. Prod. Res. 2024, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, R.D.M.; Leite, A.M.; García-Villén, F.; Sánchez-Espejo, R.; Cerezo, P.; Viseras, C.; Faccendini, A.; Sandri, G.; Raffin, F.N.; Moura, T.F.A.D.L.E. Hybrid Lipid/Clay Carrier Systems Containing Annatto Oil for Topical Formulations. Pharmaceutics 2022, 14, 1067. [Google Scholar] [CrossRef]
- Bitencourt, A.P.; Duarte, J.L.; Oliveira, A.E.; Cruz, R.A.; Carvalho, J.C.; Gomes, A.T.; Ferreira, I.M.; Ribeiro-Costa, R.M.; Silva-Júnior, J.O.; Fernandes, C.P. Preparation of aqueous nanodispersions with annatto (Bixa orellana L.) extract using an organic solvent-free and low energy method. Food Chem. 2018, 257, 196–205. [Google Scholar] [CrossRef]
- Naranjo-Durán, A.M.; Quintero-Quiroz, J.; Rojas-Camargo, J.; Ciro-Gómez, G.L. Modified-release of encapsulated bioactive compounds from annatto seeds produced by optimized ionic gelation techniques. Sci Rep. 2021, 11, 1317. [Google Scholar] [CrossRef]
- Huamán, A.A.; Celestino, M.R.; Quintana, M.E. Theoretical and experimental study of solar cells based on nanostructured films of TiO2 sensitized with natural dyes extracted from Zea mays and Bixa orellana. RSC Adv. 2021, 11, 9086–9097. [Google Scholar] [CrossRef]
- Huamán Aguirre, A.A.; Salazar Salinas, K.; Quintana Cáceda, M. Molecular interaction of natural dye based on Zea mays and Bixa orellana with nanocrystalline TiO2 in dye sensitized solar cells. J. Electrochem. Sci. Eng. 2021, 11, 179–195. [Google Scholar] [CrossRef]
- Kumar, A.; Bera, S.; Singh, M.; Mondal, D. Molecular Interactions of Silica Nanoparticles and Biomolecule-Functionalized Silica Nanoparticles with Bixa orellana L. Plant DNA. Silicon 2022, 14, 1407–1419. [Google Scholar] [CrossRef]
- Maurya, I.C.; Singh, S.; Senapati, S.; Srivastava, P.; Bahadur, L. Green synthesis of TiO2 nanoparticles using Bixa orellana seed extract and its application for solar cells. Sol. Energy 2019, 194, 952–958. [Google Scholar] [CrossRef]
- Pal, S.; Malhotra, S.; Naik, S. Development of cosmeceutical products from nano-sized active colour constituents of Ratanjot, Seabuckthorn and Annatto. Int. J. Pharm. Pharm. Sci. 2016, 8, 232–237. [Google Scholar]
- Prada, A.L.; Bitencourt, A.P.; Amado, J.R.; Cruz, R.A.; Carvalho, J.C.; Fernandes, C.P. Development and Characterization of Cassia grandis and Bixa orellana Nanoformulations. Curr. Top. Med. Chem. 2016, 16, 2057–2065. [Google Scholar] [CrossRef]
- Oliveira, S.D.S.D.C.; Sarmento, E.D.S.; Marinho, V.H.; Pereira, R.R.; Fonseca, L.P.; Ferreira, I.M. Green Extraction of Annatto Seed Oily Extract and Its Use as a Pharmaceutical Material for the Production of Lipid Nanoparticles. Molecules 2022, 27, 5187. [Google Scholar] [CrossRef] [PubMed]
- Silva, E.K.; Meireles, M.A. Influence of the degree of inulin polymerization on the ultrasound-assisted encapsulation of annatto seed oil. Carbohydr. Polym. 2015, 133, 578–586. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
Study | Intervention | Population | Outcomes | |||
---|---|---|---|---|---|---|
Author, Year/Country | Fruit Species/Extraction Method | Fruit Characterization Analysis | Nanoparticle Type/Production Methodology | Nanoparticle Characterization | Biological Activity Assessed/Model/Treatment Regimen | Results |
Andréo-Filho et al., 2017/Brazil [3] | Bixa orellana oil (commercial) | Not evaluated | - Solid-Lipid Nanoparticles (SLN) Oil phase: octyl methoxycinnamate (OMC) or mineral oil (MO) or annatto oil (AO); - Low (heating) (P1) and high (high throughput and pressure homogenizer) energy process (P2); | OMC (P1): −50.41 ± 4.60 mV (ZP)/1.56 μm (PS) OMC (P2): −45.26 ± 2.23 mV (ZP)/0.20 μm (PS) OMC + AO (P1): −50.29 ± 2.67 mV (ZP)/1.42 μm (PS) OMC + AO (P2): −35.74 ± 3.31 mV (ZP)/0.20 μm (PS) MO (P2): −43.20 ± 2.16 mV (ZP)/0.20 μm (PS) | - Photoprotective efficacy (SPF) in vitro (L) with 250–450 nm wavelength range; - Skin permeation with ex vivo human abdominal skin (Franz diffusion cells); 0.01 g of OMC + AO (P1)/OMC + AO (P2)/OMC (P1)/OMC (P2); - Toxicity in 3 healthy humans (21–35 years-old); 2 mg/cm2 of OMC (P1)/OMC (P2)/MO (P2) spread in human’s forearms (MPT-FLIM skin images acquisition 0, 3 and 6 h after application); | ↓ PS in SNLs produced by high energy process; <5% of changes in PS and <10% variation of dispersion in SNLs with 5 weeks of storage; ↑ SPF value in OMC (P2) with 27.3 ± 1.2 (p < 0.05); Similar SPF values in OMC (P1), OMC + AO (P1) and OMC + AO (P2) with 22.0 ± 1.0, 19.7 ± 1.5 and 21.7 ± 1.2, respectively (p > 0.05); No significant skin permeation of SLNs with 111, 96, 93, and 82% of recoveries from OMC (P1), OMC (P2), OMC + AO (P1) and OMC + AO (P2), respectively; No changes in cellular metabolism and morphology of human skin after 6 h SLNs application; |
Carvalho et al., 2023/Brazil [17] | Bixa orellana oil (commercial) | 72.6 ± 0.9% of δ-tocotrienol | - Polymeric Bixa orellana Nanodispersions (PBN); - Nanoprecipitation (solvent displacement method); | PBN: First day: 53.15 ± 0.64 nm (PS)/0.574 ± 0.032 (PdI)/18.26 ± 0.59 mV (ZP) 30th day: 59.90 ± 3.63 nm (PS)/0.574 ± 0.032 (PdI)/19.66 ± 1.45 mV (ZP) | - Toxicity in 3-week-old Wistar rats (n = 4); Single intramuscular injection of PNB at doses of 1, 2.5, 5 and 10 mg/kg and 4% of Tween-80 as control group (clinical parameters, biochemical and hematological analysis and muscle histopathology); | No clinical signs of PBN toxicity 4 days after injection; No muscle toxicity with 1, 2.5, and 5 mg/kg of PBN; Mild edema, hemorrhage, presence of necrotic fibers, ↑ leukocyte infiltration, and connective tissue observed in muscles with 10 mg/kg of PBN; No alterations on CPK, LDH, and myoglobin levels with 1, 2.5, and 5 mg/kg of PBN; ↑ levels of CPK, LDH, and myoglobin with 10 mg/kg of PBN (not statistically significant); No changes on erythrogram and blood lipid profile with PBN at all doses; No liver and kidney toxicity with PBN at all doses; ↑ segmented neutrophils with PBN at 2.5 and 5 mg/kg (p < 0.05); ↑ eosinophils with PBN at 1 mg/kg (p < 0.05); |
Ferreira et al., 2021/Brazil [18] | Bixa Orellana oil (commercial) | Not evaluated | - Nanostrutured lipid carrier (NLC) loaded with 2 and 4% (w/w) of annatto oil and 10% of CP (NLCcp2 and NLCcp4) or 10% of MM (NLCmm2 and NLCmm4) - Fusion-emulsification and ultrasonication | NLCmm (2 and 4): ~170 to 190 nm (PS-DLS)/200 nm (PS-TEM)/~0.30 to 0.35 (PdI)/~−40 to −45 mV (ZP)/5.0 to 6.0 (pH)/Spherical morphology; NLCcp (2 and 4): ~170 to 190 nm (PS-DLS)/200 nm (PS-TEM)/~0.30 to 0.35 (PdI)/~−30 to −40 mV (ZP)/5.0 to 6.0 (pH)/Spherical morphology/78.92 ± 2.89% (EE NLCcp2)/50.54 ± 3.41% (EE NLCcp4); | Cytotoxicity on BALB/c 3T3 (fibroblasts) and HaCaT (keratinocytes) cells (MTT 24 h); Free annatto oil and NLCcp (2 and 4) at concentrations of 25–300 µg/mL; Leishmanicidal activity in vitro with L. major internalized in RAW 264.7 macrophages (resazurin cell viability assay); Free annatto oil and NLCcp (2 and 4) at concentrations of 2 and 5 µg/mL/Amphotericin B at 0.3 and 3.125 µg/mL/Glucantime at 200 and 400 µg/mL; | ↑ PS of NLCcp2 after 90 days (p < 0.05); Phase separation of NLCmm (2 and 4) after 30 days; ↑ [ZP] on NLC with annatto oil; ↓ size variation in NLCcp4 after 90 days; NLCmm and NLCcp (2 and 4) melting points ↓ raw materials (~57 °C); Lipid crystalline nature of NLCmm and NLCcp (2 and 4) (2θ scattered angles of 7, 19, 21 and 23°); ↑ fluidity of NLCmm and NLCcp (2 and 4); No leishmanicidal activity of free annatto oil; 70–90% leishmanicidal activity of NLCcp (2 and 4); Similar leishmanicidal activity (~90%) of NLCcp 2 and 4 at 5 µg/mL (p > 0.05); ↑ leishmanicidal activity of NLCcp 2 and 4 (5 µg/mL) than glucantime (p > 0.05) No cytotoxic effect of free annatto oil on HaCaT and fibroblasts; NLCcp2 181.93 ± 8.67 µg/mL and 257.11 ± 42.11 µg/mL IC50 values on fibroblasts and keratinocytes, respectively; NLCcp4 153.64 ± 7.63 µg/mL and 123.37 ± 24.98 µg/mL IC50 values on fibroblasts and keratinocytes, respectively; |
Gharpure et al., 2022/India [11] | Bixa Orellana/Leaves (BL), Seeds (BS) and Seed Coats (BSc) extracts/Boiling Water extraction | - Presence of flavonoids, phenolics, and glycosides on BL, BS and BSc (UV-Vis); - Aromatics and vinyl compounds on BL/Phenolics, flavonoids, aromatics and fatty acids on BS/phenolics, steroids, flavonoids, carotenoids, fatty acid, and hydrocarbons on BSc (GC-MS); - Beta-copaene and alloaromadendrene on BL/geranylgeraniol and andrographolide on BS/octadecenal, vaccenic acid and isocarpesterol on BSc (HR-MS); - Aromatics, flavonoids, steroids, alcohols, phenolics, and alkyl groups on BL, BS and BSc (NMR); | - Zinc Nanoparticles (ZnO) - Green synthesis with extracts of Leaves (L-ZnO), Seeds (S-ZnO) or Seed Coats (Sc-ZnO) of B. orellana follow by air-dried or calcination; | 341–353 nm (L-ZnO)/378–373 nm (S-ZnO)/327–337 nm (Sc-ZnO) before and after calcination, respectively (UV-vis absorption); 467–551 nm and 470–557 nm (L-ZnO)/468–554 nm and 469–552 nm (S-ZnO)/467–554 nm and 468–558 (Sc-ZnO) before and after calcination, respectively (PL); Spherical nanocrystallites 114–344 nm (L-ZnO)/spherical and rod-like nanocrystallites 220–440 nm and 330–660 nm, respectively (S-ZnO)/spherical and rod-like nanocrystallites 257–428 nm and 428–857 nm (Sc-ZnO) (FESEM); L-ZnO spherical (169–259 nm)/Sc_ZnO spherical (278–654 nm)/S-ZnO almond-like (220–440 nm) (TEM); 37.25 nm (L-ZnO), 37.38 nm (S-ZnO), 28.65 nm (Sc-ZnO) (XRD spectra crystallite size); 81.48% (Zn) 18.52% (O) (L-ZnO)/72.31% (Zn) 27.69% (O) (S-ZnO)/80.3% (Zn) 19.7% (O) (Sc-ZnO) (EDS); 2.301 m2/g (L-ZnO), 2.187 m2/g (S-ZnO) and 2.107 m2/g (Sc-ZnO) (BET surface area); 5 nm pores (all ZnO) (BJH); | Anti-bacterial activity in vitro on S. aureus, B. subtilis, E. coli, and P. aeruginosa) (Well-based diffusion); L-ZnO, S-ZnO, and Sc-ZnO calcinated and uncalcinated, and free BS, BL and BSc 0.625–10 mg/mL incubated overnight; Anti-fungal activity in vitro on Penicillium sp., F. oxysporum, A. flavus, and R. solani (Well-based diffusion) L-ZnO, S-ZnO, and Sc-ZnO calcinated and uncalcinated, and free BS, BL and BSc 10 mg/mL for 4–8 days; Citotoxicity in vitro on HCT-116 cancer cell (Trypan blue staining); L-ZnO, S-ZnO, and Sc-ZnO calcinated and uncalcinated, and free BS, BL and BSc 100 µg/mL for 48 h; | No anti-bacterial activity of free BL, BS, BSc, and calcinated ZnO nanoparticles; ↑ antibacterial potential of L-ZnO uncalcinated against S. aureus at 10, 5, and 2.5 mg/mL and B. subtilis at 10 and 5 mg/mL; ↑ antibacterial potencial of S-ZnO uncalcinated against E. coli at 10 mg/mL; ↑ antibacterial potencial of Sc-ZnO uncalcinated against S. aureus at 10 mg/mL; No anti-fungal activity and cytotoxicity of all extracts and ZnO nanoparticles; |
Machin et al., 2019/Cuba [19] | Bixa orellana/Seed essencial oil (AEO) Manual grinding with hydrodistillation | Not evaluated | - Nanocochleate loaded with AEO (NCA) prepared with purified phospholipids from soy lecithin - Dehydration-hydration method; | NCA: 52.3–96.1 nm (PS)/0.325–0.335 (PdI)/40.4 to 41.2 mV (ZP) Blank: <40 nm (PS)/0.44–0.52 (PdI)/31.1–31.3 mV (ZP) | - Anti-amastigote activity in vitro (L. amazonensis internalized in peritoneal macrophages from BALB/c mice) (Staining with Giemsa); - Cytotoxicity in vitro on isolated peritoneal macrophages from BALB/c mice (MTT 48 h); - Anti-leishmaniasis in vivo on female healthy BALB/c mice infected with L. Amazonensis (Clinical observations of body weight and deaths and cutaneous lesions measurements); Free AEO, NCA and glucantime at 30 mg/kg by intralesional route for 4 days/4 times; | ↓ anti-amastigote activity of NCA (IC50 = 15.4 ± 1.3) compared with AEO (IC50 = 8.5 ± 0.8) (p < 0.05); ↑ cytotoxicity of free AEO (CC50 = 61.8 ± 5.9 µg/mL) compared with NCA (CC50 = 94.6 ± 2.2 µg/mL) (p < 0.05); Mortality and weight loss rates < 10% in vivo with free AEO and NCA; ↓ lesions cutaneous size in vivo with NCA compared with AEO (p < 0.05) No statistical difference on lesions cutaneous size with glucantime compare with NCA (p > 0.05) No successful leishmaniasis cure in vivo with free AEO and NCA; |
Maitra et al., 2023/Bangladesh [10] | Bixa orellana/Aqueous Seed extract Heating water with sodium hydroxide | Peaks at 2930, 1615 and 1383 cm −1 (FTIR). | - Silver Nanoparticles (AgNPs) - Green synthesis with Bixa orellana seed extract | AgNPs: 420 nm (UV-vis absorption); 2926, 1610, and 1384 cm−1 (FTIR peaks); 40–100 °C ~4% weight loss/100–380 °C ~21% weight loss/350–450 ~54% weight loss (Thermogravimetric analysis); Crystal plane/20–40 nm (PS) (TEM); 92.9 nm (PS)/0.310 (PdI) (DLS) 53% nano silver/21% oxygen/25% carbon (EDX); | - Antioxidant activity (DPPH scavenging); AgNPs 50, 100, and 200 µg/mL for 30 min; - Antibacterial activity on S. aureus, E. coli, S. dysenteriae, and S. boydii (Disc diffusion assay); AgNPs 15, 40, and 80 µg for 24 h; - Antitumoral activity on MCF-7 (breast cancer) (MTS); AgNPs 3.90–37.25 µg/mL for 48 h; | 50.76, 62.78 and 78.86% DPPH radical scavenging of AgNPs 50, 100, and 200 µg/mL, respectively; 17 mm inhibition zone of AgNPs 80 µg dose-dependent on S. dysenteriae; 68.3% MCF-7 growth inhibition of AgNPs 31.25 µg/mL; 21.2% MCF-7 dose-dependent growth inhibition of AgNPs 3.9 µg/mL; |
Ntohogian et al., 2018/Greece [20] | Bixa orellana/powder and ultrafiltrated (UF) (commercial) | Presence of bixin and norbixin on annatto and UF annatto (FTIR peaks of 3400, 2920, 2855, 1690, 1603 and 1149 cm−1) ↑ crystallinity of annatto and UF annatto (XRD) No differences in FTIR spectral and XRD patterns of annatto and UF annatto; | - Chitosan Nanoparticles (CS) loaded with 20, 40, and 60% (w/w) of annatto (CNA) and UF annatto (CNAF) - Ionotropic gelation (2:1 TPP-CS ratio) | Blank: 250 ± 7 nm (PS)/36 ± 3 mV (ZP) CNA: 20% = 287 ± 5 nm (PS)/34 ± 3 mV (ZP)/66.40% (EE) 40% = 310 ± 8 nm (PS)/41 ± 3 mV (ZP)/68.25% (EE) 60% = 340 ± 11 nm (PS)/46 ± 3 mV (ZP)/67.25% (EE) CNAF: 20% = 263 ± 9 nm (PS)/35 ± 3 mV (ZP)/45.01% (EE) 40% = 284 ± 10 nm (PS)/40 ± 3 mV (ZP)/62.06% (EE) 60% = 303 ± 8 nm (PS)/47 ± 3 mV (ZP)/71.54% (EE) Cream-like CNA and CNAF sunscreen emulsions (CCNA and CCNAF): 5.44 to 5.88 (pH); | Cytotoxicity on HUVE cell line (MTT 24 h); CS, Free Annatto, CNA 40% and PLA at concentrations of 100, 200, 400, 800 and 1000 mg/mL; Photoprotective efficacy (SPF) by diluted solution transmittance method; CS, CAN and CNAF 20, 40 and 60%; | No alterations on nanoparticles morphology with different annatto %; ↑ PS from 250 to 287–340 nm with ↑ annatto %; ↑ PS from 250 to 263–303 nm with ↑ UF annatto %; CNA and CNAF were amorphous by XRD analysis; ↑ CNA yield of 70.83%; ↓ CNAF yield of 46.34%; ↑ annatto % results on ↓ CNA yield; ↑ UF annatto % results on ↑ CNAF yield; Similar low cytotoxicity of CNA and CNAF on HUVE cell line compared to PLA polyester; No signs of color alteration and phase separation of CCNA and CCNAF with 90 days of storage (−4 and 25 °C); ↑ viscosity in CCNAF 20% sunscreen emulsions with 50 to 100 rmps; ↑ SPF value of CCNA (2.63–2.24) and CCNAF (2.76–2.56) compare with blank (1.00); No ↑ on SPF of nanoparticles with ↑ on annatto and UF annatto %; |
Santos et al., 2021/Brazil [9] | Bixa orellana/seed extract/Solvent extraction (ethanol) | Presence of bixin and norbixin (UV-vis peaks of 353, 430, 455, and 482 nm and FTIR peaks of 1038, 989, and 845 cm−1) | - Cellulose Acetate/Annatto Nanofibers (CAAN) - Cellulose Acetate Nanofibers (CAN) - Electrospinning | CAAN: 269 ± 101 nm (PS) 0.1% (w/w) of annatto extract CAN: 468 ± 173 nm (PS) | Cytotoxicity by HET-CAM test (5 min) Cell proliferation in mouse (WT C57BL6) fibroblast primary culture cells (MTT 48 h) Biocompatibility and wound healing activity in Wistar rats (n = 4) 10 mm2 of CAAN subcutaneous inserted for 60 days | 2.12 ± 0.24% of annatto global extraction yield; Endothermic peak of CAAN on 100 °C; 17.2% of CAAN degree of crystallinity; 80% of CANN mass loss at 405 °C; CAAN presented smooth and flexible mats with porous interconnections; 0 irritancy index for CAAN at all time points; No cytotoxic effect of CAAN on fibroblast cells after 48 h; ↑ attachment and spread of fibroblasts on CAAN surface after 48 h; No scarring after 15 days of CAN and CAAN implantation; Presence of residual CAAN without inflammation signs 60 days post-insertion; |
Santos et al., 2023/Brazil [21] | Bixa orellana seed extract/Solvent extraction (ethanol) | Bixin and norbixin absorption band at 410 nm (UV-vis spectroscopy) | - Cellulose Acetate/Annatto Nanofibers (CAAN) - Cellulose Acetate Nanofibers (CAN) - Electrospinning | CAAN: 420 ± 212 nm (PS) CAN: 284 ± 130 nm (PS) | Cytotoxicity (MTT 2 and 7 days), cell morphology (SEM) and differentiation analysis (RT-qPCR) on myoblast cells (C2C12) 16 mm disk of CAN and CAAN | 50 ± 3° contact angle of CAAN with water = hydrophilic property; CAAN presented smooth and homogenous porous interconnections mats; ↓ nanofiber stiffnesses after adding annatto; 98% of C2C12 cell adherence on CAAN surface (no difference compared with CAN); Similar C2C12 cell viability on CAN and CAAN after 2 days; ↑ C2C12 cell viability on CAAN compared with CAN after 7 days; ↑ C2C12 cell viability on CAAN surface compared with CAN after 2 days; Aligned and elongated C2C12 cell morphology on CAN surface; Thinner and randomly distributed C2C12 cell morphology on CAAN surface; ↑ C2C12 myogenic markers (Myf5, MyoD, MyoG, and Desmin) gene expression on CAAN after 7 days compared with CAN; ↓ C2C12 myogenic markers Myf5, MyoD, Desmin, and ↑ MyoG gene expression on CAAN after 14 days compared with CAN; |
Quality Analysis | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Author | Year | Experimental Design/Scientific Report | Results | Ethical Statement | ||||||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | ||
Andréo-Filho et al. [3] | 2017 | - | ||||||||||||||||||
Carvalho et al. [17] | 2023 | |||||||||||||||||||
Ferreira et al [18] | 2021 | - | - | |||||||||||||||||
Gharpure et al. [11] | 2023 | - | - | |||||||||||||||||
Machin et al. [19] | 2019 | |||||||||||||||||||
Maitra et al. [10] | 2023 | - | - | |||||||||||||||||
Ntohogian et al. [20] | 2018 | - | - | |||||||||||||||||
Santos et al. [9] | 2021 | |||||||||||||||||||
Santos et al. [21] | 2023 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, V.R.P.d.; Martins, N.O.; dos Santos, C.R.; Damas, E.B.d.O.; Araujo, P.L.; Silva, G.d.O.; Joanitti, G.A.; Carneiro, M.L.B. Annatto (Bixa orellana)-Based Nanostructures for Biomedical Applications—A Systematic Review. Pharmaceutics 2024, 16, 1275. https://doi.org/10.3390/pharmaceutics16101275
Silva VRPd, Martins NO, dos Santos CR, Damas EBdO, Araujo PL, Silva GdO, Joanitti GA, Carneiro MLB. Annatto (Bixa orellana)-Based Nanostructures for Biomedical Applications—A Systematic Review. Pharmaceutics. 2024; 16(10):1275. https://doi.org/10.3390/pharmaceutics16101275
Chicago/Turabian StyleSilva, Vitória Regina Pereira da, Natália Ornelas Martins, Carolina Ramos dos Santos, Elysa Beatriz de Oliveira Damas, Paula Lauane Araujo, Gabriella de Oliveira Silva, Graziella Anselmo Joanitti, and Marcella Lemos Brettas Carneiro. 2024. "Annatto (Bixa orellana)-Based Nanostructures for Biomedical Applications—A Systematic Review" Pharmaceutics 16, no. 10: 1275. https://doi.org/10.3390/pharmaceutics16101275
APA StyleSilva, V. R. P. d., Martins, N. O., dos Santos, C. R., Damas, E. B. d. O., Araujo, P. L., Silva, G. d. O., Joanitti, G. A., & Carneiro, M. L. B. (2024). Annatto (Bixa orellana)-Based Nanostructures for Biomedical Applications—A Systematic Review. Pharmaceutics, 16(10), 1275. https://doi.org/10.3390/pharmaceutics16101275