Lipid Nanoparticle-Mediated Liver-Specific Gene Therapy for Hemophilia B
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Lipid Synthesis
2.2.2. Galactosylated Lipid Nanocarrier (Gal-LNC) Preparation
2.2.3. Characterization of Liposomes by Dynamic Light SCATTERING (DLS) Technique
2.2.4. pDNA Gel Retardation
2.2.5. Heparin Displacement
2.2.6. DNase Sensitivity Assay
2.2.7. In Vitro Cytotoxicity
2.2.8. Uptake Assay
2.2.9. pDNA Transfection
2.2.10. FIX Plasmid Construct
2.2.11. Western Blot Analysis
2.2.12. Quantitative Real-Time Reverse Transcription-PCR (qRT-PCR)
2.2.13. Lyophilization of Liposome
2.2.14. In Vivo Imaging
2.2.15. Statistical Analysis
3. Results
3.1. Characterization of LNC and Gal-LNC
3.2. Liposomes Complexation Study of pDNA
3.3. In Vitro Compatibility of LNC and Gal-LNC
3.4. Screening of Liposome Efficiency by Transfecting pDNA
3.5. FIX-L Expression by Gal-LNC 5
3.6. Biodistribution of Gal-LNC 5
4. Discussion
Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iorio, A.; Stonebraker, J.S.; Chambost, H.; Makris, M.; Coffin, D.; Herr, C.; Germini, F. Establishing the Prevalence and Prevalence at Birth of Hemophilia in Males: A Meta-analytic Approach Using National Registries. Ann. Intern. Med. 2019, 171, 540–546. [Google Scholar] [CrossRef] [PubMed]
- Stonebraker, J.S.; Bolton-Maggs, P.H.; Soucie, J.M.; Walker, I.; Brooker, M. A study of variations in the reported haemophilia A prevalence around the world. Haemoph. Off. J. World Fed. Hemoph. 2010, 16, 20–32. [Google Scholar] [CrossRef] [PubMed]
- Knobe, K.; Berntorp, E. Haemophilia and joint disease: Pathophysiology, evaluation, and management. J. Comorbidity 2011, 1, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Peyvandi, F.; Garagiola, I.; Young, G. The past and future of haemophilia: Diagnosis, treatments, and its complications. Lancet 2016, 388, 187–197. [Google Scholar] [CrossRef]
- Armenteros-Yeguas, V.; Gárate-Echenique, L.; Tomás-López, M.A.; Cristóbal-Domínguez, E.; Moreno-de Gusmão, B.; Miranda-Serrano, E.; Moraza-Dulanto, M.I. Prevalence of difficult venous access and associated risk factors in highly complex hospitalised patients. J. Clin. Nurs. 2017, 26, 4267–4275. [Google Scholar] [CrossRef]
- Srivastava, A. Dose and response in haemophilia—Optimization of factor replacement therapy. Br. J. Haematol. 2004, 127, 12–25. [Google Scholar] [CrossRef]
- Srivastava, A.; You, S.K.; Ayob, Y.; Chuansumrit, A.; de Bosch, N.; Perez Bianco, R.; Ala, F. Hemophilia treatment in developing countries: Products and protocols. Semin. Thromb. Hemost. 2005, 31, 495–500. [Google Scholar] [CrossRef]
- Mathews, V.; Viswabandya, A.; Baidya, S.; George, B.; Nair, S.; Chandy, M.; Srivastava, A. Surgery for hemophilia in developing countries. Semin. Thromb. Hemost. 2005, 31, 538–543. [Google Scholar] [CrossRef]
- Cancio, M.I.; Reiss, U.M.; Nathwani, A.C.; Davidoff, A.M.; Gray, J.T. Developments in the treatment of hemophilia B: Focus on emerging gene therapy. Appl. Clin. Genet. 2013, 6, 91–101. [Google Scholar] [CrossRef]
- Rogers, G.L.; Herzog, R.W. Gene therapy for hemophilia. Front. Biosci. 2015, 20, 556–603. [Google Scholar] [CrossRef]
- Soroka, A.B.; Feoktistova, S.G.; Mityaeva, O.N.; Volchkov, P.Y. Gene Therapy Approaches for the Treatment of Hemophilia B. Int. J. Mol. Sci. 2023, 24, 10766. [Google Scholar] [CrossRef]
- Nathwani, A.C. Gene therapy for hemophilia. Hematol. Am. Soc. Hematol. Educ. Program 2019, 2019, 1–8. [Google Scholar] [CrossRef] [PubMed]
- VandenDriessche, T.; Chuah, M.K. Hyperactive Factor IX Padua: A Game-Changer for Hemophilia Gene Therapy. Mol. Ther. J. Am. Soc. Gene Ther. 2018, 26, 14–16. [Google Scholar] [CrossRef] [PubMed]
- Mendell, J.R.; Connolly, A.M.; Lehman, K.J.; Griffin, D.A.; Khan, S.Z.; Dharia, S.D.; Quintana-Gallardo, L.; Rodino-Klapac, L.R. Testing preexisting antibodies prior to AAV gene transfer therapy: Rationale, lessons and future considerations. Mol. Ther. Methods Clin. Dev. 2022, 25, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Louis Jeune, V.; Joergensen, J.A.; Hajjar, R.J.; Weber, T. Pre-existing anti-adeno-associated virus antibodies as a challenge in AAV gene therapy. Hum. Gene Ther. Methods 2013, 24, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Klamroth, R.; Hayes, G.; Andreeva, T.; Gregg, K.; Suzuki, T.; Mitha, I.H.; Hardesty, B.; Shima, M.; Pollock, T.; Slev, P.; et al. Global Seroprevalence of Pre-existing Immunity Against AAV5 and Other AAV Serotypes in People with Hemophilia A. Hum. Gene Ther. 2022, 33, 432–441. [Google Scholar] [CrossRef]
- High, K.A.; Anguela, X.M. Adeno-associated viral vectors for the treatment of hemophilia. Hum. Mol. Genet. 2015, 25, R36–R41. [Google Scholar] [CrossRef]
- Brimble, M.A.; Reiss, U.M.; Nathwani, A.C.; Davidoff, A.M. New and improved AAVenues: Current status of hemophilia B gene therapy. Expert Opin. Biol. Ther. 2016, 16, 79–92. [Google Scholar] [CrossRef]
- Monahan, P.E.; Négrier, C.; Tarantino, M.; Valentino, L.A.; Mingozzi, F. Emerging Immunogenicity and Genotoxicity Considerations of Adeno-Associated Virus Vector Gene Therapy for Hemophilia. J. Clin. Med. 2021, 10, 2471. [Google Scholar] [CrossRef]
- Ertl, H.C.J. Immunogenicity and toxicity of AAV gene therapy. Front. Immunol. 2022, 13, 975803. [Google Scholar] [CrossRef]
- Fu, Q.; Polanco, A.; Lee, Y.S.; Yoon, S. Critical challenges and advances in recombinant adeno-associated virus (rAAV) biomanufacturing. Biotechnol. Bioeng. 2023, 120, 2601–2621. [Google Scholar] [CrossRef] [PubMed]
- Alton, E.; Armstrong, D.K.; Ashby, D.; Bayfield, K.J.; Bilton, D.; Bloomfield, E.V.; Boyd, A.C.; Brand, J.; Buchan, R.; Calcedo, R.; et al. Repeated nebulisation of non-viral CFTR gene therapy in patients with cystic fibrosis: A randomised, double-blind, placebo-controlled, phase 2b trial. Lancet Respir. Med. 2015, 3, 684–691. [Google Scholar] [CrossRef] [PubMed]
- Coelho, T.; Adams, D.; Silva, A.; Lozeron, P.; Hawkins, P.N.; Mant, T.; Perez, J.; Chiesa, J.; Warrington, S.; Tranter, E.; et al. Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N. Engl. J. Med. 2013, 369, 819–829. [Google Scholar] [CrossRef] [PubMed]
- Charbon, V.; Latour, I.; Lambert, D.M.; Buc-Calderon, P.; Neuvens, L.; De Keyser, J.L.; Gallez, B. Targeting of drug to the hepatocytes by fatty acids. Influence of the carrier (albumin or galactosylated albumin) on the fate of the fatty acids and their analogs. Pharm. Res. 1996, 13, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Merwin, J.R.; Noell, G.S.; Thomas, W.L.; Chiou, H.C.; DeRome, M.E.; McKee, T.D.; Spitalny, G.L.; Findeis, M.A. Targeted delivery of DNA using YEE(GalNAcAH)3, a synthetic glycopeptide ligand for the asialoglycoprotein receptor. Bioconjugate Chem. 1994, 5, 612–620. [Google Scholar] [CrossRef]
- Mamidyala, S.K.; Dutta, S.; Chrunyk, B.A.; Préville, C.; Wang, H.; Withka, J.M.; McColl, A.; Subashi, T.A.; Hawrylik, S.J.; Griffor, M.C.; et al. Glycomimetic ligands for the human asialoglycoprotein receptor. J. Am. Chem. Soc. 2012, 134, 1978–1981. [Google Scholar] [CrossRef]
- Arjunan, P.; Kathirvelu, D.; Mahalingam, G.; Goel, A.K.; Zacharaiah, U.G.; Srivastava, A.; Marepally, S. Lipid-nanoparticle-enabled nucleic acid therapeutics for liver disorders. Acta Pharm. Sin. B 2024, 14, 2885–2900. [Google Scholar] [CrossRef]
- Mukthavaram, R.; Marepally, S.; Venkata, M.Y.; Vegi, G.N.; Sistla, R.; Chaudhuri, A. Cationic glycolipids with cyclic and open galactose head groups for the selective targeting of genes to mouse liver. Biomaterials 2009, 30, 2369–2384. [Google Scholar] [CrossRef]
- Samelson-Jones, B.J. Worldwide use of factor IX Padua for hemophilia B gene therapy. Mol. Ther. J. Am. Soc. Gene Ther. 2022, 30, 2394–2396. [Google Scholar] [CrossRef]
- Reyes-Sandoval, A.; Ertl, H.C. CpG methylation of a plasmid vector results in extended transgene product expression by circumventing induction of immune responses. Mol. Ther. J. Am. Soc. Gene Ther. 2004, 9, 249–261. [Google Scholar] [CrossRef]
- Mahalingam, G.; Rachamalla, H.K.; Arjunan, P.; Karuppusamy, K.V.; Periyasami, Y.; Mohan, A.; Subramaniyam, K.; Salma, M.; Rajendran, V.; Moorthy, M.; et al. SMART-lipid nanoparticles enabled mRNA vaccine elicits cross-reactive humoral responses against the omicron sub-variants. Mol. Ther. J. Am. Soc. Gene Ther. 2024, 32, 1284–1297. [Google Scholar] [CrossRef] [PubMed]
Liposome | 16 Cy-6-Gal (mM) | Amide (mM) | DOPE (mM) | Chol (mM) |
---|---|---|---|---|
Gal-LNC 1 | 0.25 | 1 | 1 | 1 |
Gal-LNC 2 | 0.25 | 1 | 0.5 | 1 |
Gal-LNC 3 | 0.25 | 1 | 0.25 | 1 |
Gal-LNC 4 | 0.25 | 1 | 0 | 1 |
Gal-LNC 5 | 0.25 | 1 | 1 | 0.5 |
Gal-LNC 6 | 0.25 | 1 | 1 | 0.25 |
Gal-LNC 7 | 0.25 | 1 | 1 | 0 |
Gal-LNC 8 | 0.25 | 1 | 0.5 | 0.5 |
Gal-LNC 9 | 0.25 | 1 | 0.5 | 0.25 |
Gal-LNC 10 | 0.25 | 1 | 0.5 | 0 |
Gal-LNC 11 | 0.25 | 1 | 0.25 | 0.5 |
Gal-LNC 12 | 0.25 | 1 | 0 | 0.5 |
LNC | - | 1 | 1 | 0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lohchania, B.; Arjunan, P.; Mahalingam, G.; Dandapani, A.; Taneja, P.; Marepally, S. Lipid Nanoparticle-Mediated Liver-Specific Gene Therapy for Hemophilia B. Pharmaceutics 2024, 16, 1427. https://doi.org/10.3390/pharmaceutics16111427
Lohchania B, Arjunan P, Mahalingam G, Dandapani A, Taneja P, Marepally S. Lipid Nanoparticle-Mediated Liver-Specific Gene Therapy for Hemophilia B. Pharmaceutics. 2024; 16(11):1427. https://doi.org/10.3390/pharmaceutics16111427
Chicago/Turabian StyleLohchania, Brijesh, Porkizhi Arjunan, Gokulnath Mahalingam, Abinaya Dandapani, Pankaj Taneja, and Srujan Marepally. 2024. "Lipid Nanoparticle-Mediated Liver-Specific Gene Therapy for Hemophilia B" Pharmaceutics 16, no. 11: 1427. https://doi.org/10.3390/pharmaceutics16111427
APA StyleLohchania, B., Arjunan, P., Mahalingam, G., Dandapani, A., Taneja, P., & Marepally, S. (2024). Lipid Nanoparticle-Mediated Liver-Specific Gene Therapy for Hemophilia B. Pharmaceutics, 16(11), 1427. https://doi.org/10.3390/pharmaceutics16111427