In Vitro Analysis of Aerodynamic Properties and Co-Deposition of a Fixed-Dose Combination of Fluticasone Furoate, Umeclidinium Bromide, and Vilanterol Trifenatate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Life-Mimicking Testing System
2.3. Delivered Dose Against Different Flow Rates
2.4. Delivered Dose Uniformity
2.5. Microscopic and Elemental Analysis
2.6. High-Performance Liquid Chromatography (HPLC)
2.7. Statistical Analysis
3. Results
3.1. Analysis of FF/UMEC/VI by HPLC
3.2. FF/UMEC/VI Delivered from the Ellipta™ DPI Were Fine Particles and In Vitro Could Reach the Small Airway Stages
3.3. Delivered Doses of FF/UMEC/VI from the Ellipta™ DPI Mimicked the Testing System over a Period of 30 Days
3.4. SEM Images Demonstrated Co-Deposition of Triple-Drug Aerosols in Each Stage of the ACI
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Van den Berge, M.; Ten Hacken, N.H.T.; Cohen, J.; Douma, W.R.; Postma, D.S. Small airway disease in asthma and COPD: Clinical implications. Chest 2011, 139, 412–423. [Google Scholar] [CrossRef] [PubMed]
- Burgel, P.R. The role of small airways in obstructive airway diseases. Eur. Respir. Rev. 2011, 20, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Burgel, P.R.; Bourdin, A.; Chanez, P.; Chabot, F.; Chaouat, A.; Chinet, T.; de Bric, J.; Devillier, P.; Deschildre, A.; Didier, A.; et al. Update on the roles of distal airways in COPD. Eur. Respir. Rev. 2011, 20, 7–22. [Google Scholar] [CrossRef] [PubMed]
- Bourbeau, J.; Bafadhel, M.; Barnes, N.C.; Compton, C.; Di Boscio, V.; Lipson, D.A.; Jones, P.W.; Martin, N.; Weiss, G.; Halpin, D.M.G. Benefit/Risk Profile of Single-Inhaler Triple Therapy in COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 2021, 16, 499–517. [Google Scholar] [CrossRef]
- Oba, Y.; Anwer, S.; Maduke, T.; Patel, T.; Dias, S. Effectiveness and tolerability of dual and triple combination inhaler therapies compared with each other and varying doses of inhaled corticosteroids in adolescents and adults with asthma: A systematic review and network meta-analysis. Cochrane Database Syst. Rev. 2022, 12, CD013799. [Google Scholar]
- Ismaila, A.S.; Haeussler, K.; Czira, A.; Youn, J.H.; Malmenas, M.; Risebrough, N.A.; Agarwal, J.; Nassim, M.; Sharma, R.; Compton, C.; et al. Fluticasone Furoate/Umeclidinium/Vilanterol (FF/UMEC/VI) Triple Therapy Compared with Other Therapies for the Treatment of COPD: A Network Meta-Analysis. Adv. Ther. 2022, 39, 3957–3978. [Google Scholar] [CrossRef]
- Barnes, P.J. Distribution of receptor targets in the lung. Proc. Am. Thorac. Soc. 2004, 1, 345–351. [Google Scholar] [CrossRef]
- Farkas, A.; Horvath, A.; Tomisa, G.; Kovacs, T.; Bocskei, R.M.; Kis, E.; Varga, J. Do we really target the receptors? Deposition and co-deposition of ICS-LABA fixed combination drugs. Eur. J. Pharm. Sci. 2022, 174, 106186. [Google Scholar] [CrossRef]
- Lipson, D.A.; Barnhart, F.; Brealey, N.; Brooks, J.; Criner, G.J.; Day, N.C.; Dransfielfd, M.T.; Halpin, D.M.G.; Han, M.K.; Jones, C.E.; et al. Once-daily triple therapy inhaler for COPD. Drug Ther. Bull. 2018, 56, 42–45. [Google Scholar]
- Chow, M.Y.T.; Tai, W.; Chang, R.Y.K.; Chan, H.K.; Kwok, P.C.L. In vitro-in vivo correlation of cascade impactor data for orally inhaled pharmaceutical aerosols. Adv. Drug Deliv. Rev. 2021, 177, 113952. [Google Scholar] [CrossRef]
- Nichols, S.C.; Mitchell, J.P.; Shelton, C.M.; Roberts, D.L. Good cascade impactor practice (GCIP) and considerations for “in-use” specification. AAPS PharmSciTech. 2013, 14, 375–390. [Google Scholar] [CrossRef] [PubMed]
- The United States Pharmacopeial Convention Committee of Revision (Ed.) General Chapter <601> Inhalation and Nasal Drug Products—Aerosol, Sprays, and Powders—Performance Quality Tests. In United States Pharmacopeia and National Formulary (USP 47-NF 42 Online 2024 ed.); United State Pharmacopeial Convention: Frederick, MD, USA, 2024. [Google Scholar]
- Ruzycki, C.A.; Martin, A.R.; Finlay, W.H. An exploration of factors affecting in vitro deposition of pharmaceutical aerosols in the Alberta idealize throat. J. Aerosol Med. Pulm. Drug Deliv. 2019, 32, 1–13. [Google Scholar] [CrossRef] [PubMed]
- The United States Pharmacopeial Convention Committee of Revision (Ed.) General Chapter <1603> Good Cascade Impactor Practices. In United States Pharmacopeia and National Formulary (USP 47-NF 42 Online 2024 ed.); United State Pharmacopeial Convention: Frederick, MD, USA, 2024. [Google Scholar]
- Khor, Y.H.; Feltis, B.N.; Reid, D.W.; Ward, C.; Johns, D.P.; Wood-Baker, R.; Walters, E.H. Airway cell and cytokine changes in early asthma deterioration after inhaled corticosteroid reduction. Clin. Exp. Allergy 2007, 37, 1189–1198. [Google Scholar] [CrossRef] [PubMed]
- Puckett, J.L.; Taylor, R.W.; Leu, S.Y.; Guijon, O.L.; Aledia, A.S.; Galant, S.P.; George, S.C. An elevated bronchodilator response predicts large airway inflammation in mild asthma. Pediatr. Pulmonol. 2010, 45, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Theophilus, A.; Moore, A.; Prime, D.; Rossomanno, S.; Whitcher, B.; Chrystyn, H. Co-deposition of salmeterol and fluticasone propionate by a combination inhaler. Int. J. Pharm. 2006, 313, 14–22. [Google Scholar] [CrossRef]
- Giembycz, M.A.; Kaur, M.; Leigh, R.; Newton, R. A Holy Grail of asthma management: Toward understanding how long-acting beta(2)-adrenoceptor agonists enhance the clinical efficacy of inhaled corticosteroids. Br. J. Pharmacol. 2008, 153, 1090–1104. [Google Scholar] [CrossRef]
- Calzetta, L.; Matera, M.G.; Facciolo, F.; Cazzola, M.; Rogliani, P. Beclomethasone dipropionate and formoterol fumarate synergistically interact in hyperresponsive medium bronchi and small airways. Respir. Res. 2018, 19, 65. [Google Scholar] [CrossRef]
- Calzetta, L.; Matera, M.G.; Cazzola, M.; Rogliani, P. Optimizing the Development Strategy of Combination Therapy in Respiratory Medicine: From Isolated Airways to Patients. Adv. Ther. 2019, 36, 3291–3298. [Google Scholar] [CrossRef]
- Jackson, C.; Lipworth, B. Optimizing inhaled drug delivery in patients with asthma. Br. J. Gen. Pract. 1995, 45, 683–687. [Google Scholar]
- Usmani, O.; Li, G.; De Backer, J.; Sadafi, H.; Wu, L.; Marshall, J. Modeled small airways lung deposition of two fixed-dose triple therapy combinations assessed with in silico functional respiratory imaging. Respir. Res. 2023, 24, 226. [Google Scholar] [CrossRef]
- Hamilton, M.; Leggett, R.; Pang, C.; Charles, S.; Gillett, B.; Prime, D. In vitro dosing performance of the ELLIPTA® dry powder inhaler using asthma and COPD patient inhalation profiles replicated with the electronic lung (eLung). J. Aerosol Med. Pulm. Drug Deliv. 2015, 28, 498–506. [Google Scholar] [CrossRef] [PubMed]
- Buttini, F.; Brambilla, G.; Copelli, D.; Sisti, V.; Balducci, A.G.; Bettini, R.; Pasquali, I. Effect of flow rate on in vitro aerodynamic performance of NEXThaler® in comparison with Diskus® and Turbohaler® dry powder inhalers. J. Aerosol Med. Pulm. Drug Deliv. 2016, 29, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Clark, A.R.; Weers, J.G.; Dhand, R. The confusing world of dry powder inhalers: It is all about inspiratory pressures, not inspiratory flow rates. J. Aerosol Med. Pulm. Drug Deliv. 2020, 33, 1–11. [Google Scholar] [CrossRef] [PubMed]
Flow Rate (L/min) | Stage of NGI | Fluticasone Furoate | p-Values | Umeclidinium Bromide | p-Values | Vilanterol Trifenatate | p-Values |
---|---|---|---|---|---|---|---|
1 | 4.81 ± 0.80 | 0.408 | 2.69 ± 0.68 | 0.796 | 2.29 ± 1.17 | 0.441 | |
2 | 8.32 ± 0.30 | 0.996 | 5.51 ± 0.81 | 0.444 | 2.17 ± 0.22 | 0.083 | |
3 | 8.19 ± 0.45 | 0.408 | 8.82 ± 1.42 | 0.796 | 3.66 ± 0.59 | 0.441 | |
4 | 6.77 ± 1.32 | 0.372 | 12.12 ± 0.71 | 0.138 | 8.96 ± 1.44 | 0.133 | |
30 | 5 | 3.20 ± 0.33 | 0.895 | 8.28 ± 1.47 | 0.703 | 7.19 ± 1. 96 | 0.125 |
6 | 0.88 ± 0.29 | 0.851 | 3.09 ± 1.81 | 0.770 | 1.83 ± 0.53 | 0.744 | |
7 | 0.67 ± 0.14 | 0.061 | 2.35 ± 1.42 | 0.703 | 0.14 ± 0.18 | 0.743 | |
1 | 6.83 ± 0.78 | 0.693 | 2.86 ± 0.92 | 0.181 | 2.50 ± 0.14 | 0.961 | |
2 | 7.84 ± 1.09 | 0.730 | 6.14 ± 3.02 | 0.569 | 2.62 ± 0.27 | 0.473 | |
3 | 9.13 ± 5.00 | 0.298 | 12.13 ± 4.38 | 0.422 | 8.60 ± 5.56 | 0.235 | |
4 | 5.51 ± 0.69 | 0.446 | 8.48 ± 2.68 | 0.123 | 7.33 ± 0.84 | 0.333 | |
60 | 5 | 3.37 ± 0.19 | 0.757 | 6.32 ± 2.19 | 0.311 | 5.34 ± 1.46 | 0.559 |
6 | 3.43 ± 2.39 | 0.135 | 4.13 ± 1.24 | 0.716 | 3.78 ± 0.62 | 0.706 | |
7 | 1.71 ± 0.03 | 1.00 | 4.99 ± 3.95 | 0.867 | 2.48 ± 0.62 | 0.336 | |
1 | 6.92 ± 0.62 | 0.693 | 4.24 ± 1.04 | 0.398 | 2.96 ± 0.14 | 0.684 | |
2 | 8.66 ± 0.53 | 0.271 | 9.91 ± 1.42 | 0.146 | 2.88 ± 0.28 | 0.701 | |
3 | 6.14 ± 0.22 | 0.741 | 9.30 ± 1.68 | 0.312 | 5.16 ± 0.22 | 0.443 | |
4 | 6.10 ± 0.44 | 0.718 | 10.37 ± 1.67 | 0.917 | 8.07 ± 0.52 | 0.129 | |
90 | 5 | 3.12 ± 0.67 | 0.704 | 5.68 ± 1.29 | 0.473 | 5.47 ± 0.27 | 0.529 |
6 | 2.12 ± 0.56 | 0.222 | 5.01 ± 0.47 | 0.639 | 3.63 ± 0.14 | 0.523 | |
7 | 1.45 ± 0.54 | 0.233 | 5.58 ± 1.23 | 0.527 | 2.48 ± 0.77 | 0.791 |
Flow Rate (L/min) | Stage of NGI | Mass of Fluticasone µg % | Mass of Umeclidinium µg % | Mass of Vilanterol µg % | |||
---|---|---|---|---|---|---|---|
30 | Metal inlet | 24.52 ± 4.26 | 24.52 ± 4.26 | 9.48 ± 1.98 | 15.16 ± 3.16 | 3.76 ± 0.38 | 15.04 ± 1.52 |
Preseparator | 42.02 ± 2.82 | 42.02 ± 2.82 | 25.62 ± 2.16 | 40.99 ± 3.46 | 14.60 ± 0.86 | 58.40 ± 3.43 | |
Stages 1–7 | 32.85 ± 2.02 | 32.85 ± 2.02 | 26.79 ± 1.90 | 42.86 ± 3.04 | 6.57 ± 0.66 | 26.26 ± 2.64 | |
Micro-orifice collector | 0.62 ± 0.63 | 0.62 ± 0.63 | 0.62 ± 0.41 | 0.99 ± 0.66 | 0.11 ± 0.18 | 0.42 ± 0.73 | |
FPF < 2 µm | 5.38 ± 0.42 | 5.38 ± 0.42 | 9.19 ± 1.50 | 14.71 ± 2.40 | 2.37 ± 0.57 | 9.48 ± 2.29 | |
60 | Metal inlet | 15.77 ± 9.05 | 15.77 ± 9.05 | 4.03 ± 3.30 | 6.44 ± 4.84 | 1.89 ± 1.59 | 7.56 ± 6.36 |
Preseparator | 41.32 ± 5.41 | 41.32 ± 5.41 | 19.55 ± 5.73 | 31.28 ± 9.17 | 14.45 ± 0.81 | 57.78 ± 3.24 | |
Stages 1–7 | 41.18 ± 4.47 | 41.18 ± 4.47 | 35.42 ± 6.17 | 56.67 ± 9.87 | 8.10 ± 0.65 | 32.40 ± 2.58 | |
Micro-orifice collector | 1.72 ± 0.44 | 1.72 ± 0.44 | 3.51 ± 1.68 | 5.62 ± 2.69 | 0.57 ± 0.19 | 2.26 ± 0.74 | |
FPF < 2 µm | 17.95 ± 3.37 | 17.95 ± 3.37 | 23.04 ± 1.60 | 36.87 ± 2.56 | 6.03 ± 0.80 | 24.11 ± 3.20 | |
90 | Metal inlet | 23.09 ± 0.87 | 23.09 ± 0.87 | 7.47 ± 0.48 | 11.95 ± 0.76 | 2.78 ± 0.04 | 11.13 ± 0.17 |
Preseparator | 41.30 ± 2.70 | 41.30 ± 2.70 | 20.61 ± 1.81 | 32.98 ± 2.90 | 14.15 ± 0.30 | 56.61 ± 1.19 | |
Stages 1–7 | 34.51 ± 2.63 | 34.51 ± 2.63 | 31.31 ± 1.99 | 50.10 ± 3.18 | 7.66 ± 0.23 | 30.64 ± 0.90 | |
Micro-orifice collector | 1.10 ± 0.5 | 1.10 ± 0.5 | 3.11 ± 0.42 | 4.98 ± 0.67 | 0.41 ± 0.06 | 1.62 ± 0.23 | |
FPF < 2 µm | 13.89 ± 2.32 | 13.89 ± 2.32 | 19.76 ± 1.20 | 31.62 ± 1.92 | 5.32 ± 0.39 | 21.27 ± 1.56 |
Drug | Flow Rate (L/min) | DD (%) | FPF (%) | p-Values | FPD (µg) | MMAD (µm) | p-Values | GSD |
---|---|---|---|---|---|---|---|---|
Fluticasone furoate | 30 | 71.88 ± 2.53 | 20.34 ± 1.36 | 20.3 ± 1.4 | 3.12 ± 0.00 | 1.58 ± 0.02 | ||
60 | 69.05 ± 7.74 | 29.35 ± 6.85 | 29.4 ± 6.9 | 2.18 ± 0.03 | 1.49 ± 0.20 | |||
90 | 71.00 ± 2.09 | 20.03 ± 2.53 | 20.0 ± 2.5 | 1.77 ± 0.01 | 1.73 ± 0.05 | |||
Umeclidinium bromide | 30 | 88.14 ± 2.53 | 35.64 ± 2.68 | 22.1 ± 1.6 | 2.37 ± 0.08 | 2.28 ± 0.05 | ||
60 | 82.99 ± 3.01 | 41.62 ± 7.83 | 25.9 ± 4.9 | 1.75 ± 0.22 | 1.91 ± 0.54 | |||
90 | 75.77 ± 4.54 | 40.93 ± 3.30 | 25.6 ± 2.1 | 1.22 ± 0.03 | 1.89 ± 0.13 | |||
Vilanterol trifenatate | 30 | 99.46 ± 3.77 | 22.10 ± 3.60 | 5.5 ± 0.9 | 2.37 ± 0.05 | 2.49 ± 0.52 | ||
60 | 95.31 ± 3.28 | 30.43 ± 4.80 | 7.6 ± 1.2 | 1.62 ± 0.10 | 2.53 ± 0.15 | |||
90 | 90.27 ± 2.45 | 26.42 ± 1.38 | 6.6 ± 0.3 | 1.22 ± 0.02 | 2.29 ± 0.11 |
Stage of ACI | Mass of Fluticasone | Mass of Umeclidinium | Mass of Vilanterol | |||
---|---|---|---|---|---|---|
μg | % | μg | % | μg | % | |
−1 | 7.66 ± 0.50 | 7.66 ± 0.50 | 6.19 ± 1.04 | 9.91 ± 1.67 | 2.04 ± 0.05 | 8.15 ± 0.18 |
0 | 9.52 ± 0.70 | 9.52 ± 0.70 | 4.35 ± 0.48 | 6.96 ± 0.77 | 2.21 ± 0.04 | 8.85 ± 0.14 |
1 | 10.74 ± 0.92 | 10.74 ± 0.92 | 5.20 ± 0.56 | 8.32 ± 0.90 | 2.08 ± 0.07 | 8.32 ± 0.29 |
2 | 8.36 ± 1.14 | 8.36 ± 1.14 | 5.69 ± 0.53 | 9.11 ± 0.85 | 2.24 ± 0.13 | 8.97 ± 0.52 |
3 | 7.67 ± 0.12 | 7.67 ± 0.12 | 7.06 ± 0.14 | 11.29 ± 0.22 | 2.77 ± 0.05 | 11.06 ± 0.18 |
4 | 5.71 ± 0.70 | 5.71 ± 0.70 | 4.99 ± 0.31 | 7.98 ± 0.49 | 2.26 ± 0.07 | 9.03 ± 0.29 |
5 | 4.33 ± 0.35 | 4.33 ± 0.35 | 6.71 ± 1.57 | 10.74 ± 2.51 | 1.60 ± 0.07 | 6.39 ± 0.26 |
6 | 3.88 ± 0.21 | 3.88 ± 0.21 | 2.86 ± 0.65 | 4.57 ± 1.04 | 1.56 ± 0.04 | 6.22 ± 0.15 |
Stage 0–6 | 50.21 ± 2.61 | 50.21 ± 2.61 | 36.86 ± 1.43 | 58.97 ± 2.28 | 14.71 ± 0.42 | 58.84 ± 1.67 |
Stage 3–6 | 21.59 ± 1.70 | 21.59 ± 1.70 | 21.61 ± 1.93 | 34.58 ± 3.08 | 8.18 ± 0.58 | 32.7 ± 2.31 |
Stage 3–5 | 17.71 ± 1.68 | 17.71 ± 1.68 | 18.76 ± 1.11 | 30.01 ± 1.77 | 6.62 ± 0.59 | 26.48 ± 2.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maneechotesuwan, K.; Sawatdee, S.; Srichana, T. In Vitro Analysis of Aerodynamic Properties and Co-Deposition of a Fixed-Dose Combination of Fluticasone Furoate, Umeclidinium Bromide, and Vilanterol Trifenatate. Pharmaceutics 2024, 16, 1334. https://doi.org/10.3390/pharmaceutics16101334
Maneechotesuwan K, Sawatdee S, Srichana T. In Vitro Analysis of Aerodynamic Properties and Co-Deposition of a Fixed-Dose Combination of Fluticasone Furoate, Umeclidinium Bromide, and Vilanterol Trifenatate. Pharmaceutics. 2024; 16(10):1334. https://doi.org/10.3390/pharmaceutics16101334
Chicago/Turabian StyleManeechotesuwan, Kittipong, Somchai Sawatdee, and Teerapol Srichana. 2024. "In Vitro Analysis of Aerodynamic Properties and Co-Deposition of a Fixed-Dose Combination of Fluticasone Furoate, Umeclidinium Bromide, and Vilanterol Trifenatate" Pharmaceutics 16, no. 10: 1334. https://doi.org/10.3390/pharmaceutics16101334
APA StyleManeechotesuwan, K., Sawatdee, S., & Srichana, T. (2024). In Vitro Analysis of Aerodynamic Properties and Co-Deposition of a Fixed-Dose Combination of Fluticasone Furoate, Umeclidinium Bromide, and Vilanterol Trifenatate. Pharmaceutics, 16(10), 1334. https://doi.org/10.3390/pharmaceutics16101334