Cord Blood Platelet Lysate-Loaded Thermo-Sensitive Hydrogels for Potential Treatment of Chronic Skin Wounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Poly(urethane) Synthesis
2.3. NHP407 Deprotection (Boc-Protected Amine Exposure)
2.4. PEU Chemical Characterization
2.4.1. Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) Spectroscopy
2.4.2. Size Exclusion Chromatography (SEC)
2.4.3. Proton Nuclear Magnetic Resonance (1H NMR) Spectroscopy
2.5. Design and Characterization of SHP407-Based Hydrogels
2.5.1. Hydrogel Preparation
2.5.2. Tube Inverting Test
2.5.3. Rheological Characterization
2.6. CB-PL Loading into SHP407 Hydrogels and Characterization
2.6.1. CB-PL Manufacturing
2.6.2. Ethic Statement
2.6.3. Preparation of CB-PL-Loaded Hydrogels
2.6.4. Effect of CB-PL Loading on Hydrogel Properties
2.6.5. Swelling and Stability of PL-Loaded Hydrogels During Incubation in Aqueous Media at 37 °C
2.6.6. Characterization of CB-PL Release Profile
2.6.7. Characterization of Platelet-Derived Growth Factor (PDGF) Release Profile
2.7. In Vitro Biological Characterization
2.7.1. Preparation of CB-PL-Loaded Hydrogels and Collection of Extracts for In Vitro Biological Evaluation
2.7.2. Cell Culture
2.7.3. Cell Viability Assay
2.7.4. Cell Proliferation Assay
2.7.5. Cell Migration Assay
2.8. Statistical Analysis
3. Results
3.1. PEU Chemical Characterization
3.1.1. NHP407 Chemical Characterization
3.1.2. SHP407 Chemical Characterization
3.2. SHP407-Based Hydrogel Characterization
3.2.1. Tube Inverting Test
3.2.2. Rheological Characterization
3.3. Characterization of CB-PL-Loaded Hydrogels
3.3.1. Effect of CB-PL Loading on Hydrogels Properties
3.3.2. Swelling and Stability in Aqueous Media
3.3.3. Characterization of CB-PL Release Profile
3.4. In Vitro Biological Characterization of SHP407 15% w/v_PL 20% v/v
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Velnar, T.; Bailey, T.; Smrkolj, V. The Wound Healing Process: An Overview of the Cellular and Molecular Mechanisms. J. Int. Med. Res. 2009, 37, 1528–1542. [Google Scholar] [CrossRef]
- Tottoli, E.M.; Dorati, R.; Genta, I.; Chiesa, E.; Pisani, S.; Conti, B. Skin Wound Healing Process and New Emerging Technologies for Skin Wound Care and Regeneration. Pharmaceutics 2020, 12, 735. [Google Scholar] [CrossRef]
- Las Heras, K.; Igartua, M.; Santos-Vizcaino, E.; Hernandez, R.M. Chronic Wounds: Current Status, Available Strategies and Emerging Therapeutic Solutions. J. Control. Release 2020, 328, 532–550. [Google Scholar] [CrossRef] [PubMed]
- Weller, C.D.; Team, V.; Sussman, G. First-Line Interactive Wound Dressing Update: A Comprehensive Review of the Evidence. Front. Pharmacol. 2020, 11, 155. [Google Scholar] [CrossRef] [PubMed]
- Popescu, V.; Cauni, V.; Petrutescu, M.S.; Rustin, M.M.; Bocai, R.; Turculet, C.R.; Doran, H.; Patrascu, T.; Lazar, A.M.; Cretoiu, D.; et al. Chronic Wound Management: From Gauze to Homologous Cellular Matrix. Biomedicines 2023, 11, 2457. [Google Scholar] [CrossRef] [PubMed]
- Laurano, R.; Boffito, M.; Ciardelli, G.; Chiono, V. Wound Dressing Products: A Translational Investigation from the Bench to the Market. Eng. Regen. 2022, 3, 182–200. [Google Scholar] [CrossRef]
- Shi, C.; Wang, C.; Liu, H.; Li, Q.; Li, R.; Zhang, Y.; Liu, Y.; Shao, Y.; Wang, J. Selection of Appropriate Wound Dressing for Various Wounds. Front. Bioeng. Biotechnol. 2020, 8, 511530. [Google Scholar] [CrossRef]
- Zeng, Q.; Qi, X.; Shi, G.; Zhang, M.; Haick, H. Wound Dressing: From Nanomaterials to Diagnostic Dressings and Healing Evaluations. ACS Nano 2022, 16, 1708–1733. [Google Scholar] [CrossRef]
- Hawthorne, B.; Simmons, J.K.; Stuart, B.; Tung, R.; Zamierowski, D.S.; Mellott, A.J. Enhancing Wound Healing Dressing Development through Interdisciplinary Collaboration. J. Biomed. Mater. Res. Part B Appl. Biomater. 2021, 109, 1967–1985. [Google Scholar] [CrossRef]
- Firlar, I.; Altunbek, M.; McCarthy, C.; Ramalingam, M.; Camci-Unal, G. Functional Hydrogels for Treatment of Chronic Wounds. Gels 2022, 8, 127. [Google Scholar] [CrossRef]
- Liang, Y.; He, J.; Guo, B. Functional Hydrogels as Wound Dressing to Enhance Wound Healing. ACS Nano 2021, 15, 12687–12722. [Google Scholar] [CrossRef] [PubMed]
- Pang, Q.; Yang, F.; Jiang, Z.; Wu, K.; Hou, R.; Zhu, Y. Smart Wound Dressing for Advanced Wound Management: Real-Time Monitoring and on-Demand Treatment. Mater. Des. 2023, 229, 111917. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Y.; Ma, X.; Qiu, S.; Chen, J.; Lu, G.; Jia, Z.; Zhu, J.; Yang, Q.; Chen, J.; et al. Antimicrobial Lignin-Based Polyurethane/Ag Composite Foams for Improving Wound Healing. Biomacromolecules 2022, 23, 1622–1632. [Google Scholar] [CrossRef]
- Mondal, R.; Foote, M.; Canada, A.; Wiencek, M.; Cowan, M.E.; Acevedo, C. Efficient Silver Release from Ion Exchange Silver Dressings in Biologically Relevant Media. Wounds 2020, 32, 22–29. [Google Scholar]
- Oliverius, M.; Drozd, J.; Bratka, P.; Whitley, A.; Mohlenikova Duchonova, B.; Gürlich, R. A New Silver Dressing, StopBac, Used in the Prevention of Surgical Site Infections. Int. Wound J. 2022, 19, 29–35. [Google Scholar] [CrossRef]
- Einipour, S.K.; Sadrjahani, M.; Rezapour, A. Preparation and Evaluation of Antibacterial Wound Dressing Based on Vancomycin-Loaded Silk/Dialdehyde Starch Nanoparticles. Drug Deliv. Transl. Res. 2022, 12, 2778–2792. [Google Scholar] [CrossRef]
- Farokhi, M.; Mottaghitalab, F.; Babaluei, M.; Mojarab, Y.; Kundu, S.C. Advanced Multifunctional Wound Dressing Hydrogels as Drug Carriers. Macromol. Biosci. 2022, 22, 2200111. [Google Scholar] [CrossRef]
- González, L.; Espinoza, V.; Tapia, M.; Aedo, V.; Ruiz, I.; Meléndrez, M.; Aguayo, C.; Atanase, L.I.; Fernández, K. Innovative Approach to Accelerate Wound Healing: Synthesis and Validation of Enzymatically Cross-Linked COL–rGO Biocomposite Hydrogels. Gels 2024, 10, 448. [Google Scholar] [CrossRef] [PubMed]
- Jang, M.J.; Bae, S.K.; Jung, Y.S.; Kim, J.C.; Kim, J.S.; Park, S.K.; Suh, J.S.; Yi, S.J.; Ahn, S.H.; Lim, J.O. Enhanced Wound Healing Using a 3D Printed VEGF-Mimicking Peptide Incorporated Hydrogel Patch in a Pig Model. Biomed. Mater. 2021, 16, 045013. [Google Scholar] [CrossRef]
- Miyoshi, M.; Kawazoe, T.; Igawa, H.H.; Tabata, Y.; Ikada, Y.; Suzuki, S. Effects of BFGF Incorporated into a Gelatin Sheet on Wound Healing. J. Biomater. Sci. Polym. Ed. 2005, 16, 893–907. [Google Scholar] [CrossRef]
- Losi, P.; Briganti, E.; Errico, C.; Lisella, A.; Sanguinetti, E.; Chiellini, F.; Soldani, G. Fibrin-Based Scaffold Incorporating VEGF- and BFGF-Loaded Nanoparticles Stimulates Wound Healing in Diabetic Mice. Acta Biomater. 2013, 9, 7814–7821. [Google Scholar] [CrossRef] [PubMed]
- Barman Balfour, J.A.; Noble, S. Becaplermin. BioDrugs 1999, 11, 359–364. [Google Scholar] [CrossRef]
- Raina, N.; Rani, R.; Gupta, M. Angiogenesis: Aspects in Wound Healing. In Endothelial Signaling in Vascular Dysfunction and Disease: From Bench to Bedside; Academic Press: Cambridge, MA, USA, 2021; pp. 77–90. ISBN 9780128161968. [Google Scholar]
- Han, C.M.; Cheng, B.; Wu, P. Clinical Guideline on Topical Growth Factors for Skin Wounds. Burn. Trauma 2020, 8, 35. [Google Scholar] [CrossRef] [PubMed]
- Barrientos, S.; Stojadinovic, O.; Golinko, M.S.; Brem, H.; Tomic-Canic, M. Growth Factors and Cytokines in Wound Healing. Wound Repair Regen. 2008, 16, 585–601. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.V.; Gemmati, D.; Kanase, A.; Pandey, I.; Misra, V.; Kishore, V.; Jahnke, T.; Bill, J. Nanobiomaterials for vascular biology and wound management: A review. Veins Lymphat. 2018, 7, 7196-34–7196-47. [Google Scholar] [CrossRef]
- Jian, K.; Yang, C.; Li, T.; Wu, X.; Shen, J.; Wei, J.; Yang, Z.; Yuan, D.; Zhao, M.; Shi, J. PDGF-BB-derived supramolecular hydrogel for promoting skin wound healing. J. Nanobiotechnol. 2022, 20, 201. [Google Scholar] [CrossRef]
- Cai, Z.; Mo, Z.; Zhou, Q.; Zhou, X.; Huang, F.; Jiang, J.; Li, H.; Tang, S. PDGF-AA loaded photo-crosslinked chitosan-based hydrogel for promoting wound healing. Int. J. Biol. Macromol. 2024, 258, 129091. [Google Scholar] [CrossRef]
- Ng, S.L.; Azhar, N.A.; Budin, S.B.; Ibrahim, N.; Abdul Ghani, N.A.; Abd Ghafar, N.; Law, J.X. Effects of Platelet Lysate Gels Derived from Different Blood Sources on Oral Mucosal Wound Healing: An In Vitro Study. Gels 2023, 9, 343. [Google Scholar] [CrossRef]
- Liao, X.; Chen, M.; Zhang, Y.; Li, S.; Li, Y.; He, Y.; Zhao, Y.; Luo, L. Platelet Lysate Promotes Proliferation and Angiogenic Activity of Dental Pulp Stem Cells via Store-operated Ca2+ Entry. Nano TransMed. 2023, 2, 100021. [Google Scholar] [CrossRef]
- Mallis, P.; Michalopoulos, E.; Balampanis, K.; Sarri, E.F.; Papadopoulou, E.; Theodoropoulou, V.; Georgiou, E.; Kountouri, A.; Lambadiari, V.; Stavropoulos-Giokas, C. Investigating the Production of Platelet Lysate Obtained from Low Volume Cord Blood Units: Focus on Growth Factor Content and Regenerative Potential. Transfus. Apher. Sci. 2022, 61, 103465. [Google Scholar] [CrossRef]
- Tadini, G.; Guez, S.; Pezzani, L.; Marconi, M.; Greppi, N.; Manzoni, F.; Rebulla, P.; Esposito, S. Preliminary Evaluation of Cord Blood Platelet Gel for the Treatment of Skin Lesions in Children with Dystrophic Epidermolysis Bullosa. Blood Transfus. 2015, 13, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Foffa, I.; Janowska, A.; Fabbri, M.; Losi, P.; Ciabatti, E.; Gabbriellini, S.; Faita, F.; Rosa, L.D.; Dini, V.; Mazzoni, A.; et al. Carboxymethyl Cellulose-Based Hydrogel Film Combined with Umbilical Cord Blood Platelet Gel as an Innovative Tool for Chronic Wound Management: A Pilot Clinical Study. Int. J. Low. Extrem. Wounds 2022, 15347346221138189. [Google Scholar] [CrossRef] [PubMed]
- Volpe, P.; Marcuccio, D.; Stilo, G.; Alberti, A.; Foti, G.; Volpe, A.; Princi, D.; Surace, R.; Pucci, G.; Massara, M. Efficacy of Cord Blood Platelet Gel Application for Enhancing Diabetic Foot Ulcer Healing after Lower Limb Revascularization. Semin. Vasc. Surg. 2017, 30, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Jafar, H.; Hasan, M.; Al-Hattab, D.; Saleh, M.; Ameereh, L.A.; Khraisha, S.; Younes, N.; Awidi, A. Platelet Lysate Promotes the Healing of Long-Standing Diabetic Foot Ulcers: A Report of Two Cases and In Vitro Study. Heliyon 2020, 6, e03929. [Google Scholar] [CrossRef]
- Lim, T.; Tang, Q.; Zhu, Z.; Wei, X.; Zhang, C. Sustained Release of Human Platelet Lysate Growth Factors by Thermosensitive Hydroxybutyl Chitosan Hydrogel Promotes Skin Wound Healing in Rats. J. Biomed. Mater. Res. Part A 2020, 108, 2111–2122. [Google Scholar] [CrossRef]
- Bernal-Chávez, S.A.; Alcalá-Alcalá, S.; Cerecedo, D.; Ganem-Rondero, A. Platelet lysate-loaded PLGA nanoparticles in a thermo-responsive hydrogel intended for the treatment of wounds. Eur. J. Pharm. Sci. 2020, 146, 105231. [Google Scholar] [CrossRef]
- Notodihardjo, S.C.; Morimoto, N.; Kakudo, N.; Mitsui, T.; Le, T.M.; Tabata, Y.; Kusumoto, K. Efficacy of Gelatin Hydrogel Impregnated with Concentrated Platelet Lysate in Murine Wound Healing. J. Surg. Res. 2019, 234, 190–201. [Google Scholar] [CrossRef]
- Jin, T.; Fu, Z.; Zhou, L.; Chen, L.; Wang, J.; Wang, L.; Yan, S.; Li, T.; Jin, P. GelMA loaded with platelet lysate promotes skin regeneration and angiogenesis in pressure ulcers by activating STAT3. Sci. Rep. 2024, 14, 18345. [Google Scholar] [CrossRef]
- Chahal, A.S.; Gómez-Florit, M.; Domingues, R.M.A.; Gomes, M.E.; Tiainen, H. Human Platelet Lysate-Loaded Poly(Ethylene Glycol) Hydrogels Induce Stem Cell Chemotaxis In Vitro. Biomacromolecules 2021, 22, 3486–3496. [Google Scholar] [CrossRef]
- Re, F.; Cantini, M.; Almici, C.; Bianchetti, A.; Chinello, C.; Dey, K.; Agnelli, S.; Manferdini, C.; Bernardi, S.; Lopomo, N.; et al. 3D Gelatin-Chitosan Hybrid Hydrogels Combined with Human Platelet Lysate Highly Support Human Mesenchymal Stem Cell Proliferation and Osteogenic Differentiation. J. Tissue Eng. 2019, 10, 2041731419845852. [Google Scholar] [CrossRef]
- Jooybar, E.; Abdekhodaie, M.J.; Alvi, M.; Mousavi, A.; Karperien, M.; Dijkstra, P.J. An Injectable Platelet Lysate-Hyaluronic Acid Hydrogel Supports Cellular Activities and Induces Chondrogenesis of Encapsulated Mesenchymal Stem Cells. Acta Biomater. 2019, 83, 233–244. [Google Scholar] [CrossRef] [PubMed]
- Lei, T.; Liu, Y.; Deng, S.; Xiao, Z.; Yang, Y.; Zhang, X.; Bi, W.; Du, H. Hydrogel Supplemented with Human Platelet Lysate Enhances Multi-Lineage Differentiation of Mesenchymal Stem Cells. J. Nanobiotechnol. 2022, 20, 176. [Google Scholar] [CrossRef]
- Jooybar, E.; Abdekhodaie, M.J.; Karperien, M.; Mousavi, A.; Alvi, M.; Dijkstra, P.J. Developing Hyaluronic Acid Microgels for Sustained Delivery of Platelet Lysate for Tissue Engineering Applications. Int. J. Biol. Macromol. 2020, 144, 837–846. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Dong, L.; Zhao, B.; Lu, Y.; Huang, S.; Yuan, Z.; Luo, G.; Xu, Y.; Qian, W. Anti-inflammatory Hydrogel Dressings and Skin Wound Healing. Clin. Transl. Med. 2022, 12, e1094. [Google Scholar] [CrossRef] [PubMed]
- Norahan, M.H.; Pedroza-González, S.C.; Sánchez-Salazar, M.G.; Álvarez, M.M.; Trujillo de Santiago, G. Structural and Biological Engineering of 3D Hydrogels for Wound Healing. Bioact. Mater. 2023, 24, 197–235. [Google Scholar] [CrossRef] [PubMed]
- Zuniga, K.; Isaac, A.; Christy, S.; Wrice, N.; Mangum, L.; Natesan, S.; Burnett, L.; Christy, R.; Kowalczewski, C. Characterization of a Human Platelet Lysate-Loaded Keratin Hydrogel for Wound Healing Applications In Vitro. Int. J. Mol. Sci. 2022, 23, 4100. [Google Scholar] [CrossRef]
- Tsai, C.C.; Young, T.H.; Chen, G.S.; Cheng, N.C. Developing a Glyoxal-Crosslinked Chitosan/Gelatin Hydrogel for Sustained Release of Human Platelet Lysate to Promote Tissue Regeneration. Int. J. Mol. Sci. 2021, 22, 6451. [Google Scholar] [CrossRef]
- Khaliq, N.U.; Lee, J.; Kim, S.; Sung, D.; Kim, H. Pluronic F-68 and F-127 Based Nanomedicines for Advancing Combination Cancer Therapy. Pharmaceutics 2023, 15, 2102. [Google Scholar] [CrossRef]
- Boffito, M.; Gioffredi, E.; Chiono, V.; Calzone, S.; Ranzato, E.; Martinotti, S.; Ciardelli, G. Novel Polyurethane-Based Thermosensitive Hydrogels as Drug Release and Tissue Engineering Platforms: Design and in Vitro Characterization. Polym. Int. 2016, 65, 756–769. [Google Scholar] [CrossRef]
- Boffito, M.; Torchio, A.; Tonda-Turo, C.; Laurano, R.; Gisbert-Garzarán, M.; Berkmann, J.C.; Cassino, C.; Manzano, M.; Duda, G.N.; Vallet-Regí, M.; et al. Hybrid Injectable Sol-Gel Systems Based on Thermo-Sensitive Polyurethane Hydrogels Carrying PH-Sensitive Mesoporous Silica Nanoparticles for the Controlled and Triggered Release of Therapeutic Agents. Front. Bioeng. Biotechnol. 2020, 8, 384. [Google Scholar] [CrossRef]
- Boffito, M.; Grivet Brancot, A.; Lima, O.; Bronco, S.; Sartori, S.; Ciardelli, G. Injectable Thermosensitive Gels for the Localized and Controlled Delivery of Biomolecules in Tissue Engineering/Regenerative Medicine. Biomed. Sci. Eng. 2019, 3, 9–19. [Google Scholar] [CrossRef]
- Laurano, R.; Chiono, V.; Ceresa, C.; Fracchia, L.; Zoso, A.; Ciardelli, G.; Boffito, M. Custom-Design of Intrinsically Antimicrobial Polyurethane Hydrogels as Multifunctional Injectable Delivery Systems for Mini-Invasive Wound Treatment. Eng. Regen. 2021, 2, 263–278. [Google Scholar] [CrossRef]
- Laurano, R.; Boffito, M. Thermosensitive Micellar Hydrogels as Vehicles to Deliver Drugs with Different Wettability. Front. Bioeng. Biotechnol. 2020, 8, 708. [Google Scholar] [CrossRef] [PubMed]
- Astori, G.; Amati, E.; Bambi, F.; Bernardi, M.; Chieregato, K.; Schäfer, R.; Sella, S.; Rodeghiero, F. Platelet lysate as a substitute for animal serum for the ex-vivo expansion of mesenchymal stem/stromal cells: Present and future. Stem Cell Res. Ther. 2016, 7, 93. [Google Scholar] [CrossRef]
- Kandoi, S.; Patra, B.; Vidyasekar, P.; Sivanesan, D.K.R.; Verma, R.S. Evaluation of platelet lysate as a substitute for FBS in explant and enzymatic isolation methods of human umbilical cord MSCs. Sci. Rep. 2018, 8, 12439. [Google Scholar] [CrossRef]
- Sovkova, V.; Vocetkova, K.; Rampichova, M.; Mickova, A.; Buzgo, M.; Lukasova, V.; Dankova, J.; Filova, E.; Necas, A.; Amler, E. Platelet lysate as a serum replacement for skin cell culture on biomimetic PCL nanofibers. Platelets 2018, 29, 395–405. [Google Scholar] [CrossRef]
- Trathnigg, B. Size-Exclusion Chromatography of Polymers. In Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation; Meyers, R.A., Provder, T., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006; pp. 8008–8034. [Google Scholar] [CrossRef]
- Boffito, M.; Laurano, R.; Giasafaki, D.; Steriotis, T.; Papadopoulos, A.; Tonda-Turo, C.; Cassino, C.; Charalambopoulou, G.; Ciardelli, G. Embedding Ordered Mesoporous Carbons into Thermosensitive Hydrogels: A Cutting-Edge Strategy to Vehiculate a Cargo and Control Its Release Profile. Nanomaterials 2020, 10, 2165. [Google Scholar] [CrossRef]
- Pierce, G.F.; Mustoe, T.A.; Altrock, B.W.; Deuel, T.F.; Thomason, A. Role of Platelet-derived Growth Factor in Wound Healing. J. Cell. Biochem. 1991, 45, 319–326. [Google Scholar] [CrossRef]
- Xiang, J.; Shen, L.; Hong, Y. Status and Future Scope of Hydrogels in Wound Healing: Synthesis, Materials and Evaluation. Eur. Polym. J. 2020, 130, 109609. [Google Scholar] [CrossRef]
- De Donatis, A.; Comito, G.; Buricchi, F.; Vinci, M.C.; Parenti, A.; Caselli, A.; Camici, G.; Manao, G.; Ramponi, G.; Cirri, P. Proliferation versus Migration in Platelet-Derived Growth Factor Signaling: The Key Role of Endocytosis. J. Biol. Chem. 2008, 283, 19948–19956. [Google Scholar] [CrossRef]
- Thapa, R.K.; Margolis, D.J.; Kiick, K.L.; Sullivan, M.O. Enhanced Wound Healing via Collagen-Turnover-Driven Transfer of PDGF-BB Gene in a Murine Wound Model. ACS Appl. Bio Mater. 2020, 3, 3500–3517. [Google Scholar] [CrossRef] [PubMed]
- Britto, E.J.; Nezwek, T.A.; Popowicz, P.; Robins, M. Wound Dressings. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK470199/ (accessed on 23 January 2024).
SHP407 10% w/v | SHP407 10% w/v PL 20% v/v | SHP407 15% w/v | SHP407 15% w/v PL 20% v/v | ||
---|---|---|---|---|---|
η0°C (Pa·s) | 0.21 | 0.27 | 0.60 | 0.61 | |
Tonset (°C) | 19.03 | 18.37 | 16.03 | 15.70 | |
η25°C (Pa·s) | 39.96 | 44.34 | 398.90 | 500.60 | |
LVE (%) | 11.60 | 4.53 | 7.25 | 0.17 | |
YS (Pa) | 217.00 | 87.90 | 770.00 | 52.20 | |
ωG′/G″ crossover (rad/s) | 25 °C | x | 51.45 | 32.45 | 20.45 |
37 °C | <0.1 | <0.1 | <0.1 | <0.1 | |
G′–G″ 100 rad/s (Pa) | 25 °C | 487–758 | 1140–830 | 4940–3210 | 5720–3370 |
37 °C | 2650–336 | 2070–283 | 10,900–935 | 9990–2400 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grivet-Brancot, A.; Buscemi, M.; Ciardelli, G.; Bronco, S.; Sartori, S.; Cassino, C.; Al Kayal, T.; Losi, P.; Soldani, G.; Boffito, M. Cord Blood Platelet Lysate-Loaded Thermo-Sensitive Hydrogels for Potential Treatment of Chronic Skin Wounds. Pharmaceutics 2024, 16, 1438. https://doi.org/10.3390/pharmaceutics16111438
Grivet-Brancot A, Buscemi M, Ciardelli G, Bronco S, Sartori S, Cassino C, Al Kayal T, Losi P, Soldani G, Boffito M. Cord Blood Platelet Lysate-Loaded Thermo-Sensitive Hydrogels for Potential Treatment of Chronic Skin Wounds. Pharmaceutics. 2024; 16(11):1438. https://doi.org/10.3390/pharmaceutics16111438
Chicago/Turabian StyleGrivet-Brancot, Arianna, Marianna Buscemi, Gianluca Ciardelli, Simona Bronco, Susanna Sartori, Claudio Cassino, Tamer Al Kayal, Paola Losi, Giorgio Soldani, and Monica Boffito. 2024. "Cord Blood Platelet Lysate-Loaded Thermo-Sensitive Hydrogels for Potential Treatment of Chronic Skin Wounds" Pharmaceutics 16, no. 11: 1438. https://doi.org/10.3390/pharmaceutics16111438
APA StyleGrivet-Brancot, A., Buscemi, M., Ciardelli, G., Bronco, S., Sartori, S., Cassino, C., Al Kayal, T., Losi, P., Soldani, G., & Boffito, M. (2024). Cord Blood Platelet Lysate-Loaded Thermo-Sensitive Hydrogels for Potential Treatment of Chronic Skin Wounds. Pharmaceutics, 16(11), 1438. https://doi.org/10.3390/pharmaceutics16111438