Evaluation of Drug–Drug Interactions Between Clarithromycin and Direct Oral Anticoagulants Using Physiologically Based Pharmacokinetic Models
Abstract
:1. Introduction
2. Methods
2.1. PBPK Model Development
Substrate | Route of Administration | Dose [mg] | Status | Number | Age Range (Mean) [Years] | Weight Range (Mean) [kg] | BMI Range (Mean) kg/m2 | Reference |
---|---|---|---|---|---|---|---|---|
Clarithromycin | iv | 250 | Fasted | 12 | 21–29 (23.2) | 128–176 (153.4) | – | Chu 1992 [11] |
po (tablet, SD) | 250 | Fasted | 17 | 18–40 (29) | 164–188 (175) | – | Chu 1993 [12] | |
po (tablet, BID) | 250 | Fasted | 17 | 18–40 (29) | 164–188 (174.9) | – | Chu 1993 [12] | |
po (tablet, SD) | 500 | Fasted | 17 | 20–39 (31) | 160–182.9 (174.1) | – | Chu 1993 [12] | |
po (tablet, BID) | 500 | Fasted | 18 | 18–46 (21) | 70 | – | Sekar 2008 [13] | |
DAB | iv | 1 | Fasted | - | 26–46 (35) | 70–101 (81) | – | Moj 2019 [14] |
DABE | po (capsule, SD) | 150 | Fasted | 10 | 30 | 70 | – | Blech 2008 [15] |
po (capsule, SD) | 300 | Fasted | 10 | 18–33 (22) | 64–82 (75) | – | Delavenne 2013 [16] | |
Rivaroxaban | iv | 1 | Fasted | 4 | 21–46 (31.5) | 61–94 (78.5) | 20.6–30.3 (24.9) | Willmann 2014 [17] |
po (tablet, SD) | 5 | Fasted | 103 | 19–45(33) | 52–106 (81.2) | 19.3–31.7 (24.9) | Kubitza 2005 [18] | |
po (tablet, SD) | 10 | Fasted | 4 | 28–54 (43) | 60–101 (81.3) | 18.1–29.7 (25.4) | Willmann 2014 [17] | |
po (tablet, SD) | 20 | Fasted | 22 | 20–45 (32.9) | 62–98 (80.8) | 19.4–28.7 (24.4) | Stampfuss 2013 [19] | |
po (tablet, SD) | 20 | Fed | 22 | 20–45 (32.9) | 62–98 (80.8) | 19.4–28.7 (24.4) | Stampfuss 2013 [19] | |
Apixaban | iv | 2.5 | Fasted | 9 | 22–36 (29) | 65.7–94.2 (80.6) | 20.4–28.1 (25.0) | Charles 2021 [20] |
po (tablet, SD) | 10 | Fasted | 6 | 21–43 (32) | 54–89.2 (74.5) | 20.4–29.3 (24.4) | Bashir 2018 [21] | |
po (tablet, SD) | 20 | Fasted | 20 | 21–40 (31) | 60–97 (76.8) | 20.2–31.9 (26.1) | Charles 2015 [22] | |
Edoxaban | iv | 30 | Fasted | - | 33.8 | 80 | 25.7 | Takafumi 2021 [23] |
po (tablet, SD) | 60 | Fasted | - | 33.8 | 80 | 25.7 | Takafumi 2021 [23] | |
po (tablet, SD) | 90 | Fasted | - | 33.8 | 80 | 25.7 | Takafumi 2021 [23] |
2.2. Development and Validation of the Clarithromycin PBPK Model
2.3. Development and Validation of the DABE–DAB PBPK Model
2.4. DAB Intravenous PBPK Model
2.5. Development and Validation of the DABE Oral PBPK Model
2.6. Development and Validation of the Rivaroxaban PBPK Model
2.7. Development and Validation of the Apixaban PBPK Model
2.8. Development and Validation of the Edoxaban PBPK Model
2.9. Evaluation of PBPK Models
2.10. P-gp Parameter Sensitivity Analysis
2.11. Prediction of DDIs
3. Results
3.1. Clarithromycin PBPK Model
3.2. DABE and DAB PBPK Models
3.3. Rivaroxaban PBPK Model
3.4. Apixaban PBPK Model
3.5. Edoxaban PBPK Model
3.6. P-gp Parameter Sensitivity Analysis
3.7. DDI Prediction
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Krijthe, B.P.; Kunst, A.; Benjamin, E.J.; Lip, G.Y.; Franco, O.H.; Hofman, A.; Witteman, J.C.; Stricker, B.H.; Heeringa, J. Projections on the number of individuals with atrial fibrillation in the European Union, from 2000 to 2060. Eur. Heart J. 2013, 34, 2746–2751. [Google Scholar] [CrossRef] [PubMed]
- Joglar, J.A.; Chung, M.K.; Armbruster, A.L.; Benjamin, E.J.; Chyou, J.Y.; Cronin, E.M.; Van Wagoner, D.R. 2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Atrial Fibrillation. Circulation 2024, 149, e1–e156. [Google Scholar] [CrossRef] [PubMed]
- Weitz, J.I.; Eikelboom, J.W.; Samama, M.M. New antithrombotic drugs: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2012, 141, e120S–e151S. [Google Scholar] [CrossRef] [PubMed]
- Ferri, N.; Colombo, E.; Tenconi, M.; Baldessin, L.; Corsini, A. Drug-Drug Interactions of Direct Oral Anticoagulants (DOACs): From Pharmacological to Clinical Practice. Pharmaceutics 2022, 14, 1120. [Google Scholar] [CrossRef]
- Shurrab, M.; Jackevicius, C.A.; Austin, P.C.; Tu, K.; Qiu, F.; Caswell, J.; Michael, F.; Andrade, J.G.; Ko, D.T. Association between concurrent use of diltiazem and DOACs and risk of bleeding in atrial fibrillation patients. J. Interv. Card. Electrophysiol. 2023, 66, 629–635. [Google Scholar] [CrossRef]
- Lee, J.Y.; Oh, I.-Y.; Lee, J.-H.; Kim, S.-Y.; Kwon, S.S.; Yang, H.-J.; Kim, Y.-K.; Bang, S.-M. The increased risk of bleeding due to drug-drug interactions in patients administered direct oral anticoagulants. Thromb. Res. 2020, 195, 243–249. [Google Scholar] [CrossRef]
- Gandhi, S.K.; Reiffel, J.A.; Boiron, R.; Wieloch, M. Risk of Major Bleeding in Patients With Atrial Fibrillation Taking Dronedarone in Combination With a Direct Acting Oral Anticoagulant (From a U.S. Claims Database). Am. J. Cardiol. 2021, 159, 79–86. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, X.; Shi, G.; Yi, K.; Tan, X. Atrial Fibrillation Is an Independent Risk Factor for Hospital-Acquired Pneumonia. PLoS ONE 2015, 10, e0131782. [Google Scholar] [CrossRef]
- Mueck, W.; Kubitza, D.; Becka, M. Co-administration of rivaroxaban with drugs that share its elimination pathways: Pharmacokinetic effects in healthy subjects. Br. J. Clin. Pharmacol. 2013, 76, 455–466. [Google Scholar] [CrossRef]
- Yamazaki, S.; Evers, R.; De Zwart, L. Physiologically-based pharmacokinetic modeling to evaluate in vitro-to-in vivo extrapolation for intestinal P-glycoprotein inhibition. CPT Pharmacomet. Syst. Pharmacol. 2021, 11, 55–67. [Google Scholar] [CrossRef]
- Chu, S.; Wilson, D.S.; Guay, D.R.P.; Craft, C. Clarithromycin Pharmacokinetics in Healthy Young and Elderly Volunteers. J. Clin. Pharmacol. 1992, 32, 1045–1049. [Google Scholar] [CrossRef] [PubMed]
- Chu, S.; Wilson, D.S.; Deaton, R.L.; Mackenthun, A.V.; Eason, C.N.; Cavanaugh, J.H. Single- and Multiple-dose Pharmacokinetics of Clarithromycin, a New Macrolide Antimicrobial. J. Clin. Pharmacol. 1993, 33, 719–726. [Google Scholar] [CrossRef] [PubMed]
- Sekar, V.J.; Spinosa-Guzman, S.; Paepe, E.D.; Pauw, M.D.; Vangeneugden, T.; Lefebvre, E.; Hoetelmans, R.M.W. Darunavir/ritonavir pharmacokinetics following coadministration with clarithromycin in healthy volunteers. J. Clin. Pharmacol. 2008, 48, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Moj, D.; Maas, H.; Schaeftlein, A.; Hanke, N.; Gómez-Mantilla, J.D.; Lehr, T. A Comprehensive Whole-Body Physiologically Based Pharmacokinetic Model of Dabigatran Etexilate, Dabigatran and Dabigatran Glucuronide in Healthy Adults and Renally Impaired Patients. Clin. Pharmacokinet. 2019, 58, 1577–1593. [Google Scholar] [CrossRef] [PubMed]
- Blech, S.; Ebner, T.; Ludwig-Schwellinger, E.; Stangier, J.; Roth, W. The metabolism and disposition of the oral direct thrombin inhibitor, dabigatran, in humans. Drug Metab. Dispos. 2007, 36, 386–399. [Google Scholar] [CrossRef]
- Delavenne, X.; Ollier, E.; Basset, T.; Bertoletti, L.; Accassat, S.; Garcin, A.; Laporte, S.; Zufferey, P.; Mismetti, P. A semi-mechanistic absorption model to evaluate drug–drug interaction with dabigatran: Application with clarithromycin. Br. J. Clin. Pharmacol. 2013, 76, 107–113. [Google Scholar] [CrossRef]
- Willmann, S.; Becker, C.; Burghaus, R.; Coboeken, K.; Edginton, A.; Lippert, J.; Siegmund, H.-U.; Thelen, K.; Mück, W. Development of a Paediatric Population-Based Model of the Pharmacokinetics of Rivaroxaban. Clin. Pharmacokinet. 2013, 53, 89–102. [Google Scholar] [CrossRef]
- Kubitza, D.; Becka, M.; Voith, B.; Zuehlsdorf, M.; Wensing, G. Safety, pharmacodynamics, and pharmacokinetics of single doses of BAY 59-7939, an oral, direct factor Xa inhibitor. Clin. Pharmacol. Ther. 2005, 78, 412–421. [Google Scholar] [CrossRef]
- Stampfuss, J.; Kubitza, D.; Becka, M.; Mueck, W. The effect of food on the absorption and pharmacokinetics of rivaroxaban. Int. J. Clin. Pharmacol. Ther. 2013, 51, 549–561. [Google Scholar] [CrossRef]
- Frost, C.; Garonzik, S.; Shenker, A.; Barrett, Y.C.; LaCreta, F. Apixaban Single-Dose Pharmacokinetics, Bioavailability, Renal Clearance, and Pharmacodynamics Following Intravenous and Oral Administration. Clin. Pharmacol. Drug Dev. 2021, 10, 974–984. [Google Scholar] [CrossRef]
- Bashir, B.; Stickle, D.F.; Chervoneva, I.; Kraft, W.K. Drug-Drug Interaction Study of Apixaban with Cyclosporine and Tacrolimus in Healthy Volunteers. Clin. Transl. Sci. 2018, 11, 590–596. [Google Scholar] [CrossRef] [PubMed]
- Frost, C.E.; Song, Y.; Shenker, A.; Wang, J.; Barrett, Y.C.; Schuster, A.; Harris, S.I.; LaCreta, F. Effects of Age and Sex on the Single-Dose Pharmacokinetics and Pharmacodynamics of Apixaban. Clin. Pharmacokinet. 2015, 54, 651–662. [Google Scholar] [CrossRef] [PubMed]
- Kato, T.; Mikkaichi, T.; Yoshigae, Y.; Okudaira, N.; Shimizu, T.; Izumi, T.; Ando, S.; Matsumoto, Y. Quantitative analysis of an impact of P-glycoprotein on edoxaban’s disposition using a human physiologically based pharmacokinetic (PBPK) model. Int. J. Pharm. 2021, 597, 120349. [Google Scholar] [CrossRef] [PubMed]
- Moj, D.; Hanke, N.; Britz, H.; Frechen, S.; Kanacher, T.; Wendl, T.; Haefeli, W.E.; Lehr, T. Clarithromycin, Midazolam, and Digoxin: Application of PBPK Modeling to Gain New Insights into Drug–Drug Interactions and Co-medication Regimens. AAPS J. 2016, 19, 298–312. [Google Scholar] [CrossRef]
- Liang, N.; Zhou, S.; Li, T.; Zhang, Z.; Zhao, T.; Li, R.; Li, M.; Shao, F.; Wang, G.; Sun, J. Physiologically based pharmacokinetic modeling to assess the drug-drug interactions of anaprazole with clarithromycin and amoxicillin in patients undergoing eradication therapy of H. pylori infection. Eur. J. Pharm. Sci. 2023, 189, 106534. [Google Scholar] [CrossRef]
- Rodgers, T.; Rowland, M. Mechanistic approaches to volume of distribution predictions: Understanding the processes. Pharm. Res. 2007, 24, 918–933. [Google Scholar] [CrossRef]
- Rodgers, T.; Rowland, M. Physiologically based pharmacokinetic modelling 2: Predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions. J. Pharm. Sci. 2006, 95, 1238–1257. [Google Scholar] [CrossRef]
- Rodgers, T.; Leahy, D.; Rowland, M. Physiologically based pharmacokinetic modeling 1: Predicting the tissue distribution of moderate-to-strong bases. J. Pharm. Sci. 2005, 94, 1259–1276. [Google Scholar] [CrossRef]
- Laizure, S.C.; Parker, R.B.; Herring, V.L.; Hu, Z.-Y. Identification of Carboxylesterase-Dependent Dabigatran Etexilate Hydrolysis. Drug Metab. Dispos. 2013, 42, 201–206. [Google Scholar] [CrossRef]
- Doki, K.; Neuhoff, S.; Rostami-Hodjegan, A.; Homma, M. Assessing Potential Drug–Drug Interactions Between Dabigatran Etexilate and a P-Glycoprotein Inhibitor in Renal Impairment Populations Using Physiologically Based Pharmacokinetic Modeling. CPT Pharmacomet. Syst. Pharmacol. 2019, 8, 118–126. [Google Scholar] [CrossRef]
- King, L.M.; Ma, J.; Srettabunjong, S.; Graves, J.; Bradbury, J.A.; Li, L.; Spiecker, M.; Liao, J.K.; Mohrenweiser, H.; Zeldin, D.C. Cloning of CYP2J2 gene and identification of functional polymorphisms. Mol. Pharmacol. 2002, 61, 840–852. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, H.; Okayama, A.; Imai, N.; Guengerich, F.P.; Shimizu, M. Inter-individual variation of cytochrome P4502J2 expression and catalytic activities in liver microsomes from Japanese and Caucasian populations. Xenobiotica 2006, 36, 1201–1209. [Google Scholar] [CrossRef] [PubMed]
- Cheong, E.J.Y.; Teo, D.W.X.; Chua, D.X.Y.; Chan, E.C.Y. Systematic Development and Verification of a Physiologically Based Pharmacokinetic Model of Rivaroxaban. Drug Metab. Dispos. 2019, 47, 1291–1306. [Google Scholar] [CrossRef] [PubMed]
- Wong, P.C.; Pinto, D.J.P.; Zhang, D. Preclinical discovery of apixaban, a direct and orally bioavailable factor Xa inhibitor. J. Thromb. Thrombolysis. 2011, 31, 478–492. [Google Scholar] [CrossRef] [PubMed]
- Dahlgren, D.; Roos, C.; Sjögren, E.; Lennernäs, H. Direct In Vivo Human Intestinal Permeability (Peff) Determined with Different Clinical Perfusion and Intubation Methods. J. Pharm. Sci. 2015, 104, 2702–2726. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, D.; Raghavan, N.; Yao, M.; Nirmala, R.; Frost, C.E.; Maxwell, B.D.; Chen, S.-Y.; He, K.; Goosen, T.C.; et al. In Vitro Assessment of Metabolic Drug-Drug Interaction Potential of Apixaban through Cytochrome P450 Phenotyping, Inhibition, and Induction Studies. Drug Metab. Dispos. 2010, 38, 448–458. [Google Scholar] [CrossRef]
- Matsushima, N.; Lee, F.; Sato, T.; Weiss, D.; Mendell, J. Bioavailability and Safety of the Factor Xa Inhibitor Edoxaban and the Effects of Quinidine in Healthy Subjects. Clin. Pharmacol. Drug Dev. 2013, 2, 358–366. [Google Scholar] [CrossRef]
- Mikkaichi, T.; Yoshigae, Y.; Masumoto, H.; Imaoka, T.; Rozehnal, V.; Fischer, T.; Okudaira, N.; Izumi, T. Edoxaban Transport via P-Glycoprotein Is a Key Factor for the Drug’s Disposition. Drug Metab. Dispos. 2014, 42, 520–528. [Google Scholar] [CrossRef]
- Fenner, K.; Troutman, M.D.; Kempshall, S.; Cook, J.; Ware, J.; Smith, D.; Lee, C. Drug–Drug Interactions Mediated Through P-Glycoprotein: Clinical Relevance and In Vitro–In Vivo Correlation Using Digoxin as a Probe Drug. Clin. Pharmacol. Ther. 2008, 85, 173–181. [Google Scholar] [CrossRef]
- Garonzik, S.; Byon, W.; Myers, E.; Li, X.; Marchisin, D.; Murthy, B. The Effects of Clarithromycin on the Pharmacokinetics of Apixaban in Healthy Volunteers: A Single-Sequence Crossover Study. Am. J. Cardiovasc. Drug. 2019, 19, 561–567. [Google Scholar] [CrossRef]
- Lenard, A.; Hermann, S.A.; Stoll, F.; Burhenne, J.; Foerster, K.I.; Mikus, G.; Meid, A.D.; Haefeli, W.E.; Blank, A. Effect of Clarithromycin, a Strong CYP3A and P-glycoprotein Inhibitor, on the Pharmacokinetics of Edoxaban in Healthy Volunteers and the Evaluation of the Drug Interaction with Other Oral Factor Xa Inhibitors by a Microdose Cocktail Approach. Cardiovasc. Drug Ther. 2024, 38, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Gelosa, P.; Castiglioni, L.; Tenconi, M.; Baldessin, L.; Racagni, G.; Corsini, A.; Bellosta, S. Pharmacokinetic drug interactions of the non-vitamin K antagonist oral anticoagulants (NOACs). Pharmacol. Res. 2018, 135, 60–79. [Google Scholar] [CrossRef] [PubMed]
- Latini, R.; Tognoni, G.; Kates, R.E. Clinical Pharmacokinetics of Amiodarone. Clin. Pharmacokinet. 1984, 9, 136–156. [Google Scholar] [CrossRef] [PubMed]
Substrate | Inhibitor | Number | Age Range (Mean) [Years] | Weight Range (Mean) [kg] | Height Range (Mean) [cm] | BMI Range (Mean) kg/m2 | Reference |
---|---|---|---|---|---|---|---|
DABE 300 mg (capsule) | Clarithromycin (tablet) | 10 | 18–33 (22) | 64–82 (75) | 175–188 (180) | - | Delavenne 2013 [16] |
Rivaroxaban 10 mg (tablet) | Clarithromycin (tablet) | 16 | 24–50 (37.6) | 81.1 ± 12 | - | 18–32 | Mueck 2013 [9] |
Apixaban 10 mg (tablet) | Clarithromycin (tablet) | 19 | 20–44 (31.3) | 54.5–96.9 (72.35) | 154.3–185.9 (67.65) | 20.8–29.3 (25.64) | Garonzik 2019 [40] |
Edoxaban 60 mg (tablet) | Clarithromycin (tablet) | 12 | 20–54 (26) | - | - | 22.5 | Lenard 2024 [41] |
Drug | Dose (mg) | Cmax/(ng/mL) | Tmax/h | AUC0-t/(ng·h/mL) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Observed Data | Predicted Data | FE | Observed Data | Predicted Data | FE | Observed Data | Predicted Data | FE | ||
Clarithromycin | 250 | 2780 | 3580 | 1.28 | 0.86 | 0.86 | 1.00 | 9500 | 10870 | 1.14 |
Clarithromycin | 250 | 790 | 890 | 1.13 | 2.51 | 2.08 | 0.83 | 5710 | 6730 | 1.18 |
Clarithromycin | 250 | 950 | 1100 | 1.12 | 74.27 | 73.98 | 1.00 | - | 48550 | - |
Clarithromycin | 500 | 1910 | 1740 | 0.91 | 2.06 | 2.4 | 1.16 | 15570 | 13430 | 0.86 |
Clarithromycin | 500 | 2250 | 2020 | 0.90 | 146.8 | 146.5 | 1.00 | - | 172 | - |
DAB | 1 | 46.67 | 39.08 | 0.84 | 0.44 | 0.44 | 1 | 117.9 | 121.6 | 1.03 |
DABE | 150 | 112.68 | 111.8 | 0.99 | 2.69 | 3.45 | 1.28 | - | 1314.2 | - |
DABE | 300 | 181.48 | 173.24 | 0.95 | 3.01 | 3.2 | 1.06 | - | 1836.3 | - |
Rivaroxaban | 1 | 38.15 | 36.36 | 0.95 | 0.5 | 0.52 | 1.04 | 87.00 | 86.17 | 0.99 |
Rivaroxaban | 5 | 56.50 | 56.37 | 1.00 | 3.02 | 2.57 | 0.85 | 374.50 | 395.2 | 1.06 |
Rivaroxaban | 10 | 109.4 | 106.9 | 0.98 | 2.66 | 2.82 | 1.06 | 856.10 | 736.4 | 0.86 |
Rivaroxaban | 20 (fasted) | 147.3 | 147.0 | 1.00 | 3.07 | 2.96 | 0.96 | 969.40 | 957.0 | 0.99 |
Rivaroxaban | 20 (fed) | 225.0 | 228.1 | 1.01 | 2.88 | 3.36 | 1.17 | 1618.6 | 1589.9 | 0.98 |
Apixaban | 2.5 | 245.1 | 299.8 | 1.22 | 0.5 | 0.5 | 1.00 | 878.7 | 1152.7 | 1.31 |
Apixaban | 10 | 168.8 | 192.1 | 1.14 | 3.20 | 3.62 | 1.13 | 2014.8 | 1775.1 | 0.88 |
Apixaban | 20 | 272.0 | 271.8 | 1.00 | 4.01 | 4.9 | 1.22 | 3090.2 | 3136.4 | 1.01 |
Edoxaban | 30 | 603.7 | 593.9 | 0.98 | 0.50 | 0.50 | 1.00 | 1259.8 | 1230.3 | 0.98 |
Edoxaban | 60 | 183.9 | 207.8 | 1.13 | 1.06 | 1.28 | 1.20 | 1220 | 1315.7 | 1.08 |
Edoxaban | 90 | 334.1 | 326.8 | 0.98 | 1.58 | 1.25 | 0.80 | 2347.2 | 2055.3 | 0.88 |
Predicted Value | DAB | Rivaroxaban | Apixaban | Edoxaban | |||||
---|---|---|---|---|---|---|---|---|---|
Mean | 90%CI | Mean | 90%CI | Mean | 90%CI | Mean | 90%CI | ||
Cmax (ng/mL) | DDI | 359 | 267–453 | 152 | 142–160 | 355 | 297–413 | 293 | 205–380 |
Baseline | 249 | 165–302 | 108 | 99–120 | 240 | 186–293 | 198 | 111–285 | |
Ratio | 1.610 | 1.345–1.885 | 1.420 | 1.275–1.551 | 1.740 | 1.470–2.009 | 1.929 | 1.427–2.430 | |
AUC0-inf (ng·h/mL) | DDI | 3614.6 | 2750.0–4479.1 | 1233.7 | 1095.8–1371.5 | 3972.0 | 3478.3–4465.6 | 2022.8 | 1625.1–2420.5 |
Baseline | 2532.9 | 1757.9–3307.9 | 594.2 | 502.6–685.9 | 2129.3 | 1649.7–2608.9 | 1047.7 | 737.0–1358.4 | |
Ratio | 1.562 | 1.310–1.813 | 2.283 | 1.877–2.689 | 2.436 | 1.842–3.029 | 2.459 | 1.854–3.064 | |
AUC0-t (ng·h/mL) | DDI | 3421.7 | 2606.4–4237.1 | 1169.4 | 1056.5–1282.3 | 3547.8 | 3072.2–4023.3 | 1980.3 | 1593.7–2366.9 |
Baseline | 2401.6 | 1667.0–3136.3 | 589.8 | 500.1–679.6 | 1895.3 | 1493.8–2296.8 | 1007.0 | 694.5–1319.4 | |
Ratio | 1.563 | 1.311–1.315 | 2.182 | 1.803–2.560 | 2.338 | 1.829–2.846 | 2.550 | 1.923–3.176 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Qu, Y.; Sun, Y.; Pan, J.; Zhou, T.; Yu, Y. Evaluation of Drug–Drug Interactions Between Clarithromycin and Direct Oral Anticoagulants Using Physiologically Based Pharmacokinetic Models. Pharmaceutics 2024, 16, 1449. https://doi.org/10.3390/pharmaceutics16111449
Yang Z, Qu Y, Sun Y, Pan J, Zhou T, Yu Y. Evaluation of Drug–Drug Interactions Between Clarithromycin and Direct Oral Anticoagulants Using Physiologically Based Pharmacokinetic Models. Pharmaceutics. 2024; 16(11):1449. https://doi.org/10.3390/pharmaceutics16111449
Chicago/Turabian StyleYang, Zhuan, Yuchen Qu, Yewen Sun, Jie Pan, Tong Zhou, and Yunli Yu. 2024. "Evaluation of Drug–Drug Interactions Between Clarithromycin and Direct Oral Anticoagulants Using Physiologically Based Pharmacokinetic Models" Pharmaceutics 16, no. 11: 1449. https://doi.org/10.3390/pharmaceutics16111449
APA StyleYang, Z., Qu, Y., Sun, Y., Pan, J., Zhou, T., & Yu, Y. (2024). Evaluation of Drug–Drug Interactions Between Clarithromycin and Direct Oral Anticoagulants Using Physiologically Based Pharmacokinetic Models. Pharmaceutics, 16(11), 1449. https://doi.org/10.3390/pharmaceutics16111449