Preparation and Evaluation of pH-Sensitive Chitosan/Alginate Nanohybrid Mucoadhesive Hydrogel Beads: An Effective Approach to a Gastro-Retentive Drug Delivery System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Folic-Acid-Conjugated Graphene Oxide (Fa-GO)
2.3. Preparation of Nanohybrid SA-CS Beads
2.4. Loading of Doxorubicin HCl (Dox.H)
3. Characterization
3.1. Percentage Yield
3.2. Structural Analysis
3.2.1. Optical Microscope Analysis
3.2.2. Field Emission SEM Analysis
3.3. Size Analysis
3.4. Homogeneity Analysis
3.5. Nuclear Magnetic Resonance (H-NMR) Spectroscopy
3.6. FTIR Study
3.7. Powder X-Ray Diffractometry (PXRD)
3.8. Entrapment Efficiency
3.9. Swelling Study
3.10. In Vitro Drug Release Analysis
In Vitro Drug Release Kinetics
3.11. Ex Vivo Mucoadhesive Analysis
3.12. In Vivo Pharmacokinetic Study
3.13. Stability Study
3.14. Statistical Analysis
4. Results
4.1. Percentage Yield Analysis
4.2. Optical Microscope
4.3. Scanning Electron Microscope (SEM) Analysis
4.4. Size Analysis
4.5. Homogenous Nature
4.6. NMR Spectroscopy
4.7. FTIR Analysis
4.8. PXRD Analysis
4.9. Encapsulation Efficacy
4.10. Swelling Study
4.11. Drug Release Study
Drug Release Kinetics
4.12. Ex Vivo Mucoadhesive Analysis
4.13. In Vivo Pharmacokinetics
4.14. Stability Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Koşaloğlu-Yalçın, Z.; Blazeska, N.; Vita, R.; Carter, H.; Nielsen, M.; Schoenberger, S.; Sette, A.; Peters, B. The Cancer Epitope Database and Analysis Resource (CEDAR). Nucleic Acids Res. 2023, 51, D845–D852. [Google Scholar] [CrossRef] [PubMed]
- Kola, P.; Nagesh, P.K.B.; Roy, P.K.; Deepak, K.; Reis, R.L.; Kundu, S.C.; Mandal, M. Innovative nanotheranostics: Smart nanoparticles based approach to overcome breast cancer stem cells mediated chemo-and radioresistances. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2023, 15, 1876. [Google Scholar] [CrossRef] [PubMed]
- Tsugane, S.; Sasazuki, S. Diet and the risk of gastric cancer: Review of epidemiological evidence. Gastric Cancer 2007, 10, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Cannizzaro, R.; Magris, R.; Maiero, S.; Spessotto, P.; De Re, V.; Fornasarig, M. Gastric Cancer in the Precision Medicine Era: Diagnosis and Therapy; Current Clinical Pathology; Canzonieri, V., Giordano, A., Eds.; Humana Press: Tortowa, NJ, USA, 2019. [Google Scholar]
- Smyth, E.C.; Nilsson, M.; Grabsch, H.I.; van Grieken, N.C.; Lordick, F. Gastric cancer. Lancet 2020, 396, 635–648. [Google Scholar] [CrossRef]
- Crew, K.D.; Neugut, A.I. Epidemiology of gastric cancer. World J. Gastroenterol. 2006, 12, 354. [Google Scholar] [CrossRef]
- Kohn, K.W.; Jackman, J.; O’Connor, P.M. Cell cycle control and cancer chemotherapy. J. Cell. Biochem. 1994, 54, 440–452. [Google Scholar] [CrossRef]
- Sohail, M.; Sun, Z.; Li, Y.; Gu, X.; Xu, H. Research progress in strategies to improve the efficacy and safety of doxorubicin for cancer chemotherapy. Expert Rev. Anticancer. Ther. 2021, 21, 1385–1398. [Google Scholar] [CrossRef]
- Zhou, T.; Zhou, X.; Xing, D. Controlled release of doxorubicin from graphene oxide based charge-reversal nanocarrier. Biomaterials 2014, 35, 4185–4194. [Google Scholar] [CrossRef]
- Quagliarini, E.; Di Santo, R.; Pozzi, D.; Tentori, P.; Cardarelli, F.; Caracciolo, G. Mechanistic insights into the release of doxorubicin from graphene oxide in cancer cells. Nanomaterials 2020, 10, 1482. [Google Scholar] [CrossRef]
- Keklikcioglu Cakmak, N.; Eroglu, A. Doxorubicin and tamoxifen loaded graphene oxide nanoparticle functionalized with chitosan and folic acid for anticancer drug delivery. Polym. Bull. 2023, 80, 2171–2185. [Google Scholar] [CrossRef]
- Depan, D.; Shah, J.; Misra, R. Controlled release of drug from folate-decorated and graphene mediated drug delivery system: Synthesis, loading efficiency, and drug release response. Mater. Sci. Eng. C 2011, 31, 1305–1312. [Google Scholar] [CrossRef]
- Qin, X.; Guo, Z.; Liu, Z.; Zhang, W.; Wan, M.; Yang, B. Folic acid-conjugated graphene oxide for cancer targeted chemo-photothermal therapy. J. Photochem. Photobiol. B Biol. 2013, 120, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Low, P.S.; Henne, W.A.; Doorneweerd, D.D. Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc. Chem. Res. 2007, 41, 120–129. [Google Scholar] [CrossRef]
- Singh, B.N.; Kim, K.H. Floating drug delivery systems: An approach to oral controlled drug delivery via gastric retention. J. Control. Release 2000, 63, 235–259. [Google Scholar] [CrossRef]
- Sankar, R.; Jain, S.K. Development and characterization of gastroretentive sustained-release formulation by combination of swelling and mucoadhesive approach: A mechanistic study. Drug Des. Dev. Ther. 2013, 7, 1455–1469. [Google Scholar]
- Nayak, A.K.; Malakar, J.; Sen, K.K. Gastroretentive drug delivery technologies: Current approaches and future potential. J. Pharm. Educ. Res. 2010, 1, 1. [Google Scholar]
- Cui, F.; Qian, F.; Yin, C. Preparation and characterization of mucoadhesive polymer-coated nanoparticles. Int. J. Pharm. 2006, 316, 154–161. [Google Scholar] [CrossRef]
- Nayak, A.K.; Pal, D.; Pradhan, J.; Hasnain, M.S. Fenugreek seed mucilage-alginate mucoadhesive beads of metformin HCl: Design, optimization and evaluation. Int. J. Biol. Macromol. 2013, 54, 144–154. [Google Scholar] [CrossRef]
- Ways, T.M.M.; Lau, W.M.; Khutoryanskiy, V.V. Chitosan and its derivatives for application in mucoadhesive drug delivery systems. Polymers 2018, 10, 267. [Google Scholar] [CrossRef]
- Ullah, S.; Azad, A.K.; Nawaz, A.; Shah, K.U.; Iqbal, M.; Albadrani, G.M.; Al-Joufi, F.A.; Sayed, A.A.; Abdel-Daim, M.M. 5-Fluorouracil-Loaded Folic-Acid-Fabricated Chitosan Nanoparticles for Site-Targeted Drug Delivery Cargo. Polymers 2022, 14, 2010. [Google Scholar] [CrossRef]
- Huang, P.; Xu, C.; Lin, J.; Wang, C.; Wang, X.; Zhang, C.; Zhou, X.; Guo, S.; Cui, D. Folic acid-conjugated graphene oxide loaded with photosensitizers for targeting photodynamic therapy. Theranostics 2011, 1, 240. [Google Scholar] [CrossRef]
- Najmuddin, M.; Shelar, S.; Ali, A.; Patel, V.; Khan, T. Formulation and in vitro evaluation of floating microspheres of ketoprofen prepared by emulsion solvent diffusion method. Int. J. Appl. Pharm. 2010, 2, 13–17. [Google Scholar]
- Patil, J.; Mandave, S.; Jadhav, S. Ionotropicaly crosslinked and chitosan reinforced losartan potassium loaded complex alginate beads: Design, characterization and evaluation. Malaya J. Biosci. 2014, 1, 126–133. [Google Scholar]
- Barkhordari, S.; Yadollahi, M.; Namazi, H. pH sensitive nanocomposite hydrogel beads based on carboxymethyl cellulose/layered double hydroxide as drug delivery systems. J. Polym. Res. 2014, 21, 454. [Google Scholar] [CrossRef]
- Khan, S.; Madni, A.; Rahim, M.A.; Shah, H.; Jabar, A.; Khan, M.M.; Khan, A.; Jan, N.; Mahmood, M.A. Enhanced in vitro release and permeability of glibenclamide by proliposomes: Development, characterization and histopathological evaluation. J. Drug Deliv. Sci. Technol. 2021, 63, 102450. [Google Scholar] [CrossRef]
- Kulkarni, R.V.; Boppana, R.; Mohan, G.K.; Mutalik, S.; Kalyane, N.V. pH-responsive interpenetrating network hydrogel beads of poly (acrylamide)-g-carrageenan and sodium alginate for intestinal targeted drug delivery: Synthesis, in vitro and in vivo evaluation. J. Colloid Interface Sci. 2012, 367, 509–517. [Google Scholar] [CrossRef]
- Bajpai, S.K.; Tankhiwale, R. Preparation, characterization and preliminary calcium release study of floating sodium alginate/dextran-based hydrogel beads: Part I. Polym. Int. 2008, 57, 57–65. [Google Scholar] [CrossRef]
- Khan, S.; Aamir, M.N.; Madni, A.; Jan, N.; Khan, A.; Jabar, A.; Shah, H.; Rahim, M.A.; Ali, A. Lipid poly (ε-caprolactone) hybrid nanoparticles of 5-fluorouracil for sustained release and enhanced anticancer efficacy. Life Sci. 2021, 284, 119909. [Google Scholar] [CrossRef]
- Sun, X.; Liu, Z.; Welsher, K.; Robinson, J.T.; Goodwin, A.; Zaric, S.; Dai, H. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008, 1, 203–212. [Google Scholar] [CrossRef]
- Chauhan, G.; Chopra, V.; Tyagi, A.; Rath, G.; Sharma, R.K.; Goyal, A.K. “Gold nanoparticles composite-folic acid conjugated graphene oxide nanohybrids” for targeted chemo-thermal cancer ablation: In vitro screening and in vivo studies. Eur. J. Pharm. Sci. 2017, 96, 351–361. [Google Scholar] [CrossRef]
- Zainal-Abidin, M.H.; Hayyan, M.; Ngoh, G.C.; Wong, W.F. Doxorubicin loading on functional graphene as a promising nanocarrier using ternary deep eutectic solvent systems. ACS Omega 2020, 5, 1656–1668. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, S.; Mistry, P.; Patel, V. SLNs based on co-processed lipids for topical delivery of terbinafine hydrochloride. J. Pharm. Drug Dev. 2014, 1, 604. [Google Scholar]
- Wang, J.; Liu, C.; Shuai, Y.; Cui, X.; Nie, L. Controlled release of anticancer drug using graphene oxide as a drug-binding effector in konjac glucomannan/sodium alginate hydrogels. Colloids Surf. B Biointerfaces 2014, 113, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Madni, A.; Shah, H.; Jan, N.; Shafiq, A.; Basit, A.; Rai, N.; Ali, A.; Khan, M.M. Folate decorated lipid chitosan hybrid nanoparticles of 5-fluorouracil for enhanced anticancer efficacy against colon cancer. Int. J. Biol. Macromol. 2022, 222, 497–508. [Google Scholar] [CrossRef]
- Rehman, S.; Madni, A.; Jamil, Q.A.; Raza, M.R.; Shukat, H.; Nadeem, A. Preparation and in vitro characterization of graphene oxide impregnated superporous hydrogel beads: An effective approach of gastro-retentive drug delivery system. Polym.-Plast. Technol. Mater. 2024, 63, 2304–2326. [Google Scholar] [CrossRef]
- Nayak, A.K.; Pal, D.; Santra, K. Plantago ovata F. Mucilage-alginate mucoadhesive beads for controlled release of glibenclamide: Development, optimization, and in vitro-in vivo evaluation. J. Pharm. 2013, 2013, 11. [Google Scholar] [CrossRef]
- Patil, J.S.; Kole, S.G.; Gurav, P.B.; Vilegave, K.V. Natural polymer based mucoadhesive hydrogel beads of nizatidine: Preparation, characterization and evaluation. Indian J. Pharm. Educ. Res. 2016, 50, 159–169. [Google Scholar] [CrossRef]
- Kalaria, D.; Sharma, G.; Beniwal, V.; Ravi Kumar, M. Design of biodegradable nanoparticles for oral delivery of doxorubicin: In vivo pharmacokinetics and toxicity studies in rats. Pharm. Res. 2009, 26, 492–501. [Google Scholar] [CrossRef]
- Daeihamed, M.; Haeri, A.; Dadashzadeh, S. A simple and sensitive HPLC method for fluorescence quantitation of doxorubicin in micro-volume plasma: Applications to pharmacokinetic studies in rats. Iran. J. Pharm. Res. 2015, 14, 33. [Google Scholar]
- Urva, S.R.; Shin, B.S.; Yang, V.C.; Balthasar, J.P. Sensitive high performance liquid chromatographic assay for assessment of doxorubicin pharmacokinetics in mouse plasma and tissues. J. Chromatogr. B 2009, 877, 837–841. [Google Scholar] [CrossRef]
- Nerkar, P.P.; Gattani, S.G. Cress seed mucilage based buccal mucoadhesive gel of venlafaxine: In vivo, in vitro evaluation. J. Mater. Sci. Mater. Med. 2012, 23, 771–779. [Google Scholar] [CrossRef] [PubMed]
- Nerkar, P.P.; Gattani, S. In vivo, in vitro evaluation of linseed mucilage based buccal mucoadhesive microspheres of venlafaxine. Drug Deliv. 2011, 18, 111–121. [Google Scholar] [CrossRef] [PubMed]
- ICH Steering Committee. Stability testing of new drug substances and products. In ICH Harmonised Tripartite Guideline; Q1A (R2), current step; ICH Steering Committee: Geneva, Switzerland, 2003. [Google Scholar]
- Bao, C.; Bi, S.; Zhang, H.; Zhao, J.; Wang, P.; Yue, C.Y.; Yang, J. Graphene oxide beads for fast clean-up of hazardous chemicals. J. Mater. Chem. A 2016, 4, 9437–9446. [Google Scholar] [CrossRef]
- Rehman, S.; Ranjha, N.M.; Raza, M.R.; Hanif, M.; Majed, A.; Ameer, N. Enteric-coated Ca-alginate hydrogel beads: A promising tool for colon targeted drug delivery system. Polym. Bull. 2021, 78, 5103–5117. [Google Scholar] [CrossRef]
- Bhawal, P.; Ganguly, S.; Chaki, T.; Das, N. Synthesis and characterization of graphene oxide filled ethylene methyl acrylate hybrid nanocomposites. RSC Adv. 2016, 6, 20781–20790. [Google Scholar] [CrossRef]
- Deb, A.; Andrews, N.G.; Raghavan, V. Natural polymer functionalized graphene oxide for co-delivery of anticancer drugs: In-vitro and in-vivo. Int. J. Biol. Macromol. 2018, 113, 515–525. [Google Scholar] [CrossRef]
- Javanbakht, S.; Shaabani, A. Encapsulation of graphene quantum dot-crosslinked chitosan by carboxymethylcellulose hydrogel beads as a pH-responsive bio-nanocomposite for the oral delivery agent. Int. J. Biol. Macromol. 2019, 123, 389–397. [Google Scholar] [CrossRef]
- Long, J.; Etxeberria, A.E.; Kornelsen, C.; Nand, A.V.; Ray, S.; Bunt, C.R.; Seyfoddin, A. Development of a long-term drug delivery system with levonorgestrel-loaded chitosan microspheres embedded in poly (vinyl alcohol) hydrogel. ACS Appl. Bio Mater. 2019, 2, 2766–2779. [Google Scholar] [CrossRef]
- Banoon, S.R.; Ghasemian, A. The Characters of Graphene Oxide Nanoparticles and Doxorubicin Against HCT-116 Colorectal Cancer Cells In Vitro. J. Gastrointest. Cancer 2022, 53, 410–414. [Google Scholar] [CrossRef]
- Huang, Y.-S.; Lu, Y.-J.; Chen, J.-P. Magnetic graphene oxide as a carrier for targeted delivery of chemotherapy drugs in cancer therapy. J. Magn. Magn. Mater. 2017, 427, 34–40. [Google Scholar] [CrossRef]
- Çakmak, N.K.; Küçükyazici, M.; Eroğlu, A. Synthesis and stability analysis of folic acid-graphene oxide nanoparticles for drug delivery and targeted cancer therapies. Int. Adv. Res. Eng. J. 2019, 3, 81–85. [Google Scholar] [CrossRef]
- Si, Y.; Samulski, E.T. Synthesis of water soluble graphene. Nano Lett. 2008, 8, 1679–1682. [Google Scholar] [CrossRef] [PubMed]
- Rasoulzadeh, M.; Namazi, H. Carboxymethyl cellulose/graphene oxide bio-nanocomposite hydrogel beads as anticancer drug carrier agent. Carbohydr. Polym. 2017, 168, 320–326. [Google Scholar] [CrossRef]
- Kavitha, T.; Abdi, S.I.H.; Park, S.-Y. pH-sensitive nanocargo based on smart polymer functionalized graphene oxide for site-specific drug delivery. Phys. Chem. Chem. Phys. 2013, 15, 5176–5185. [Google Scholar] [CrossRef]
- Khan, M.M.; Madni, A.; Filipczak, N.; Pan, J.; Rehman, M.; Rai, N.; Attia, S.A.; Torchilin, V.P. Folate targeted lipid chitosan hybrid nanoparticles for enhanced anti-tumor efficacy. Nanomed. Nanotechnol. Biol. Med. 2020, 28, 102228. [Google Scholar] [CrossRef]
- Rao, K.M.; Rao, K.K.; Sudhakar, P.; Rao, K.C.; Subha, M. Synthesis and Characterization of biodegradable Poly (Vinyl caprolactam) grafted on to sodium alginate and its microgels for controlled release studies of an anticancer drug. J. Appl. Pharm. Sci. 2013, 3, 61–69. [Google Scholar]
- Song, E.; Han, W.; Li, C.; Cheng, D.; Li, L.; Liu, L.; Zhu, G.; Song, Y.; Tan, W. Hyaluronic acid-decorated graphene oxide nanohybrids as nanocarriers for targeted and pH-responsive anticancer drug delivery. ACS Appl. Mater. Interfaces 2014, 6, 11882–11890. [Google Scholar] [CrossRef]
- Zhang, L.; Xia, J.; Zhao, Q.; Liu, L.; Zhang, Z. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 2010, 6, 537–544. [Google Scholar] [CrossRef]
- Eivazzadeh-Keihan, R.; Alimirzaloo, F.; Aghamirza Moghim Aliabadi, H.; Bahojb Noruzi, E.; Akbarzadeh, A.R.; Maleki, A.; Madanchi, H.; Mahdavi, M. Functionalized graphene oxide nanosheets with folic acid and silk fibroin as a novel nanobiocomposite for biomedical applications. Sci. Rep. 2022, 12, 6205. [Google Scholar] [CrossRef]
- Wu, S.; Zhao, X.; Li, Y.; Du, Q.; Sun, J.; Wang, Y.; Wang, X.; Xia, Y.; Wang, Z.; Xia, L. Adsorption properties of doxorubicin hydrochloride onto graphene oxide: Equilibrium, kinetic and thermodynamic studies. Materials 2013, 6, 2026–2042. [Google Scholar] [CrossRef]
- Kanwal, U.; Bukhari, N.I.; Rana, N.F.; Rehman, M.; Hussain, K.; Abbas, N.; Mehmood, A.; Raza, A. Doxorubicin-loaded quaternary ammonium palmitoyl glycol chitosan polymeric nanoformulation: Uptake by cells and organs. Int. J. Nanomed. 2019, 14, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Kharroubi, M.; Bellali, F.; Karrat, A.; Bouchdoug, M.; Jaouad, A. Preparation of Teucrium polium extract-loaded chitosan-sodium lauryl sulfate beads and chitosan-alginate films for wound dressing application. AIMS Public Health 2021, 8, 754. [Google Scholar] [CrossRef] [PubMed]
- Ajeel, S.J.; Beddai, A.A.; Almohaisen, A.M.N. Preparation of alginate/graphene oxide composite for methylene blue removal. Mater. Today Proc. 2022, 51, 289–297. [Google Scholar] [CrossRef]
- Deb, A.; Vimala, R. Camptothecin loaded graphene oxide nanoparticle functionalized with polyethylene glycol and folic acid for anticancer drug delivery. J. Drug Deliv. Sci. Technol. 2018, 43, 333–342. [Google Scholar] [CrossRef]
- Sun, L.; Fugetsu, B. Graphene oxide captured for green use: Influence on the structures of calcium alginate and macroporous alginic beads and their application to aqueous removal of acridine orange. Chem. Eng. J. 2014, 240, 565–573. [Google Scholar] [CrossRef]
- Ramos, P.E.; Silva, P.; Alario, M.M.; Pastrana, L.M.; Teixeira, J.A.; Cerqueira, M.A.; Vicente, A.A. Effect of alginate molecular weight and M/G ratio in beads properties foreseeing the protection of probiotics. Food Hydrocoll. 2018, 77, 8–16. [Google Scholar] [CrossRef]
- Vinothini, K.; Rajendran, N.K.; Munusamy, M.A.; Alarfaj, A.A.; Rajan, M. Development of biotin molecule targeted cancer cell drug delivery of doxorubicin loaded κ-carrageenan grafted graphene oxide nanocarrier. Mater. Sci. Eng. C 2019, 100, 676–687. [Google Scholar] [CrossRef]
- Lu, Y.-J.; Wei, K.-C.; Ma, C.-C.M.; Yang, S.-Y.; Chen, J.-P. Dual targeted delivery of doxorubicin to cancer cells using folate-conjugated magnetic multi-walled carbon nanotubes. Colloids Surf. B Biointerfaces 2012, 89, 1–9. [Google Scholar] [CrossRef]
- Sengupta, I.; Kumar, S.S.S.; Gupta, K.; Chakraborty, S. In-vitro release study through novel graphene oxide aided alginate based pH-sensitive drug carrier for gastrointestinal tract. Mater. Today Commun. 2021, 26, 101737. [Google Scholar] [CrossRef]
- Dai, Y.N.; Li, P.; Zhang, J.P.; Wang, A.Q.; Wei, Q. A novel pH sensitive N-succinyl chitosan/alginate hydrogel bead for nifedipine delivery. Biopharm. Drug Dispos. 2008, 29, 173–184. [Google Scholar] [CrossRef]
- Yang, H.; Sun, A.; Yang, J.; Cheng, H.; Yang, X.; Chen, H.; Huanfei, D.; Falahati, M. Development of doxorubicin-loaded chitosan–heparin nanoparticles with selective anticancer efficacy against gastric cancer cells in vitro through regulation of intrinsic apoptosis pathway. Arab. J. Chem. 2021, 14, 103266. [Google Scholar] [CrossRef]
- Segale, L.; Giovannelli, L.; Mannina, P.; Pattarino, F. Calcium alginate and calcium alginate-chitosan beads containing celecoxib solubilized in a self-emulsifying phase. Scientifica 2016, 2016, 5062706. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, Q.; Wang, A. In situ generation of sodium alginate/hydroxyapatite nanocomposite beads as drug-controlled release matrices. Acta Biomater. 2010, 6, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Sudhakar, K.; Moloi, S.J.; Rao, K.M. Graphene oxide/poly (N-isopropyl acrylamide)/sodium alginate-based dual responsive composite beads for controlled release characteristics of chemotherapeutic agent. Iran. Polym. J. 2017, 26, 521–530. [Google Scholar] [CrossRef]
- Unagolla, J.M.; Jayasuriya, A.C. Drug transport mechanisms and in vitro release kinetics of vancomycin encapsulated chitosan-alginate polyelectrolyte microparticles as a controlled drug delivery system. Eur. J. Pharm. Sci. 2018, 114, 199–209. [Google Scholar] [CrossRef]
- Agnihotri, S.A.; Mallikarjuna, N.N.; Aminabhavi, T.M. Recent advances on chitosan-based micro-and nanoparticles in drug delivery. J. Control Release 2004, 100, 5–28. [Google Scholar] [CrossRef]
- Mirzaie, Z.; Reisi-Vanani, A.; Barati, M. Polyvinyl alcohol-sodium alginate blend, composited with 3D-graphene oxide as a controlled release system for curcumin. J. Drug Deliv. Sci. Technol. 2019, 50, 380–387. [Google Scholar] [CrossRef]
- Meng, X.; Li, P.; Wei, Q.; Zhang, H.-X. pH sensitive alginate-chitosan hydrogel beads for carvedilol delivery. Pharm. Dev. Technol. 2011, 16, 22–28. [Google Scholar] [CrossRef]
- Gamboa, J.M.; Leong, K.W. In vitro and in vivo models for the study of oral delivery of nanoparticles. Adv. Drug Deliv. Rev. 2013, 65, 800–810. [Google Scholar] [CrossRef]
- Hecq, J.; Siepmann, F.; Siepmann, J.; Amighi, K.; Goole, J. Development and evaluation of chitosan and chitosan derivative nanoparticles containing insulin for oral administration. Drug Dev. Ind. Pharm. 2015, 41, 2037–2044. [Google Scholar] [CrossRef]
- Upadhyay, M.; Adena, S.K.R.; Vardhan, H.; Yadav, S.K.; Mishra, B. Locust bean gum and sodium alginate based interpenetrating polymeric network microbeads encapsulating Capecitabine: Improved pharmacokinetics, cytotoxicity &in vivo antitumor activity. Mater. Sci. Eng. C 2019, 104, 109958. [Google Scholar]
Formulations | SA (g/100 mL) | Fa-GO (mg/100 mL) | CS (g/mL) | CaCl2 (g/100 mL) |
---|---|---|---|---|
MNB-1 | 3.5 | 2.5 | 0.3 | 5 |
MNB-2 | 3.5 | 2.5 | 0.2 | 5 |
MNB-3 | 3.5 | 2.5 | 0.1 | 5 |
MNB-4 | 3.5 | 5 | 0.3 | 5 |
MNB-5 | 3.5 | 5 | 0.2 | 5 |
MNB-6 | 3.5 | 5 | 0.1 | 5 |
MNB-7 | 4.0 | 5 | 0.1 | 5 |
MNB-8 | 3.0 | 5 | 0.1 | 5 |
Formulation | Percentage Yield |
---|---|
MNB-1 | 68.8± 1.54 |
MNB-2 | 67.2 ± 1.33 |
MNB-3 | 65.9 ± 2.31 |
MNB-4 | 82.8 ± 2.09 |
MNB-5 | 82.2 ± 1.16 |
MNB-6 | 81.6 ± 1.72 |
MNB-7 | 84.6 ± 1.48 |
MNB-8 | 77.3 ± 2.05 |
Formulations | Zeta Potential (mV) | Size (nm) | PDI |
---|---|---|---|
Fa-GO | −65 ± 12.33 | 554.2 ± 95.14 | 0.637 |
Dox.H-loaded Fa-GO | −69 ± 23.45 | 778.6 ± 186.7 | 0.361 |
Formulation | Particle Size (mm) | ANOVA p-Value (Particle Size) | Average Weight Ratio | ANOVA p-Value (Weight Ratio) |
---|---|---|---|---|
MNB-1 | 0.37 ± 0.07 | 0.02 | 30.45 ± 1.02 | 0.01 |
MNB-2 | 0.42 ± 0.03 | 44.65 ± 2.19 | ||
MNB-3 | 0.45 ± 0.12 | 47.29 ± 1.16 | ||
MNB-4 | 0.38 ± 0.04 | 32.65 ± 0.98 | ||
MNB-5 | 0.34 ± 0.11 | 21.65 ± 1.17 | ||
MNB-6 | 0.32 ± 0.06 | 18.02 ± 1.53 | ||
MNB-7 | 0.35 ± 0.09 | 22.17 ± 0.78 | ||
MNB-8 | 0.37 ± 0.08 | 28.67 ± 2.43 |
Formulation | Encapsulation Efficiency (%) |
---|---|
Fa-GO | 72.07 ± 1.62 |
MNB-1 | 64.23 ± 1.77 |
MNB-2 | 61.23 ± 2.17 |
MNB-3 | 57.56 ± 1.11 |
MNB-4 | 73.89 ± 1.18 |
MNB-5 | 75.12 ± 2.08 |
MNB-6 | 83.25 ± 2.36 |
MNB-7 | 82.11 ± 2.54 |
MNB-8 | 79.76 ± 1.07 |
Kinetic Models | MNB-1 | MNB-2 | MNB-3 | MNB-4 | MNB-5 | MNB-6 | MNB-7 | MNB-8 | |
---|---|---|---|---|---|---|---|---|---|
Zero-order kinetics | Ko | 2.850 | 2.664 | 2.403 | 3.192 | 3.448 | 4.006 | 3.844 | 3.629 |
R | 0.8506 | 0.8740 | 0.8870 | 0.8808 | 0.8811 | 0.8747 | 0.8834 | 0.8824 | |
First-order kinetics | K1 | 0.044 | 0.040 | 0.034 | 0.054 | 0.062 | 0.090 | 0.080 | 0.070 |
R | 0.9082 | 0.9216 | 0.9260 | 0.9406 | 0.9494 | 0.9646 | 0.9633 | 0.9553 | |
Higuchi model | KH | 12.154 | 11.290 | 10.100 | 13.585 | 14.700 | 17.236 | 16.459 | 15.527 |
R | 0.9325 | 0.9486 | 0.9565 | 0.9527 | 0.9521 | 0.9490 | 0.9540 | 0.9535 | |
Korsmeyer–Peppas model | n | 0.365 | 0.393 | 0.435 | 0.363 | 0.351 | 0.301 | 0.325 | 0.330 |
R | 0.9510 | 0.9616 | 0.9637 | 0.9681 | 0.9678 | 0.9713 | 0.9722 | 0.9716 | |
Release kinetics | Fickian diffusion | Fickian diffusion | Fickian diffusion | Fickian diffusion | Fickian diffusion | Fickian diffusion | Fickian diffusion | Fickian diffusion |
Pharmacokinetic Parameter (Unit) | Dox.H | Fa-GO | t-Stat | p-Value |
---|---|---|---|---|
t1/2 h | 518.4446 | 324.5803 | 313.8613 | 0.006 |
Tmax h | 8 | 28 | 28 | 9.8995 |
Cmax μg/mL | 63.31 | 163.22 | 168.82 | 41.9354 |
AUC 0-t μg/mLh | 2084.87 | 7428.1 | 59.0881 | 4.8 × 10−5 |
AUC 0-t/0-inf_obs | 0.264016 | 0.071258 | 0.280329 | 4.12188 |
MRT 0-inf_obs h | 744.7376 | 440.2277 | −0.1567 | 0.88959 |
Vz/F_obs (mg)/(μg/mL) | 0.255641 | 0.166437 | −0.5032 | 0.64519 |
Cl/F_obs (mg)/(μg/mL)/h | 0.000342 | 0.000355 | −0.9791 | 0.40406 |
Parameters | 0 (Days) | 15 (Days) | 30 (Days) | 90 (Days) | 180 (Days) | Rate Constant (Day 1) | t (90%) Days |
---|---|---|---|---|---|---|---|
Particle size (µm) | 341.0 ± 0.45 | 341.0 ± 0.72 | 340.7 ± 0.83 | 340.5 ± 0.32 | 319.1 ± 0.27 | - | - |
Drug constant (%) | 100 | 100 | 99.87 | 99.12 | 98.77 | 8 × 10−5 | 1312.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehman, S.; Jamil, Q.A.; Noreen, S.; Ashraf, M.A.; Madni, A.; Mahmood, H.; Shoukat, H.; Raza, M.R. Preparation and Evaluation of pH-Sensitive Chitosan/Alginate Nanohybrid Mucoadhesive Hydrogel Beads: An Effective Approach to a Gastro-Retentive Drug Delivery System. Pharmaceutics 2024, 16, 1451. https://doi.org/10.3390/pharmaceutics16111451
Rehman S, Jamil QA, Noreen S, Ashraf MA, Madni A, Mahmood H, Shoukat H, Raza MR. Preparation and Evaluation of pH-Sensitive Chitosan/Alginate Nanohybrid Mucoadhesive Hydrogel Beads: An Effective Approach to a Gastro-Retentive Drug Delivery System. Pharmaceutics. 2024; 16(11):1451. https://doi.org/10.3390/pharmaceutics16111451
Chicago/Turabian StyleRehman, Sadia, Qazi Adnan Jamil, Sobia Noreen, Muhammad Azeem Ashraf, Asadullah Madni, Hassan Mahmood, Hina Shoukat, and Muhammad Rafi Raza. 2024. "Preparation and Evaluation of pH-Sensitive Chitosan/Alginate Nanohybrid Mucoadhesive Hydrogel Beads: An Effective Approach to a Gastro-Retentive Drug Delivery System" Pharmaceutics 16, no. 11: 1451. https://doi.org/10.3390/pharmaceutics16111451
APA StyleRehman, S., Jamil, Q. A., Noreen, S., Ashraf, M. A., Madni, A., Mahmood, H., Shoukat, H., & Raza, M. R. (2024). Preparation and Evaluation of pH-Sensitive Chitosan/Alginate Nanohybrid Mucoadhesive Hydrogel Beads: An Effective Approach to a Gastro-Retentive Drug Delivery System. Pharmaceutics, 16(11), 1451. https://doi.org/10.3390/pharmaceutics16111451