Comprehensive In Vitro and In Silico Aerodynamic Analysis of High-Dose Ibuprofen- and Mannitol-Containing Dry Powder Inhalers for the Treatment of Cystic Fibrosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of the MAN Solution and the IBU Presuspension
2.2.2. Spray Drying of the Solution of MAN and the Presuspension of IBU
2.2.3. Preparation of the Physical Mixtures
2.2.4. Determination of the API Content
2.2.5. Laser Diffraction-Based Particle Size Measurement
2.2.6. Scanning Electron Microscopy Investigation
2.2.7. Density and Powder Rheology Measurement
2.2.8. X-Ray Powder Diffraction Analysis
2.2.9. Differential Scanning Calorimetry Investigation
2.2.10. In Vitro Aerodynamic Measurements
2.2.11. Aerodynamic Particle Size Analysis Using the Spraytec® Device
2.2.12. In Vitro Dissolution Test in Simulated Lung Media
2.2.13. In Vitro Dissolution Test Using Paddle Method Combined with ACI
2.2.14. In Silico Aerodynamic Characterization
3. Results
3.1. Result of Particle Size Analysis by Laser Diffraction
3.2. The Outcomes of the Density and Powder Rheology Test
3.3. Findings of Scanning Electron Microscopy Investigation
3.4. Crystallinity Results of Particles Determined by X-Ray Powder Diffraction
3.5. Findings of Thermoanalytical Investigation by Differential Scanning Calorimetry
3.6. Determined In Vitro Aerodynamic Properties of DPI Formulation
3.7. Results of Aerodynamic Characterization by Spraytec® Device
3.8. Outcomes of In Vitro Dissolution Investigation
3.9. Statements of In Vitro Dissolution Test Combined with ACI
3.10. Results of In Silico Aerodynamic Characterization
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Castellani, C.; Assael, B.M. Cystic Fibrosis: A Clinical View. Cell. Mol. Life Sci. 2017, 74, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Collawn, J.F.; Matalon, S. CFTR and Lung Homeostasis. Am. J. Physiol. Lung Cell Mol. Physiol. 2014, 307, L917–L923. [Google Scholar] [CrossRef] [PubMed]
- DeSimone, E.; Tilleman, J.; Giles, M.E.; Moussa, B. Cystic Fibrosis: Update on Treatment Guidelines and New Recommendations. U.S. Pharm. 2018, 43, 16–21. [Google Scholar]
- Mogayzel, P.J.; Naureckas, E.T.; Robinson, K.A.; Mueller, G.; Hadjiliadis, D.; Hoag, J.B.; Lubsch, L.; Hazle, L.; Sabadosa, K.; Marshall, B. Cystic Fibrosis Pulmonary Guidelines: Chronic Medications for Maintenance of Lung Health. Am. J. Respir. Crit. Care Med. 2013, 187, 680–689. [Google Scholar] [CrossRef]
- Rafeeq, M.M.; Murad, H.A.S. Cystic Fibrosis: Current Therapeutic Targets and Future Approaches. J. Transl. Med. 2017, 15, 84. [Google Scholar] [CrossRef]
- Yıldız-Peköz, A.; Ehrhardt, C. Advances in Pulmonary Drug Delivery. Pharmaceutics 2020, 12, 911. [Google Scholar] [CrossRef]
- Marianecci, C.; Di Marzio, L.; Rinaldi, F.; Carafa, M.; Alhaique, F. Pulmonary Delivery: Innovative Approaches and Perspectives. J. Biomater. Nanobiotechnol. 2011, 02, 567–575. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, Y.; Zhang, L.; Zhu, J.; Jin, F. The Development of a Novel Dry Powder Inhaler. Int. J. Pharm. 2012, 431, 45–52. [Google Scholar] [CrossRef]
- Islam, N.; Suwandecha, T.; Srichana, T. Dry Powder Inhaler Design and Particle Technology in Enhancing Pulmonary Drug Deposition: Challenges and Future Strategies. DARU J. Pharm. Sci. 2024, 32, 761–779. [Google Scholar] [CrossRef]
- Morice, A.H.; Adler, L.M.; Ellis, S.; Hewitt, A. Do Patients Prefer Dry Powder Inhalers or Metered-Dose Inhalers? A Retrospective, Combined Analysis. Curr. Ther. Res. Clin. Exp. 2002, 63, 496–506. [Google Scholar] [CrossRef]
- Harb, H.S.; Ibrahim Laz, N.; Rabea, H.; Abdelrahim, M.E.A. Real-Life Assessment of Chronic Obstructive Pulmonary Disease Patient Performance with Different Inhalers. Int. J. Clin. Pract. 2021, 75, e13905. [Google Scholar] [CrossRef] [PubMed]
- Ahrens, R.C. The Role of the MDI and DPI in Pediatric Patients: “Children Are Not Just Miniature Adults”. Respir. Care 2005, 50, 1323–1328. [Google Scholar] [PubMed]
- Gauld, L.M.; Briggs, K.; Robinson, P. Peak Inspiratory Flows in Children with Cystic Fibrosis. J. Paediatr. Child. Health 2003, 39, 210–213. [Google Scholar] [CrossRef] [PubMed]
- Clark, A.R.; Weers, J.G.; Dhand, R. The Confusing World of Dry Powder Inhalers: It Is All about Inspiratory Pressures, Not Inspiratory Flow Rates. J. Aerosol Med. Pulm. Drug Deliv. 2020, 33, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Capstick, T.G.D.; Gudimetla, S.; Harris, D.S.; Malone, R.; Usmani, O.S. Demystifying Dry Powder Inhaler Resistance with Relevance to Optimal Patient Care. Clin. Drug Investig. 2024, 44, 109–114. [Google Scholar] [CrossRef]
- Lands, L.C.; Dauletbaev, N. High-Dose Ibuprofen in Cystic Fibrosis. Pharmaceuticals 2010, 3, 2213–2224. [Google Scholar] [CrossRef]
- Sheikh, Z.; Ong, H.X.; Pozzoli, M.; Young, P.M.; Traini, D. Is There a Role for Inhaled Anti-Inflammatory Drugs in Cystic Fibrosis Treatment? Expert. Opin. Orphan Drugs 2018, 6, 69–84. [Google Scholar] [CrossRef]
- Agent, P.; Parrott, H. Inhaled Therapy in Cystic Fibrosis: Agents, Devices and Regimens. Breathe 2015, 11, 111–118. [Google Scholar] [CrossRef]
- Malamatari, M.; Somavarapu, S.; Kachrimanis, K.; Buckton, G.; Taylor, K.M.G. Preparation of Respirable Nanoparticle Agglomerates of the Low Melting and Ductile Drug Ibuprofen: Impact of Formulation Parameters. Powder Technol. 2017, 308, 123–134. [Google Scholar] [CrossRef]
- Party, P.; Klement, M.L.; Révész, P.S.; Ambrus, R. Preparation and Characterization of Ibuprofen Containing Nano-Embedded-Microparticles for Pulmonary Delivery. Pharmaceutics 2023, 15, 545. [Google Scholar] [CrossRef]
- Banat, H.; Csóka, I.; Paróczai, D.; Burian, K.; Farkas, Á.; Ambrus, R. A Novel Combined Dry Powder Inhaler Comprising Nanosized Ketoprofen-Embedded Mannitol-Coated Microparticles for Pulmonary Inflammations: Development, In Vitro–In Silico Characterization, and Cell Line Evaluation. Pharmaceuticals 2024, 17, 75. [Google Scholar] [CrossRef] [PubMed]
- Stigliani, M.; Aquino, R.P.; Del Gaudio, P.; Mencherini, T.; Sansone, F.; Russo, P. Non-Steroidal Anti-Inflammatory Drug for Pulmonary Administration: Design and Investigation of Ketoprofen Lysinate Fine Dry Powders. Int. J. Pharm. 2013, 448, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Yazdi, A.K.; Smyth, H.D.C. Carrier-Free High-Dose Dry Powder Inhaler Formulation of Ibuprofen: Physicochemical Characterization and in Vitro Aerodynamic Performance. Int. J. Pharm. 2016, 511, 403–414. [Google Scholar] [CrossRef] [PubMed]
- Aitken, M.L.; Bellon, G.; De Boeck, K.; Flume, P.A.; Fox, H.G.; Geller, D.E.; Haarman, E.G.; Hebestreit, H.U.; Lapey, A.; Schou, I.M.; et al. Long-Term Inhaled Dry Powder Mannitol in Cystic Fibrosis: An International Randomized Study. Am. J. Respir. Crit. Care Med. 2012, 185, 645–652. [Google Scholar] [CrossRef]
- Nevitt, S.J.; Thornton, J.; Murray, C.S.; Dwyer, T. Cochrane Database of Systematic Reviews Inhaled Mannitol for Cystic Fibrosis (Review). Cochrane Database Syst. Rev. 2018, 5, 1–115. [Google Scholar] [CrossRef]
- Bronchitol. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/bronchitol (accessed on 10 September 2024).
- Mönckedieck, M.; Kamplade, J.; Fakner, P.; Urbanetz, N.A.; Walzel, P.; Steckel, H.; Scherließ, R. Dry Powder Inhaler Performance of Spray Dried Mannitol with Tailored Surface Morphologies as Carrier and Salbutamol Sulphate. Int. J. Pharm. 2017, 524, 351–363. [Google Scholar] [CrossRef]
- Kaialy, W.; Hussain, T.; Alhalaweh, A.; Nokhodchi, A. Towards a More Desirable Dry Powder Inhaler Formulation: Large Spray-Dried Mannitol Microspheres Outperform Small Microspheres. Pharm. Res. 2014, 31, 60–76. [Google Scholar] [CrossRef]
- Li, X.; Vogt, F.G.; Hayes, D.; Mansour, H.M. Design, Characterization, and Aerosol Dispersion Performance Modeling of Advanced Spray-Dried Microparticulate/Nanoparticulate Mannitol Powders for Targeted Pulmonary Delivery as Dry Powder Inhalers. J. Aerosol Med. Pulm. Drug Deliv. 2014, 27, 81–93. [Google Scholar] [CrossRef]
- Kaialy, W.; Martin, G.P.; Ticehurst, M.D.; Momin, M.N.; Nokhodchi, A. The Enhanced Aerosol Performance of Salbutamol from Dry Powders Containing Engineered Mannitol as Excipient. Int. J. Pharm. 2010, 392, 178–188. [Google Scholar] [CrossRef]
- Son, Y.J.; Miller, D.P.; Weers, J.G. Optimizing Spray-Dried Porous Particles for High Dose Delivery with a Portable Dry Powder Inhaler. Pharmaceutics 2021, 13, 1528. [Google Scholar] [CrossRef]
- Scherließ, R.; Etschmann, C. DPI Formulations for High Dose Applications—Challenges and Opportunities. Int. J. Pharm. 2018, 548, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Pilcer, G.; Amighi, K. Formulation Strategy and Use of Excipients in Pulmonary Drug Delivery. Int. J. Pharm. 2010, 392, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Lindenberg, F.; Sichel, F.; Lechevrel, M.; Respaud, R.; Guillaume, S.-L. Evaluation of Lung Cell Toxicity of Surfactants for Inhalation Route. J. Toxicol. Risk Assess. 2019, 5, 133. [Google Scholar] [CrossRef]
- Beck-Broichsitter, M.; Bohr, A.; Ruge, C.A. Poloxamer-Decorated Polymer Nanoparticles for Lung Surfactant Compatibility. Mol. Pharm. 2017, 14, 3464–3472. [Google Scholar] [CrossRef]
- Li, L.; Sun, S.; Parumasivam, T.; Denman, J.A.; Gengenbach, T.; Tang, P.; Mao, S.; Chan, H.K. L-Leucine as an Excipient against Moisture on in Vitro Aerosolization Performances of Highly Hygroscopic Spray-Dried Powders. Eur. J. Pharm. Biopharm. 2016, 102, 132–141. [Google Scholar] [CrossRef]
- Feng, A.L.; Boraey, M.A.; Gwin, M.A.; Finlay, P.R.; Kuehl, P.J.; Vehring, R. Mechanistic Models Facilitate Efficient Development of Leucine Containing Microparticles for Pulmonary Drug Delivery. Int. J. Pharm. 2011, 409, 156–163. [Google Scholar] [CrossRef]
- Alhajj, N.; O’Reilly, N.J.; Cathcart, H. Leucine as an Excipient in Spray Dried Powder for Inhalation. Drug Discov. Today 2021, 26, 2384–2396. [Google Scholar] [CrossRef]
- Dieplinger, J.; Isabel Afonso Urich, A.; Mohsenzada, N.; Pinto, J.T.; Dekner, M.; Paudel, A. Influence of L-Leucine Content on the Aerosolization Stability of Spray-Dried Protein Dry Powder Inhalation (DPI). Int. J. Pharm. 2024, 666, 124822. [Google Scholar] [CrossRef]
- Li, Q.; Rudolph, V.; Weigl, B.; Earl, A. Interparticle van Der Waals Force in Powder Flowability and Compactibility. Int. J. Pharm. 2004, 280, 77–93. [Google Scholar] [CrossRef]
- 2.9.34. Bulk Density of Powders. In European Pharmacopoeia 11.5; European Directorate for the Quality of Medicines & HealthCare: Strasbourg, France, 2024; pp. 5830–5833.
- 2.9.36. Powder Flow. In European Pharmacopoeia 11.5; European Directorate for the Quality of Medicines & HealthCare: Strasbourg, France, 2024; pp. 5382–5386.
- 2.9.18. Preparation for Inhalation: Aerodynamic Assessment of Fine Particles. In European Pharmacopoeia 11.0; European Directorate for the Quality of Medicines & HealthCare: Strasbourg, France, 2024; pp. 369–382.
- Levet, V.; Rosière, R.; Merlos, R.; Fusaro, L.; Berger, G.; Amighi, K.; Wauthoz, N. Development of Controlled-Release Cisplatin Dry Powders for Inhalation against Lung Cancers. Int. J. Pharm. 2016, 515, 209–220. [Google Scholar] [CrossRef]
- Riley, T.; Christopher, D.; Arp, J.; Casazza, A.; Colombani, A.; Cooper, A.; Dey, M.; Maas, J.; Mitchell, J.; Reiners, M.; et al. Challenges with Developing in Vitro Dissolution Tests for Orally Inhaled Products (OIPs). AAPS PharmSciTech 2012, 13, 978–989. [Google Scholar] [CrossRef] [PubMed]
- Radivojev, S.; Zellnitz, S.; Paudel, A.; Fröhlich, E. Searching for Physiologically Relevant in Vitro Dissolution Techniques for Orally Inhaled Drugs. Int. J. Pharm. 2019, 556, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Shahin, H.I.; Chablani, L. A Comprehensive Overview of Dry Powder Inhalers for Pulmonary Drug Delivery: Challenges, Advances, Optimization Techniques, and Applications. J. Drug Deliv. Sci. Technol. 2023, 84, 104553. [Google Scholar] [CrossRef]
- 5.17.1. Recommendations on Dissolution Testing. In European Pharmacopoeia 11.0; European Directorate for the Quality of Medicines & HealthCare: Strasbourg, France, 2024; pp. 837–839.
- Fröhlich, E.; Mercuri, A.; Wu, S.; Salar-Behzadi, S. Measurements of Deposition, Lung Surface Area and Lung Fluid for Simulation of Inhaled Compounds. Front. Pharmacol. 2016, 7, 181. [Google Scholar] [CrossRef] [PubMed]
- Tay, J.Y.S.; Liew, C.V.; Heng, P.W.S. Dissolution of Fine Particle Fraction from Truncated Anderson Cascade Impactor with an Enhancer Cell. Int. J. Pharm. 2018, 545, 45–50. [Google Scholar] [CrossRef]
- Parlati, C. Respirable Microparticles of Aminoglycoside Antibiotics for Pulmonary Administration. Ph.D. Thesis, University of Parma, Parma, Italy, 2008. [Google Scholar]
- Pomázi, A. Development of Co-Spray-Dried Carrier-Based Microcomposites for Local Pulmonary Application of Meloxicam. Ph.D. Thesis, Szegedi Tudományegyetem, Szeged, Hungary, 2013. [Google Scholar]
- Hofmann, W. Modelling Inhaled Particle Deposition in the Human Lung-A Review. J. Aerosol Sci. 2011, 42, 693–724. [Google Scholar] [CrossRef]
- Raabe, O.G.; Yeh, H.; Schum, G.M.; Phalen, R.F. Tracheobronchial Geometry: Human, Dog, Rat, Hamster—A Compilation of Selected Data from the Project Respiratory Tract Deposition Models. U.S. Gov. Print. Off. 1976, 1–16. [Google Scholar]
- Farkas, Á.; Jókay, Á.; Füri, P.; Balásházy, I.; Müller, V.; Odler, B.; Horváth, A. Computer Modelling as a Tool in Characterization and Optimization of Aerosol Drug Delivery. Aerosol Air Qual. Res. 2015, 15, 2466–2474. [Google Scholar] [CrossRef]
- Farkas, Á.; Jókay, Á.; Balásházy, I.; Füri, P.; Müller, V.; Tomisa, G.; Horváth, A. Numerical Simulation of Emitted Particle Characteristics and Airway Deposition Distribution of Symbicort® Turbuhaler® Dry Powder Fixed Combination Aerosol Drug. Eur. J. Pharm. Sci. 2016, 93, 371–379. [Google Scholar] [CrossRef]
- Chvatal, A.; Farkas, Á.; Balásházy, I.; Szabó-Révész, P.; Ambrus, R. Aerodynamic Properties and in Silico Deposition of Meloxicam Potassium Incorporated in a Carrier-Free DPI Pulmonary System. Int. J. Pharm. 2017, 520, 70–78. [Google Scholar] [CrossRef]
- Bosquillon, C.; Lombry, C.; Préat, V.; Vanbever, R. Influence of Formulation Excipients and Physical Characteristics of Inhalation Dry Powders on Their Aerosolization Performance. J. Control. Release 2001, 70, 329–339. [Google Scholar] [CrossRef] [PubMed]
- Party, P.; Bartos, C.; Farkas, Á.; Szabó-révész, P.; Ambrus, R. Formulation and In Vitro and In Silico Characterization of “ Nano-in-Micro ” Dry Powder Inhalers Containing Meloxicam. Pharmaceutics 2021, 13, 211. [Google Scholar] [CrossRef] [PubMed]
- Azari, F.; Ghanbarzadeh, S.; Safdari, R.; Yaqoubi, S.; Adibkia, K.; Hamishehkar, H. Development of a Carrier Free Dry Powder Inhalation Formulation of Ketotifen for Pulmonary Drug Delivery. Drug Res. 2020, 70, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Arpagaus, C.; Collenberg, A.; Rütti, D.; Assadpour, E.; Jafari, S.M. Nano Spray Drying for Encapsulation of Pharmaceuticals. Int. J. Pharm. 2018, 546, 194–214. [Google Scholar] [CrossRef] [PubMed]
- Sou, T.; Kaminskas, L.M.; Nguyen, T.H.; Carlberg, R.; McIntosh, M.P.; Morton, D.A.V. The Effect of Amino Acid Excipients on Morphology and Solid-State Properties of Multi-Component Spray-Dried Formulations for Pulmonary Delivery of Biomacromolecules. Eur. J. Pharm. Biopharm. 2013, 83, 234–243. [Google Scholar] [CrossRef]
- Das, S.C.; Khadka, P.; Shah, R.; McGill, S.; Smyth, H.D.C. Nanomedicine in Pulmonary Delivery; Elsevier Inc.: Amsterdam, The Netherlands, 2021; ISBN 9780128204665. [Google Scholar]
- Party, P.; Kókai, D.; Burián, K.; Nagy, A.; Hopp, B.; Ambrus, R. Development of Extra-Fine Particles Containing Nanosized Meloxicam for Deep Pulmonary Delivery: In Vitro Aerodynamic and Cell Line Measurements. Eur. J. Pharm. Sci. 2022, 176, 106247. [Google Scholar] [CrossRef]
- Chvatal, A.; Ambrus, R.; Party, P.; Katona, G.; Jójárt-Laczkovich, O.; Szabó-Révész, P.; Fattal, E.; Tsapis, N. Formulation and Comparison of Spray Dried Non-Porous and Large Porous Particles Containing Meloxicam for Pulmonary Drug Delivery. Int. J. Pharm. 2019, 559, 68–75. [Google Scholar] [CrossRef]
- Ceschan, N.E.; Bucalá, V.; Ramírez-Rigo, M.V. Levofloxacin Dry Powder Inhaler for High Dose Delivery. Powder Technol. 2024, 432, 119168. [Google Scholar] [CrossRef]
- Chapman, K.R.; Fogarty, C.M.; Peckitt, C.; Lassen, C. Delivery Characteristics and Patients ’ Handling of Two Single-Dose Dry-Powder Inhalers Used in COPD. Int. J. COPD 2011, 6, 353–363. [Google Scholar]
- Sharif, S.; Muneer, S.; Izake, E.L.; Islam, N. Impact of Leucine and Magnesium Stearate on the Physicochemical Properties and Aerosolization Behavior of Wet Milled Inhalable Ibuprofen Microparticles for Developing Dry Powder Inhaler Formulation. Pharmaceutics 2023, 15, 674. [Google Scholar] [CrossRef]
- Meyer, K.C.; Sharma, A.; Rosenthal, N.S.; Peterson, K.; Brennan, L. Regional Variability of Lung Inflammation in Cystic Fibrosis. Am. J. Respir. Crit. Care Med. 1997, 156, 1536–1540. [Google Scholar] [CrossRef] [PubMed]
- Mott, L.S.; Park, J.; Gangell, C.L.; De Klerk, N.H.; Sly, P.D.; Murray, C.P.; Stick, S.M. Distribution of Early Structural Lung Changes Due to Cystic Fibrosis Detected with Chest Computed Tomography. J. Pediatr. 2013, 163, 243–248.e3. [Google Scholar] [CrossRef] [PubMed]
- Horváth, A.; Balásházy, I.; Tomisa, G.; Farkas, Á. Significance of Breath-Hold Time in Dry Powder Aerosol Drug Therapy of COPD Patients. Eur. J. Pharm. Sci. 2017, 104, 145–149. [Google Scholar] [CrossRef] [PubMed]
Sample | IBU (g) | POL (g) | MAN (g) | LEU (g) | API Content (%) |
---|---|---|---|---|---|
POL_MAN2_spd | 0.00 | 0.09 | 2.00 | 0.00 | - |
POL_MAN2_LEU0.5_spd | 0.00 | 0.09 | 2.00 | 0.50 | - |
POL_MAN2_LEU1_spd | 0.00 | 0.09 | 2.00 | 1.00 | - |
POL_MAN2_pm | 0.00 | 0.09 | 2.00 | 0.00 | - |
POL_MAN2_LEU0.5_pm | 0.00 | 0.09 | 2.00 | 0.50 | - |
POL_MAN2_LEU1_pm | 0.00 | 0.09 | 2.00 | 1.00 | - |
IBU1_POL_MAN2_spd | 1.00 | 0.09 | 2.00 | 0.00 | 35.17 ± 0.80 |
IBU1_POL_MAN2_LEU0.5_spd | 1.00 | 0.09 | 2.00 | 0.50 | 27.86 ± 2.43 |
IBU1_POL_MAN2_LEU1_spd | 1.00 | 0.09 | 2.00 | 1.00 | 24.45 ± 0.31 |
IBU1_POL_MAN2_pm | 1.00 | 0.09 | 2.00 | 0.00 | 32.36 |
IBU1_POL_MAN2_LEU0.5_pm | 1.00 | 0.09 | 2.00 | 0.50 | 27.86 |
IBU1_POL_MAN2_LEU1_pm | 1.00 | 0.09 | 2.00 | 1.00 | 24.45 |
Sample | D[0.1] (μm) | D[0.5] (μm) | D[0.9] (μm) | Span | SSA (m2/g) |
---|---|---|---|---|---|
POL_MAN2_spd | 3.67 ± 0.08 | 7.81 ± 0.05 | 17.77 ± 0.26 | 1.72 ± 0.05 | 0.90 ± 0.01 |
POL_MAN2_LEU0.5_spd | 1.54 ± 0.02 | 2.96 ± 0.05 | 5.46 ± 0.22 | 1.32 ± 0.06 | 2.30 ± 0.01 |
POL_MAN2_LEU1_spd | 1.54 ± 0.003 | 3.28 ± 0.08 | 6.66 ± 0.35 | 1.56 ± 0.07 | 2.16 ± 0.04 |
IBU_raw | 9.75 ± 8.45 | 31.78 ± 9.01 | 95.86 ± 55.12 | 2.63 ± 1.70 | 0.43 ± 0.02 |
IBU_POL_suspension | 1.52 ± 0.59 | 3.39 ± 1.51 | 17.63 ± 2.85 | 5.55 ± 2.83 | 2.32 ± 1.20 |
IBU1_POL_MAN2_spd | 3.15 ± 0.06 | 8.07 ± 1.99 | 18.86 ± 1.66 | 2.04 ± 0.71 | 0.99 ± 0.05 |
IBU1_POL_MAN2_LEU0.5_spd | 1.43 ± 0.06 | 3.38 ± 0.13 | 13.40 ± 5.38 | 3.51 ± 1.44 | 2.11 ± 0.13 |
IBU1_POL_MAN2_LEU1_spd | 1.51 ± 0.02 | 3.28 ± 0.10 | 6.95 ± 1.14 | 1.66 ± 0.30 | 2.18 ± 0.05 |
Sample | Density (g/cm3) | Tapped Density (g/cm3) | Hausner Ratio | Carr Index |
---|---|---|---|---|
POL_MAN2_spd | 0.12 ± 0.002 | 0.18 ± 0.008 | 1.46 ± 0.05 | 31.67 ± 2.36 |
POL_MAN2_LEU0.5_spd | 0.15 ± 0.002 | 0.24 ± 0.001 | 1.65 ± 0.03 | 39.23 ± 1.09 |
POL_MAN2_LEU1_spd | 0.15 ± 0.052 | 0.26 ± 0.089 | 1.74 ± 0.01 | 42.58 ± 0.39 |
IBU1_POL_MAN2_spd | 0.17 ± 0.011 | 0.26 ± 0.013 | 1.49 ± 0.02 | 32.74 ± 0.84 |
IBU1_POL_MAN2_LEU0.5_spd | 0.23 ± 0.020 | 0.37 ± 0.024 | 1.57 ± 0.03 | 36.22 ± 1.31 |
IBU1_POL_MAN2_LEU1_spd | 0.18 ± 0.008 | 0.28 ± 0.007 | 1.59 ± 0.03 | 37.06 ± 1.34 |
Sample | MMAD (μm) | FPF (%) | EF (%) |
---|---|---|---|
POL_MAN2_LEU0.5_spd | 4.42 ± 0.15 | 70.89 ± 8.59 | 60.25 ± 4.17 |
POL_MAN2_LEU1_spd | 4.71 ± 0.05 | 64.34 ± 10.65 | 56.85 ± 4.03 |
IBU1_POL_MAN2_LEU0.5_spd | 3.88 ± 0.19 | 63.62 ± 2.99 | 46.85 ± 0.02 |
IBU1_POL_MAN2_LEU1_spd | 4.76 ± 0.23 | 61.91 ± 1.55 | 62.85 ± 0.03 |
Sample | D [0.5] (μm) | Span | SSA (m2/g) |
---|---|---|---|
POL_MAN2_LEU0.5 | 4.24 ± 0.36 | 2.56± 0.66 | 4.64 ± 0.50 |
POL_MAN2_LEU1 | 6.02 ± 0.66 | 2.81 ± 0.35 | 3.67 ± 0.47 |
IBU1_POL_MAN2_LEU0.5 | 4.16 ± 0.13 | 3.30 ± 0.72 | 4.42 ± 0.13 |
IBU1_POL_MAN2_LEU1 | 5.12 ± 0.40 | 3.50 ± 0.52 | 4.03 ± 0.05 |
Sample | Extrathor. (%) | Bronchial (%) | Acinar (%) | Exhaled (%) | ||||
---|---|---|---|---|---|---|---|---|
5 s | 10 s | 5 s | 10 s | 5 s | 10 s | 5 s | 10 s | |
POL_MAN2_LEU0.5_spd | 29.55 ± 7.90 | 29.17 ± 7.91 | 16.25 ± 0.06 | 17.06 ± 0.09 | 30.93 ± 1.50 | 34.10 ± 1.91 | 23.26 ± 6.24 | 19.67 ± 5.91 |
POL_MAN2_LEU1_spd | 32.55 ± 6.14 | 32.18 ± 6.22 | 15.84 ± 3.15 | 16.59 ± 3.32 | 28.14 ± 6.31 | 30.77 ± 6.86 | 23.48 ± 3.33 | 20.45 ± 3.96 |
IBU1_POL_MAN2_LEU0.5_spd | 39.99 ± 2.88 | 39.66 ± 2.89 | 14.40 ± 0.83 | 15.07 ± 0.82 | 26.87 ± 1.49 | 29.75 ± 1.74 | 18.74 ± 0.97 | 15.51 ± 0.78 |
IBU1_POL_MAN2_LEU1_spd | 43.84 ± 4.17 | 44.83 ± 2.67 | 14.54 ± 0.89 | 15.21 ± 0.89 | 25.88 ± 0.78 | 27.18 ± 1.03 | 16.73 ± 4.27 | 12.79 ± 2.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Party, P.; Piszman, Z.I.; Farkas, Á.; Ambrus, R. Comprehensive In Vitro and In Silico Aerodynamic Analysis of High-Dose Ibuprofen- and Mannitol-Containing Dry Powder Inhalers for the Treatment of Cystic Fibrosis. Pharmaceutics 2024, 16, 1465. https://doi.org/10.3390/pharmaceutics16111465
Party P, Piszman ZI, Farkas Á, Ambrus R. Comprehensive In Vitro and In Silico Aerodynamic Analysis of High-Dose Ibuprofen- and Mannitol-Containing Dry Powder Inhalers for the Treatment of Cystic Fibrosis. Pharmaceutics. 2024; 16(11):1465. https://doi.org/10.3390/pharmaceutics16111465
Chicago/Turabian StyleParty, Petra, Zsófia Ilona Piszman, Árpád Farkas, and Rita Ambrus. 2024. "Comprehensive In Vitro and In Silico Aerodynamic Analysis of High-Dose Ibuprofen- and Mannitol-Containing Dry Powder Inhalers for the Treatment of Cystic Fibrosis" Pharmaceutics 16, no. 11: 1465. https://doi.org/10.3390/pharmaceutics16111465
APA StyleParty, P., Piszman, Z. I., Farkas, Á., & Ambrus, R. (2024). Comprehensive In Vitro and In Silico Aerodynamic Analysis of High-Dose Ibuprofen- and Mannitol-Containing Dry Powder Inhalers for the Treatment of Cystic Fibrosis. Pharmaceutics, 16(11), 1465. https://doi.org/10.3390/pharmaceutics16111465