The Application of Nano Drug Delivery Systems in Female Upper Genital Tract Disorders
Abstract
:1. Introduction
2. Anatomy, Physiology, and Mucosal Barriers of the Female Upper Genital Tract
3. Mucosal Barrier Lining the Female Upper Genital Tract
4. Mathematical Models Describing Aspects of Drug Delivery in the Female Genital Tract
5. The Impact of the Route of Drug Administration
5.1. Systemic Drug Delivery
5.2. Local Drug Delivery
6. Nano-Based Drug Delivery Systems
7. Nanoparticles
Nanoparticle Classification | Nanoparticle Sub-Classification | Example | Reference |
---|---|---|---|
Inorganic | Pure metals | Al*, Cd*, Co*, Au*, Ag*, Zn* | [128,149,150] |
Metal oxides | Fe2O3*, Al2O3*, ZnO*, TiO2* | [128,149] | |
Ceramic | ZrO2*, SiO2* | [128,149] | |
Semi-conductors Layered double-hydroxides Silica | ZnS*, CdS* Mg2+*, Zn2+*, Cu2+*, Al3+* MPSNs* | [128,151] [152] [153] | |
Organic | Lipid | Liposomes, Niosomes, Transferosomes, Exosomes, SLNs*, SEDDSs*, Nano-emulsions | [9,11,128,150] [154] [154] [9,11] [155] [156] [9] |
Polymeric | Polymeric nanoparticles, Polymeric micelles, Dendrimers | [106] [106] [106] | |
Protein-based | Ferritin nanocages, Silk protein fibroin carrier, Human serum albumin, Gliadin carrier, Gelatin carrier, Legumin carrier | [157] [157] [157] [157] [157] [157] | |
Organic hybrid | Lipid and polymeric | Polymersome, Lipomer, Polyplex | [158] [159] [158] |
Lipid and protein | Lipoprotein carriers | [151] | |
Protein and polymeric | Protein-loaded polymeric nanoparticles | [160] | |
Carbon-based | Carbon nanotubes | Single-wall, Double-wall, Multi-wall, Unzipped multi-wall | [161] [161] [161] [162] |
Graphene | Nanoribbons, Quantum dots | [161] [161] | |
Nano-diamonds | Detonation nano-diamonds, Fluorescent nano-diamonds | [161] [161] | |
Fullerene | Endohedral metal fullerene, Exohedral metal fullerene, Substituted fullerene | [151,161] [151,161] [163] | |
Porous carbon | Microporous (<2 nm), Mesoporous (2–50 nm), Macro porous (>50 nm), Mixed porous carbon | [161] [161] [161] [161] | |
Carbon dots | Graphene dot, Carbon nano-dot, Polymer dot | [161] [161] [164] | |
Hybrid nanoparticles | Organic–inorganic | Gold nanoparticle liposomes | [106,165] |
7.1. Inorganic Nanoparticles
7.1.1. Pure Metal Nanoparticles
7.1.2. Metal Oxide Nanoparticles
7.1.3. Semi-Conductor Nanoparticles
7.1.4. Ceramic Nanoparticles
7.1.5. Layered Double-Hydroxides
7.1.6. Mesoporous Silica Nanoparticles
7.2. Organic Nanoparticles
7.2.1. Lipid-Based Nanoparticles
Liposomes
Exosomes
7.2.2. Polymeric Nanoparticles
7.2.3. Protein-Based Nanoparticles
7.3. Organic Hybrid Nanoparticles
7.4. Carbon-Based Nanoparticles
7.4.1. Carbon Nanotubes
7.4.2. Graphene
7.4.3. Nano-Diamonds
7.4.4. Fullerene
7.4.5. Porous Carbon
7.4.6. Carbon Dots
7.5. Organic–Inorganic Nanoparticles
8. Safety of Nano Drug Delivery Systems
9. Discussion
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Carias, A.M.; Hope, T.J. Barriers of Mucosal Entry of HIV/SIV. Curr. Immunol. Rev. 2019, 15, 4–13. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.S.; Lee, H.-S.; Kim, M.E.; Lee, J.S.; Park, K. Identification and Localization of Epithelial Progenitor Cells in the Vagina. Int. J. Impot. Res. 2019, 31, 46–49. [Google Scholar] [CrossRef]
- Ali, A.; Syed, S.M.; Jamaluddin, M.F.B.; Colino-Sanguino, Y.; Gallego-Ortega, D.; Tanwar, P.S. Cell Lineage Tracing Identifies Hormone-Regulated and Wnt-Responsive Vaginal Epithelial Stem Cells. Cell Rep. 2020, 30, 1463–1477. [Google Scholar] [CrossRef] [PubMed]
- Plesniarski, A.; Siddik, A.B.; Su, R.-C. The Microbiome as a Key Regulator of Female Genital Tract Barrier Function. Front. Cell Infect. Microbiol. 2021, 11, 790627. [Google Scholar] [CrossRef] [PubMed]
- Soares, L.C.; Braz, F.L.T.A.; Araújo, A.R.; Oliveira, M.A.P. Association of Sexually Transmitted Diseases with Cervical Ectopy: A Systematic Review. Sex. Transm. Dis. 2019, 46, 452–457. [Google Scholar] [CrossRef] [PubMed]
- Lacroix, G.; Gouyer, V.; Gottrand, F.; Desseyn, J.-L. The Cervicovaginal Mucus Barrier. Int. J. Mol. Sci. 2020, 21, 8266. [Google Scholar] [CrossRef]
- Jensen, M.A.; Wang, Y.-Y.; Lai, S.K.; Forest, M.G.; McKinley, S.A. Antibody-Mediated Immobilization of Virions in Mucus. Bull. Math. Biol. 2019, 81, 4069–4099. [Google Scholar] [CrossRef]
- Gholiof, M.; Adamson-De Luca, E.; Wessels, J.M. The Female Reproductive Tract Microbiotas, Inflammation, and Gynecological Conditions. Front. Reprod. Health 2022, 4, 963752. [Google Scholar] [CrossRef]
- Patel, S.K.; Valicherla, G.R.; Micklo, A.C.; Rohan, L.C. Drug Delivery Strategies for Management of Women’s Health Issues in the Upper Genital Tract. Adv. Drug Deliv. Rev. 2021, 177, 113955. [Google Scholar] [CrossRef]
- Peric, A.; Weiss, J.; Vulliemoz, N.; Baud, D.; Stojanov, M. Bacterial Colonization of the Female Upper Genital Tract. Int. J. Mol. Sci. 2019, 20, 3405. [Google Scholar] [CrossRef]
- Luo, X.; Jia, K.; Xing, J.; Yi, J. The Utilization of Nanotechnology in the Female Reproductive System and Related Disorders. Heliyon 2024, 10, e25477. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Zhang, X.; Fei, W.; Xin, Y.; Zhang, M.; Yao, Y.; Zhao, Y.; Zheng, C.; Sun, D. Advance in Placenta Drug Delivery: Concern for Placenta-Originated Disease Therapy. Drug Deliv. 2023, 30, 2184315. [Google Scholar] [CrossRef] [PubMed]
- Brunham, R.C.; Paavonen, J. Reproductive System Infections in Women: Upper Genital Tract, Fetal, Neonatal and Infant Syndromes. Pathog. Dis. 2020, 78, ftaa023. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.; Misra, J.; Srivastava, S.; Das, B.; Gupta, S. Cervical Cancer Screening in Rural India: Status & Current Concepts. Ind. J. Med. Res. 2018, 148, 687. [Google Scholar] [CrossRef] [PubMed]
- He, D.; Wang, T.; Ren, W. Global Burden of Pelvic Inflammatory Disease and Ectopic Pregnancy from 1990 to 2019. BMC Public Health 2023, 23, 1894. [Google Scholar] [CrossRef]
- Brunham, R.C.; Gottlieb, S.L.; Paavonen, J. Pelvic Inflammatory Disease. NEJM 2015, 372, 2039–2048. [Google Scholar] [CrossRef]
- Zheng, Y.; Yu, Q.; Lin, Y.; Zhou, Y.; Lan, L.; Yang, S.; Wu, J. Global Burden and Trends of Sexually Transmitted Infections from 1990 to 2019: An Observational Trend Study. Lancet Infect Dis 2022, 22, 541–551. [Google Scholar] [CrossRef]
- Kingsberg, S.A.; Schaffir, J.; Faught, B.M.; Pinkerton, J.V.; Parish, S.J.; Iglesia, C.B.; Gudeman, J.; Krop, J.; Simon, J.A. Female Sexual Health: Barriers to Optimal Outcomes and a Roadmap for Improved Patient–Clinician Communications. J. Womens Health 2019, 28, 432–443. [Google Scholar] [CrossRef]
- Huang, Y.; Guo, X.; Wu, Y.; Chen, X.; Feng, L.; Xie, N.; Shen, G. Nanotechnology’s Frontier in Combatting Infectious and Inflammatory Diseases: Prevention and Treatment. Signal Transduct. Target. Ther. 2024, 9, 34. [Google Scholar]
- Chehelgerdi, M.; Chehelgerdi, M.; Allela, O.Q.B.; Pecho, R.D.C.; Jayasankar, N.; Rao, D.P.; Thamaraikani, T.; Vasanthan, M.; Viktor, P.; Lakshmaiya, N.; et al. Progressing Nanotechnology to Improve Targeted Cancer Treatment: Overcoming Hurdles in Its Clinical Implementation. Mol. Cancer 2023, 22, 169. [Google Scholar] [CrossRef]
- Khazaei, M.; Hosseini, M.S.; Haghighi, A.M.; Misaghi, M. Nanosensors and Their Applications in Early Diagnosis of Cancer. Sens. Biosens. Res. 2023, 41, 100569. [Google Scholar] [CrossRef]
- Anselmo, A.C.; Mitragotri, S. Nanoparticles in the Clinic: An Update. Bioeng. Transl. Med. 2019, 4, e10143. [Google Scholar] [CrossRef] [PubMed]
- Sim, S.; Wong, N. Nanotechnology and Its Use in Imaging and Drug Delivery (Review). Biomed. Rep. 2021, 14, 42. [Google Scholar] [CrossRef] [PubMed]
- Maybin, J.A.; Critchley, H.O.D. Menstrual Physiology: Implications for Endometrial Pathology and Beyond. Hum. Reprod. Update 2015, 21, 748–761. [Google Scholar] [CrossRef]
- Swain, M.; Kulkarni, A. Endometrium at Menopause: The Pathologist’s View. J. Midlife Health 2021, 12, 310. [Google Scholar] [CrossRef]
- Dmitrovic, R.; Vlaisavljevic, V.; Ivankovic, D. Endometrial Growth in Early Pregnancy after IVF/ET. J. Assist. Reprod. Genet. 2008, 25, 453–459. [Google Scholar] [CrossRef]
- Dash, S.; Sethy, P.K.; Behera, S.K. Cervical Transformation Zone Segmentation and Classification Based on Improved Inception-ResNet-V2 Using Colposcopy Images. Cancer Inf. 2023, 22, 117693512311614. [Google Scholar] [CrossRef]
- Meyer, J.A.; Limaye, M.; Roman, A.S.; Brubaker, S.G.; Mehta-Lee, S. Assessing the Multifaceted Cervix: Examining Cervical Gland Area at Cervical Length Screening to Predict Spontaneous Preterm Birth. Am. J. Obs. Gynecol. MFM 2024, 6, 101390. [Google Scholar] [CrossRef]
- Khan, S.; Anas, M.; Khan, D.I.; Naaz, S.A. Retrospective Comparative Cohort Study of Efficacy of Different Unani Formulations in Cases of Cervicitis and Vaginitis. J. Herb. Med. 2024, 43, 100821. [Google Scholar] [CrossRef]
- Elchalal, U.; Abramov, Y. Uterine Biology and the Intrauterine Device. Adv. Drug Deliv. Rev. 1995, 17, 151–164. [Google Scholar] [CrossRef]
- Holdsworth-Carson, S.J.; Menkhorst, E.; Maybin, J.A.; King, A.; Girling, J.E. Cyclic Processes in the Uterine Tubes, Endometrium, Myometrium, and Cervix: Pathways and Perturbations. Mol. Hum. Reprod. 2023, 29, gaad012. [Google Scholar] [CrossRef] [PubMed]
- Muneeba, S.; Acharya, N.; Mohammad, S. The Role of Dydrogesterone in the Management of Luteal Phase Defect: A Comprehensive Review. Cureus 2023, 15, e48194. [Google Scholar] [CrossRef] [PubMed]
- Palacios-Jaraquemada, J.M.; Nieto-Calvache, Á.; Basanta, N.A. Anatomical Basis for the Uterine Vascular Control: Implications in Training, Knowledge, and Outcomes. Am. J. Obs. Gynecol. MFM 2023, 5, 100953. [Google Scholar] [CrossRef]
- Dolmans, M.-M.; Donnez, J. Solving the Mysteries Surrounding Uterine Fibroids: Are We Almost There? Fertil. Steril. 2024, 122, 4–5. [Google Scholar] [CrossRef]
- Hu, X.; Wu, H.; Yong, X.; Wang, Y.; Yang, S.; Fan, D.; Xiao, Y.; Che, L.; Shi, K.; Li, K.; et al. Cyclical Endometrial Repair and Regeneration: Molecular Mechanisms, Diseases, and Therapeutic Interventions. MedComm 2023, 4, e425. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Wu, Y.; Hockey, R.; Doust, J.; Mishra, G.D.; Montgomery, G.W.; Mortlock, S. Evidence of Shared Genetic Factors in the Etiology of Gastrointestinal Disorders and Endometriosis and Clinical Implications for Disease Management. Cell Rep. Med. 2023, 4, 101250. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Qiu, H.; Liu, Z.; Yu, S.; Chen, C.; Zeng, Y.; Li, Y. Endometrial Preparation Protocols Did Not Impact Pregnancy Outcomes of Patients with Cured Chronic Endometritis. Reprod. Biomed. Online 2024, 48, 103753. [Google Scholar] [CrossRef]
- Oda, K.; Koga, K.; Hirata, T.; Maruyama, M.; Ikemura, M.; Matsumoto, Y.; Nagasaka, K.; Adachi, K.; Mori-Uchino, M.; Sone, K.; et al. Risk of Endometrial Cancer in Patients with a Preoperative Diagnosis of Atypical Endometrial Hyperplasia Treated with Total Laparoscopic Hysterectomy. Gynecol. Minim. Invasive Ther. 2016, 5, 69–73. [Google Scholar] [CrossRef]
- Zouzoulas, O.D.; Tsolakidis, D.; Efstratiou, I.; Pervana, S.; Pazarli, E.; Grimbizis, G. Correlation between Adenomyosis and Endometrial Cancer: 6-Year Experience of a Single Center. Facts Views Vis. Obgyn 2018, 10, 147–152. [Google Scholar]
- Zondervan, K.T.; Becker, C.M.; Missmer, S.A. Endometriosis. NEJM 2020, 382, 1244–1256. [Google Scholar] [CrossRef]
- Tsui, K.-H.; Lee, W.-L.; Chen, C.-Y.; Sheu, B.-C.; Yen, M.-S.; Chang, T.-C.; Wang, P.-H. Medical Treatment for Adenomyosis and/or Adenomyoma. Taiwan. J. Obs. Gynecol. 2014, 53, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Bulun, S.E. Uterine Fibroids. NEJM 2013, 369, 1344–1355. [Google Scholar] [CrossRef] [PubMed]
- Parashar, S.; Pajai, S.; Tarang, T. Recent Advancement in the Management of Intrauterine Adhesions Using Stem Cell Therapy: A Review Article. Cureus 2023, 15, e43553. [Google Scholar] [CrossRef] [PubMed]
- Hillman, R.; Gilbert, R. Reproductive Diseases. In Rebhun’s Diseases of Dairy Cattle, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 395–446. [Google Scholar]
- Ezzati, M.; Djahanbakhch, O.; Arian, S.; Carr, B.R. Tubal Transport of Gametes and Embryos: A Review of Physiology and Pathophysiology. J. Assist. Reprod. Genet. 2014, 31, 1337–1347. [Google Scholar] [CrossRef]
- El-Kharoubi, A.-F. Tubal Pathologies and Fertility Outcomes: A Review. Cureus 2023, 15, e38881. [Google Scholar] [CrossRef]
- Park, S.U.; Walsh, L.; Berkowitz, K.M. Mechanisms of Ovarian Aging. Reproduction 2021, 162, R19–R33. [Google Scholar] [CrossRef]
- Escobar-Morreale, H.F. Polycystic Ovary Syndrome: Definition, Aetiology, Diagnosis and Treatment. Nat. Rev. Endocrinol. 2018, 14, 270–284. [Google Scholar] [CrossRef]
- Yarbrough, V.L.; Winkle, S.; Herbst-Kralovetz, M.M. Antimicrobial Peptides in the Female Reproductive Tract: A Critical Component of the Mucosal Immune Barrier with Physiological and Clinical Implications. Hum. Reprod. Update 2015, 21, 353–377. [Google Scholar] [CrossRef]
- Wira, C.R.; Fahey, J.V.; Rodriguez-Garcia, M.; Shen, Z.; Patel, M.V. Regulation of Mucosal Immunity in the Female Reproductive Tract: The Role of Sex Hormones in Immune Protection Against Sexually Transmitted Pathogens. Am. J. Reprod. Immunol. 2014, 72, 236–258. [Google Scholar] [CrossRef]
- Agostinis, C.; Mangogna, A.; Bossi, F.; Ricci, G.; Kishore, U.; Bulla, R. Uterine Immunity and Microbiota: A Shifting Paradigm. Front. Immunol. 2019, 10, 2387. [Google Scholar] [CrossRef]
- Al-Nasiry, S.; Ambrosino, E.; Schlaepfer, M.; Morré, S.A.; Wieten, L.; Voncken, J.W.; Spinelli, M.; Mueller, M.; Kramer, B.W. The Interplay Between Reproductive Tract Microbiota and Immunological System in Human Reproduction. Front. Immunol. 2020, 11, 378. [Google Scholar] [CrossRef] [PubMed]
- Moreno, I.; Garcia-Grau, I.; Perez-Villaroya, D.; Gonzalez-Monfort, M.; Bahçeci, M.; Barrionuevo, M.J.; Taguchi, S.; Puente, E.; Dimattina, M.; Lim, M.W.; et al. Endometrial Microbiota Composition Is Associated with Reproductive Outcome in Infertile Patients. Microbiome 2022, 10, 1. [Google Scholar] [CrossRef] [PubMed]
- Moreno, I.; Codoñer, F.M.; Vilella, F.; Valbuena, D.; Martinez-Blanch, J.F.; Jimenez-Almazán, J.; Alonso, R.; Alamá, P.; Remohí, J.; Pellicer, A.; et al. Evidence That the Endometrial Microbiota Has an Effect on Implantation Success or Failure. Am. J. Obs. Gynecol. 2016, 215, 684–703. [Google Scholar] [CrossRef] [PubMed]
- Pelzer, E.S.; Willner, D.; Buttini, M.; Huygens, F. A Role for the Endometrial Microbiome in Dysfunctional Menstrual Bleeding. Antonie Van. Leeuwenhoek 2018, 111, 933–943. [Google Scholar] [CrossRef] [PubMed]
- Rohrer, J.; Partenhauser, A.; Hauptstein, S.; Gallati, C.M.; Matuszczak, B.; Abdulkarim, M.; Gumbleton, M.; Bernkop-Schnürch, A. Mucus Permeating Thiolated Self-Emulsifying Drug Delivery Systems. Eur. J. Pharm. Biopharm. 2016, 98, 90–99. [Google Scholar] [CrossRef]
- Le-Vinh, B.; Le, N.-M.N.; Nazir, I.; Matuszczak, B.; Bernkop-Schnürch, A. Chitosan Based Micelle with Zeta Potential Changing Property for Effective Mucosal Drug Delivery. Int. J. Biol. Macromol. 2019, 133, 647–655. [Google Scholar] [CrossRef]
- Köllner, S.; Nardin, I.; Markt, R.; Griesser, J.; Prüfert, F.; Bernkop-Schnürch, A. Self-Emulsifying Drug Delivery Systems: Design of a Novel Vaginal Delivery System for Curcumin. Eur. J. Pharma Biopharm. 2017, 115, 268–275. [Google Scholar] [CrossRef]
- Cuggino, J.C.; Blanco, E.R.O.; Gugliotta, L.M.; Alvarez Igarzabal, C.I.; Calderón, M. Crossing Biological Barriers with Nanogels to Improve Drug Delivery Performance. JCR 2019, 307, 221–246. [Google Scholar] [CrossRef]
- Kolawole, O.M.; Ifeanafor, A.R.; Ifade, W.A.; Akinleye, M.O.; Patrojanasophon, P.; Silva, B.O.; Osuntoki, A.A. Formulation and Evaluation of Paclitaxel-Loaded Boronated Chitosan/Alginate Nanoparticles as a Mucoadhesive System for Localized Cervical Cancer Drug Delivery. J. Drug Deliv. Sci. Technol. 2023, 87, 104810. [Google Scholar] [CrossRef]
- Vagios, S.; Mitchell, C.M. Mutual Preservation: A Review of Interactions Between Cervicovaginal Mucus and Microbiota. Front. Cell Infect. Microbiol. 2021, 11, 676114. [Google Scholar] [CrossRef]
- Piccinato, C.A.; Neme, R.M.; Torres, N.; Silvério, R.; Pazzini, V.B.; Rosa e Silva, J.C.; Ferriani, R.A. Is Cytochrome P450 3A4 Regulated by Menstrual Cycle Hormones in Control Endometrium and Endometriosis? Mol. Cell Biochem. 2017, 427, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Benedet, J.L.; Wilson, P.S.; Matisic, J.P. Epidermal Thickness Measurements in Vaginal Intraepithelial Neoplasia. A Basis for Optimal CO2 Laser Vaporization. J. Reprod. Med. 1992, 37, 809–812. [Google Scholar] [PubMed]
- Patiño, R.; Bolamba, D.; Thomas, P.; Kumakura, N. Effects of External pH on Hormonally Regulated Ovarian Follicle Maturation and Ovulation in Atlantic Croaker. Gen. Comp. Endocrinol. 2005, 141, 126–134. [Google Scholar] [CrossRef]
- Ng, K.Y.B.; Mingels, R.; Morgan, H.; Macklon, N.; Cheong, Y. In Vivo Oxygen, Temperature and PH Dynamics in the Female Reproductive Tract and Their Importance in Human Conception: A Systematic Review. Hum. Reprod. Update 2018, 24, 15–34. [Google Scholar] [CrossRef] [PubMed]
- Murta, E.F.C.; Perfeito, P.B.; Oliveira, T.M.; Michelin, M.A.; Maluf, P.J. Relation between Vaginal and Endocervical pH in Patients Undergoing Cold-Knife Conization and Hysterectomy. Arch. Gynecol. Obs. 2007, 277, 43–46. [Google Scholar] [CrossRef] [PubMed]
- Lykke, M.R.; Becher, N.; Haahr, T.; Boedtkjer, E.; Jensen, J.S.; Uldbjerg, N. Vaginal, Cervical and Uterine pH in Women with Normal and Abnormal Vaginal Microbiota. Pathogens 2021, 10, 90. [Google Scholar] [CrossRef]
- Bandi, S.P.; Bhatnagar, S.; Venuganti, V.V.K. Advanced Materials for Drug Delivery across Mucosal Barriers. Acta Biomater. 2021, 119, 13–29. [Google Scholar] [CrossRef]
- Madla, C.M.; Gavins, F.K.H.; Merchant, H.A.; Orlu, M.; Murdan, S.; Basit, A.W. Let’s Talk about Sex: Differences in Drug Therapy in Males and Females. Adv. Drug Deliv. Rev. 2021, 175, 113804. [Google Scholar] [CrossRef]
- Yum, S.K.; Yum, S.Y.; Kim, T. The Problem of Medicating Women like the Men: Conceptual Discussion of Menstrual Cycle-Dependent Psychopharmacology. Transl. Clin. Pharmacol. 2019, 27, 127. [Google Scholar] [CrossRef]
- Grow, D.R.; Iromloo, K. Oral Contraceptives Maintain a Very Thin Endometrium before Operative Hysteroscopy. Fertil. Steril. 2006, 85, 204–207. [Google Scholar] [CrossRef]
- Stirland, D.L.; Nichols, J.W.; Jarboe, E.; Adelman, M.; Dassel, M.; Janát-Amsbury, M.-M.; Bae, Y.H. Uterine Perfusion Model for Analyzing Barriers to Transport in Fibroids. JCR 2015, 214, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Kashuba, A.D.M.; Nafziger, A.N. Physiological Changes During the Menstrual Cycle and Their Effects on the Pharmacokinetics and Pharmacodynamics of Drugs. Clin. Pharmacokinet. 1998, 34, 203–218. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, S.; Smith, R.; Waring, R. The Menstrual Cycle and Drug Metabolism. Curr. Drug Metab. 2009, 10, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.; Dong, Y.; Bai, J.; Li, H.; Ma, X.; Li, B.; Wang, C.; Li, H.; Qi, W.; Wang, Y.; et al. Interactions between Microbiota and Cervical Epithelial, Immune, and Mucus Barrier. Front. Cell Infect. Microbiol. 2023, 13, 1124591. [Google Scholar] [CrossRef] [PubMed]
- Valamla, B.; Thakor, P.; Phuse, R.; Dalvi, M.; Kharat, P.; Kumar, A.; Panwar, D.; Singh, S.B.; Giorgia, P.; Mehra, N.K. Engineering Drug Delivery Systems to Overcome the Vaginal Mucosal Barrier: Current Understanding and Research Agenda of Mucoadhesive Formulations of Vaginal Delivery. J. Drug Deliv. Sci. Technol. 2022, 70, 103162. [Google Scholar] [CrossRef]
- Ensign, L.M.; Tang, B.C.; Wang, Y.-Y.; Tse, T.A.; Hoen, T.; Cone, R.; Hanes, J. Mucus-Penetrating Nanoparticles for Vaginal Drug Delivery Protect Against Herpes Simplex Virus. Sci. Transl. Med. 2012, 4, 138ra79. [Google Scholar] [CrossRef]
- Zierden, H.C.; Shapiro, R.L.; DeLong, K.; Carter, D.M.; Ensign, L.M. Next Generation Strategies for Preventing Preterm Birth. Adv. Drug Deliv. Rev. 2021, 174, 190–209. [Google Scholar] [CrossRef]
- Hoang, T.; Zierden, H.; Date, A.; Ortiz, J.; Gumber, S.; Anders, N.; He, P.; Segars, J.; Hanes, J.; Mahendroo, M.; et al. Development of a Mucoinert Progesterone Nanosuspension for Safer and More Effective Prevention of Preterm Birth. JCR 2019, 295, 74–86. [Google Scholar] [CrossRef]
- Lock, J.Y.; Carlson, T.L.; Carrier, R.L. Mucus Models to Evaluate the Diffusion of Drugs and Particles. Adv. Drug Deliv. Rev. 2018, 124, 34–49. [Google Scholar] [CrossRef]
- Yang, M.; Xu, X. Important Roles of Transporters in the Pharmacokinetics of Anti-Viral Nucleoside/Nucleotide Analogs. Expert. Opin. Drug Metab. Toxicol. 2022, 18, 483–505. [Google Scholar] [CrossRef]
- Hu, M.; Patel, S.K.; Zhou, T.; Rohan, L.C. Drug Transporters in Tissues and Cells Relevant to Sexual Transmission of HIV: Implications for Drug Delivery. JCR 2015, 219, 681–696. [Google Scholar] [CrossRef] [PubMed]
- Mao, Q.; Chen, X. An Update on Placental Drug Transport and Its Relevance to Fetal Drug Exposure. Med. Rev. 2022, 2, 501–511. [Google Scholar] [CrossRef] [PubMed]
- Szatmári, P.; Ducza, E. Changes in Expression and Function of Placental and Intestinal P-Gp and BCRP Transporters during Pregnancy. Int. J. Mol. Sci. 2023, 24, 13089. [Google Scholar] [CrossRef] [PubMed]
- Wołuń-Cholewa, M.; Szymanowski, K.; Nowak-Markwitz, E.; Warchoł, W. Photodiagnosis and Photodynamic Therapy of Endometriotic Epithelial Cells Using 5-Aminolevulinic Acid and Steroids. Photodiagnosis Photodyn. Ther. 2011, 8, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Cornel, K.M.C.; Bongers, M.Y.; Kruitwagen, R.P.F.M.; Romano, A. Local Estrogen Metabolism (Intracrinology) in Endometrial Cancer: A Systematic Review. Mol. Cell Endocrinol. 2019, 489, 45–65. [Google Scholar] [CrossRef] [PubMed]
- Salimi, S.; Sajadian, M.; Khodamian, M.; Yazdi, A.; Rezaee, S.; Mohammadpour-Gharehbagh, A.; Mokhtari, M.; Yaghmaie, M. Combination Effect of Cytochrome P450 1A1 Gene Polymorphisms on Uterine Leiomyoma: A Case-Control Study. Bosn. J. Basic. Med. Sci. 2016, 16, 209–214. [Google Scholar] [CrossRef]
- Courchesne, M.; Manrique, G.; Bernier, L.; Moussa, L.; Cresson, J.; Gutzeit, A.; Froehlich, J.M.; Koh, D.-M.; Chartrand-Lefebvre, C.; Matoori, S. Gender Differences in Pharmacokinetics: A Perspective on Contrast Agents. ACS Pharmacol. Transl. Sci. 2024, 7, 8–17. [Google Scholar] [CrossRef]
- Fashe, M.M.; Fallon, J.K.; Miner, T.A.; Tiley, J.B.; Smith, P.C.; Lee, C.R. Impact of Pregnancy Related Hormones on Drug Metabolizing Enzyme and Transport Protein Concentrations in Human Hepatocytes. Front. Pharmacol. 2022, 13, 1004010. [Google Scholar] [CrossRef]
- Parish, R.; Spivey, C. Influence of Menstrual Cycle Phase on Serum Concentrations of Alpha 1- Acid Glycoprotein. Br. J. Clin. Pharmacol. 1991, 31, 197–199. [Google Scholar] [CrossRef]
- Mir, A.; Vartak, R.V.; Patel, K.; Yellon, S.M.; Reznik, S.E. Vaginal Nanoformulations for the Management of Preterm Birth. Pharmaceutics 2022, 14, 2019. [Google Scholar] [CrossRef]
- Shapiro, R.L.; DeLong, K.; Zulfiqar, F.; Carter, D.; Better, M.; Ensign, L.M. In Vitro and Ex Vivo Models for Evaluating Vaginal Drug Delivery Systems. Adv. Drug Deliv. Rev. 2022, 191, 114543. [Google Scholar] [CrossRef] [PubMed]
- Taneva, E.; Sinclair, S.; Mesquita, P.M.M.; Weinrick, B.; Cameron, S.A.; Cheshenko, N.; Reagle, K.; Frank, B.; Srinivasan, S.; Fredricks, D.; et al. Vaginal Microbiome Modulates Topical Antiretroviral Drug Pharmacokinetics. JCI Insight 2018, 3, e99545. [Google Scholar] [CrossRef] [PubMed]
- Garzon, S.; Laganà, A.S.; Barra, F.; Casarin, J.; Cromi, A.; Raffaelli, R.; Uccella, S.; Franchi, M.; Ghezzi, F.; Ferrero, S. Novel Drug Delivery Methods for Improving Efficacy of Endometriosis Treatments. Expert. Opin. Drug Deliv. 2021, 18, 355–367. [Google Scholar] [CrossRef] [PubMed]
- Bulletti, C.; de Ziegler, D.; Flamigni, C.; Giacomucci, E.; Polli, V.; Bolelli, G.; Franceschetti, F. Targeted Drug Delivery in Gynaecology: The First Uterine Pass Effect. Hum. Reprod. 1997, 12, 1073–1079. [Google Scholar] [CrossRef] [PubMed]
- Miles, R.A.; Paulson, R.J.; Lobo, R.A.; Press, M.F.; Dahmoush, L.; Sauer, M.V. Pharmacokinetics and Endometrial Tissue Levels of Progesterone after Administration by Intramuscular and Vaginal Routes: A Comparative Study. Fertil. Steril. 1994, 62, 485–490. [Google Scholar] [CrossRef]
- Patel, C.V.; Tyagi, A.; Sharma, R.K.; Thakkar, H.P. Exploring Uterine Targeting Potential of 99mTc-Paclitaxel Loaded Ultradeformable Vesicles Designed for Endometrial Cancer. J. Drug Deliv. Sci. Technol. 2023, 80, 104154. [Google Scholar] [CrossRef]
- Zierden, H.C.; Ortiz, J.I.; DeLong, K.; Yu, J.; Li, G.; Dimitrion, P.; Bensouda, S.; Laney, V.; Bailey, A.; Anders, N.M.; et al. Enhanced Drug Delivery to the Reproductive Tract Using Nanomedicine Reveals Therapeutic Options for Prevention of Preterm Birth. Sci. Transl. Med. 2021, 13, eabc6245. [Google Scholar] [CrossRef]
- Hasan, M.R.; Alsaiari, A.A.; Fakhurji, B.Z.; Molla, M.H.R.; Asseri, A.H.; Sumon, M.A.A.; Park, M.N.; Ahammad, F.; Kim, B. Application of Mathematical Modeling and Computational Tools in the Modern Drug Design and Development Process. Molecules 2022, 27, 4169. [Google Scholar] [CrossRef]
- Gao, Y.; Katz, D.F. Multicompartmental Pharmacokinetic Model of Tenofovir Delivery by a Vaginal Gel. PLoS ONE 2013, 8, e74404. [Google Scholar] [CrossRef]
- Schwartz, J.L.; Rountree, W.; Kashuba, A.D.M.; Brache, V.; Creinin, M.D.; Poindexter, A.; Kearney, B.P. A Multi-Compartment, Single and Multiple Dose Pharmacokinetic Study of the Vaginal Candidate Microbicide 1% Tenofovir Gel. PLoS ONE 2011, 6, e25974. [Google Scholar] [CrossRef]
- Gao, Y.; Yuan, A.; Chuchuen, O.; Ham, A.; Yang, K.H.; Katz, D.F. Vaginal Deployment and Tenofovir Delivery by Microbicide Gels. Drug Deliv. Transl. Res. 2015, 5, 279–294. [Google Scholar] [CrossRef]
- Sims, L.B.; Miller, H.A.; Halwes, M.E.; Steinbach-Rankins, J.M.; Frieboes, H.B. Modeling of Nanoparticle Transport through the Female Reproductive Tract for the Treatment of Infectious Diseases. Eur. J. Pharm. Biopharm. 2019, 138, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Selmi, C.; La Marca, A. Oral Hormonal Therapy as Treatment Option for Abnormal Uterine Bleeding. Eur. J. Contracept. Reprod. Health Care 2023, 28, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Carmina, E.; Longo, R.A. Semaglutide Treatment of Excessive Body Weight in Obese PCOS Patients Unresponsive to Lifestyle Programs. J. Clin. Med. 2023, 12, 5921. [Google Scholar] [CrossRef] [PubMed]
- Elumalai, K.; Srinivasan, S.; Shanmugam, A. Review of the Efficacy of Nanoparticle-Based Drug Delivery Systems for Cancer Treatment. Biomed. Technol. 2024, 5, 109–122. [Google Scholar] [CrossRef]
- Himiniuc, L.M.; Toma, B.F.; Popovici, R.; Grigore, A.M.; Hamod, A.; Volovat, C.; Volovat, S.; Nica, I.; Vasincu, D.; Agop, M.; et al. Update on the Use of Nanocarriers and Drug Delivery Systems and Future Directions in Cervical Cancer. J. Immunol. Res. 2022, 2022, 1636908. [Google Scholar] [CrossRef]
- Breusa, S.; Zilio, S.; Catania, G.; Bakrin, N.; Kryza, D.; Lollo, G. Localized Chemotherapy Approaches and Advanced Drug Delivery Strategies: A Step Forward in the Treatment of Peritoneal Carcinomatosis from Ovarian Cancer. Front. Oncol. 2023, 13, 1125868. [Google Scholar] [CrossRef]
- das Neves, J.; Notario-Pérez, F.; Sarmento, B. Women-Specific Routes of Administration for Drugs: A Critical Overview. Adv. Drug Deliv. Rev. 2021, 176, 113865. [Google Scholar] [CrossRef]
- Fraguas-Sánchez, A.I.; Torres-Suárez, A.I.; Cohen, M.; Delie, F.; Bastida-Ruiz, D.; Yart, L.; Martin-Sabroso, C.; Fernández-Carballido, A. PLGA Nanoparticles for the Intraperitoneal Administration of CBD in the Treatment of Ovarian Cancer: In Vitro and In Ovo Assessment. Pharmaceutics 2020, 12, 439. [Google Scholar] [CrossRef]
- AL-Thamarani, S.; Gad, S.; Abdel Fattah, I.O.; Hammadi, S.H.; Hammady, T.M. Comparative Analysis of Oral and Local Intraovarian Administration of Metformin and Nanoparticles (NPs11) in Alleviating Testosterone-Induced Polycystic Ovary Syndrome in Rats. Tissue Cell 2024, 88, 102394. [Google Scholar] [CrossRef]
- Subi, M.T.M.; Selvasudha, N.; Vasanthi, H.R. Vaginal Drug Delivery System: A Promising Route of Drug Administration for Local and Systemic Diseases. Drug Discov. Today 2024, 29, 104012. [Google Scholar] [CrossRef] [PubMed]
- Major, I.; McConville, C. Vaginal Drug Delivery for the Localised Treatment of Cervical Cancer. Drug Deliv. Transl. Res. 2017, 7, 817–828. [Google Scholar] [CrossRef] [PubMed]
- Unnikrishnan, G.; Joy, A.; Megha, M.; Kolanthai, E.; Senthilkumar, M. Exploration of Inorganic Nanoparticles for Revolutionary Drug Delivery Applications: A Critical Review. Discov. Nano 2023, 18, 157. [Google Scholar] [CrossRef] [PubMed]
- Howe, S.E.; Konjufca, V.H. Protein-Coated Nanoparticles Are Internalized by the Epithelial Cells of the Female Reproductive Tract and Induce Systemic and Mucosal Immune Responses. PLoS ONE 2014, 9, e114601. [Google Scholar] [CrossRef] [PubMed]
- Leyva-Gómez, G.; Piñón-Segundo, E.; Mendoza-Muñoz, N.; Zambrano-Zaragoza, M.; Mendoza-Elvira, S.; Quintanar-Guerrero, D. Approaches in Polymeric Nanoparticles for Vaginal Drug Delivery: A Review of the State of the Art. Int. J. Mol. Sci. 2018, 19, 1549. [Google Scholar] [CrossRef]
- Yusuf, A.; Almotairy, A.R.Z.; Henidi, H.; Alshehri, O.Y.; Aldughaim, M.S. Nanoparticles as Drug Delivery Systems: A Review of the Implication of Nanoparticles’ Physicochemical Properties on Responses in Biological Systems. Polymers 2023, 15, 1596. [Google Scholar] [CrossRef]
- Ding, H.; Zhang, J.; Zhang, F.; Xu, Y.; Liang, W.; Yu, Y. Nanotechnological Approaches for Diagnosis and Treatment of Ovarian Cancer: A Review of Recent Trends. Drug Deliv. 2022, 29, 3218–3232. [Google Scholar] [CrossRef]
- Correia, A.C.; Monteiro, A.R.; Silva, R.; Moreira, J.N.; Sousa Lobo, J.M.; Silva, A.C. Lipid Nanoparticles Strategies to Modify Pharmacokinetics of Central Nervous System Targeting Drugs: Crossing or Circumventing the Blood–Brain Barrier (BBB) to Manage Neurological Disorders. Adv. Drug Deliv. Rev. 2022, 189, 114485. [Google Scholar] [CrossRef]
- Fliedel, L.; Alhareth, K.; Mignet, N.; Fournier, T.; Andrieux, K. Placental Models for Evaluation of Nanocarriers as Drug Delivery Systems for Pregnancy Associated Disorders. Biomedicines 2022, 10, 936. [Google Scholar] [CrossRef]
- Figueroa-Espada, C.G.; Hofbauer, S.; Mitchell, M.J.; Riley, R.S. Exploiting the Placenta for Nanoparticle-Mediated Drug Delivery during Pregnancy. Adv. Drug Deliv. Rev. 2020, 160, 244–261. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, C.; Huang, F.; Liu, X.; Wang, Z.; Yan, B. Breakthrough of ZrO2 Nanoparticles into Fetal Brains Depends on Developmental Stage of Maternal Placental Barrier and Fetal Blood-Brain-Barrier. J. Hazard. Mater. 2021, 402, 123563. [Google Scholar] [CrossRef] [PubMed]
- Refuerzo, J.S.; Leonard, F.; Bulayeva, N.; Gorenstein, D.; Chiossi, G.; Ontiveros, A.; Longo, M.; Godin, B. Uterus-Targeted Liposomes for Preterm Labor Management: Studies in Pregnant Mice. Sci. Rep. 2016, 6, 34710. [Google Scholar] [CrossRef] [PubMed]
- Refuerzo, J.S.; Alexander, J.F.; Leonard, F.; Leon, M.; Longo, M.; Godin, B. Liposomes: A Nanoscale Drug Carrying System to Prevent Indomethacin Passage to the Fetus in a Pregnant Mouse Model. Am. J. Obs. Gynecol. 2015, 212, 508.e1–508.e7. [Google Scholar] [CrossRef] [PubMed]
- Qasim, M.; Lim, D.-J.; Park, H.; Na, D. Nanotechnology for Diagnosis and Treatment of Infectious Diseases. J. Nanosci. Nanotechnol. 2014, 14, 7374–7387. [Google Scholar] [CrossRef] [PubMed]
- Barani, M.; Bilal, M.; Sabir, F.; Rahdar, A.; Kyzas, G.Z. Nanotechnology in Ovarian Cancer: Diagnosis and Treatment. Life Sci. 2021, 266, 118914. [Google Scholar] [CrossRef]
- Rajendran, A.K.; Kim, H.D.; Kim, J.-W.; Bae, J.W.; Hwang, N.S. Nanotechnology in Tissue Engineering and Regenerative Medicine. Korean J. Chem. Eng. 2023, 40, 286–301. [Google Scholar] [CrossRef]
- Joudeh, N.; Linke, D. Nanoparticle Classification, Physicochemical Properties, Characterization, and Applications: A Comprehensive Review for Biologists. J. Nanobiotechnol. 2022, 20, 262. [Google Scholar] [CrossRef]
- Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.d.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; et al. Nano Based Drug Delivery Systems: Recent Developments and Future Prospects. J. Nanobiotechnol. 2018, 16, 71. [Google Scholar] [CrossRef]
- Sharma, P.; Patnala, K.; Sah, N.; Deb, V.K.; Gopal, N.; Chauhan, N.; Chandra, R.; Jain, U. Revamping Precision Treatment with Nanoparticles Envisaging Effective Drug Delivery Systems for Ovarian Cancer. Process Biochem. 2024, 138, 33–46. [Google Scholar] [CrossRef]
- Hsu, C.-Y.; Rheima, A.M.; Kadhim, M.M.; Ahmed, N.N.; Mohammed, S.H.; Abbas, F.H.; Abed, Z.T.; Mahdi, Z.M.; Abbas, Z.S.; Hachim, S.K.; et al. An Overview of Nanoparticles in Drug Delivery: Properties and Applications. S. Afr. J. Chem. Eng. 2023, 46, 233–270. [Google Scholar] [CrossRef]
- Tiwari, M.; Bangruwa, N.; Mishra, D. 0D, 1D, and 2D Magnetic Nanostructures: Classification and Their Applications in Modern Biosensors. Talanta Open 2023, 8, 100257. [Google Scholar] [CrossRef]
- Weng, J.; Tong, H.H.Y.; Chow, S.F. In Vitro Release Study of the Polymeric Drug Nanoparticles: Development and Validation of a Novel Method. Pharmaceutics 2020, 12, 732. [Google Scholar] [CrossRef] [PubMed]
- Sabourian, P.; Yazdani, G.; Ashraf, S.S.; Frounchi, M.; Mashayekhan, S.; Kiani, S.; Kakkar, A. Effect of Physico-Chemical Properties of Nanoparticles on Their Intracellular Uptake. Int. J. Mol. Sci. 2020, 21, 8019. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Zhang, S.; He, J.; Nie, Z. Polymers and Inorganic Nanoparticles: A Winning Combination towards Assembled Nanostructures for Cancer Imaging and Therapy. Nano Today 2021, 36, 101046. [Google Scholar] [CrossRef]
- Yetisgin, A.A.; Cetinel, S.; Zuvin, M.; Kosar, A.; Kutlu, O. Therapeutic Nanoparticles and Their Targeted Delivery Applications. Molecules 2020, 25, 2193. [Google Scholar] [CrossRef]
- Hajipour, H.; Farzadi, L.; Roshangar, L.; Latifi, Z.; Kahroba, H.; Shahnazi, V.; Hamdi, K.; Ghasemzadeh, A.; Fattahi, A.; Nouri, M. A Human Chorionic Gonadotropin (HCG) Delivery Platform Using Engineered Uterine Exosomes to Improve Endometrial Receptivity. Life Sci. 2021, 275, 119351. [Google Scholar] [CrossRef]
- Di, J.; Gao, X.; Du, Y.; Zhang, H.; Gao, J.; Zheng, A. Size, Shape, Charge and “Stealthy” Surface: Carrier Properties Affect the Drug Circulation Time In Vivo. Asian J. Pharm. Sci. 2021, 16, 444–458. [Google Scholar] [CrossRef]
- Behyar, M.B.; Mirzaie, A.; Hasanzadeh, M.; Shadjou, N. Advancements in Biosensing of Hormones: Recent Progress and Future Trends. TrAC Trends Anal. Chem. 2024, 173, 117600. [Google Scholar] [CrossRef]
- Zielińska, A.; Karczewski, J.; Eder, P.; Kolanowski, T.; Szalata, M.; Wielgus, K.; Szalata, M.; Kim, D.; Shin, S.R.; Słomski, R.; et al. Scaffolds for Drug Delivery and Tissue Engineering: The Role of Genetics. JCR 2023, 359, 207–223. [Google Scholar] [CrossRef]
- Wang, B.; Hu, S.; Teng, Y.; Chen, J.; Wang, H.; Xu, Y.; Wang, K.; Xu, J.; Cheng, Y.; Gao, X. Current Advance of Nanotechnology in Diagnosis and Treatment for Malignant Tumors. Signal Transduct. Target. Ther. 2024, 9, 200. [Google Scholar]
- Leena Panigrahi, L.; Samal, P.; Ranjan Sahoo, S.; Sahoo, B.; Pradhan, A.K.; Mahanta, S.; Rath, S.K.; Arakha, M. Nanoparticle-Mediated Diagnosis, Treatment, and Prevention of Breast Cancer. Nanoscale Adv. 2024, 6, 3699–3713. [Google Scholar] [CrossRef] [PubMed]
- Rashidi, N.; Davidson, M.; Apostolopoulos, V.; Nurgali, K. Nanoparticles in Cancer Diagnosis and Treatment: Progress, Challenges, and Opportunities. J. Drug Deliv. Sci. Technol. 2024, 95, 105599. [Google Scholar] [CrossRef]
- Alrushaid, N.; Khan, F.A.; Al-Suhaimi, E.A.; Elaissari, A. Nanotechnology in Cancer Diagnosis and Treatment. Pharmaceutics 2023, 15, 1025. [Google Scholar] [CrossRef] [PubMed]
- Khan, Y.; Sadia, H.; Ali Shah, S.Z.; Khan, M.N.; Shah, A.A.; Ullah, N.; Ullah, M.F.; Bibi, H.; Bafakeeh, O.T.; Khedher, N.B.; et al. Classification, Synthetic, and Characterization Approaches to Nanoparticles, and Their Applications in Various Fields of Nanotechnology: A Review. Catalysts 2022, 12, 1386. [Google Scholar] [CrossRef]
- Yagublu, V.; Karimova, A.; Hajibabazadeh, J.; Reissfelder, C.; Muradov, M.; Bellucci, S.; Allahverdiyev, A. Overview of Physicochemical Properties of Nanoparticles as Drug Carriers for Targeted Cancer Therapy. J. Funct. Biomater. 2022, 13, 196. [Google Scholar] [CrossRef] [PubMed]
- Kovshova, T.; Osipova, N.; Alekseeva, A.; Malinovskaya, J.; Belov, A.; Budko, A.; Pavlova, G.; Maksimenko, O.; Nagpal, S.; Braner, S.; et al. Exploring the Interplay between Drug Release and Targeting of Lipid-Like Polymer Nanoparticles Loaded with Doxorubicin. Molecules 2021, 26, 831. [Google Scholar] [CrossRef]
- Herdiana, Y.; Wathoni, N.; Shamsuddin, S.; Muchtaridi, M. Drug Release Study of the Chitosan-Based Nanoparticles. Heliyon 2022, 8, e08674. [Google Scholar] [CrossRef]
- Alshammari, B.H.; Lashin, M.M.A.; Mahmood, M.A.; Al-Mubaddel, F.S.; Ilyas, N.; Rahman, N.; Sohail, M.; Khan, A.; Abdullaev, S.S.; Khan, R. Organic and Inorganic Nanomaterials: Fabrication, Properties and Applications. RSC Adv. 2023, 13, 13735–13785. [Google Scholar] [CrossRef]
- Huang, H.; Feng, W.; Chen, Y.; Shi, J. Inorganic Nanoparticles in Clinical Trials and Translations. Nano Today 2020, 35, 100972. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, Applications and Toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Pavlovic, M.; Szerlauth, A.; Muráth, S.; Varga, G.; Szilagyi, I. Surface Modification of Two-Dimensional Layered Double Hydroxide Nanoparticles with Biopolymers for Biomedical Applications. Adv. Drug Deliv. Rev. 2022, 191, 114590. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Li, S.; Shi, R.; Liu, H. Multifunctional Mesoporous Silica Nanoparticles for Biomedical Applications. Signal Transduct. Target. Ther. 2023, 8, 435. [Google Scholar] [CrossRef] [PubMed]
- Riccardi, D.; Baldino, L.; Reverchon, E. Liposomes, Transfersomes and Niosomes: Production Methods and Their Applications in the Vaccinal Field. J. Transl. Med. 2024, 22, 339. [Google Scholar] [CrossRef] [PubMed]
- Mishra, V.; Bansal, K.; Verma, A.; Yadav, N.; Thakur, S.; Sudhakar, K.; Rosenholm, J. Solid Lipid Nanoparticles: Emerging Colloidal Nano Drug Delivery Systems. Pharmaceutics 2018, 10, 191. [Google Scholar] [CrossRef] [PubMed]
- van Staden, D.; du Plessis, J.; Viljoen, J. Development of a Self-Emulsifying Drug Delivery System for Optimized Topical Delivery of Clofazimine. Pharmaceutics 2020, 12, 523. [Google Scholar] [CrossRef]
- Hong, S.; Choi, D.W.; Kim, H.N.; Park, C.G.; Lee, W.; Park, H.H. Protein-Based Nanoparticles as Drug Delivery Systems. Pharmaceutics 2020, 12, 604. [Google Scholar] [CrossRef]
- Prabhu, R.; Patravale, V.; Joshi, M.D. Polymeric Nanoparticles for Targeted Treatment in Oncology: Current Insights. Int. J. Nanomed. 2015, 10, 1001–1018. [Google Scholar]
- Anwer, M.d.K.; Iqbal, M.; Muharram, M.M.; Mohammad, M.; Ezzeldin, E.; Aldawsari, M.F.; Alalaiwe, A.; Imam, F. Development of Lipomer Nanoparticles for the Enhancement of Drug Release, Anti-Microbial Activity and Bioavailability of Delafloxacin. Pharmaceutics 2020, 12, 252. [Google Scholar] [CrossRef]
- Marante, T.; Viegas, C.; Duarte, I.; Macedo, A.S.; Fonte, P. An Overview on Spray-Drying of Protein-Loaded Polymeric Nanoparticles for Dry Powder Inhalation. Pharmaceutics 2020, 12, 1032. [Google Scholar] [CrossRef]
- Debnath, S.K.; Srivastava, R. Drug Delivery with Carbon-Based Nanomaterials as Versatile Nanocarriers: Progress and Prospects. Front. Nanotechnol. 2021, 3, 644564. [Google Scholar] [CrossRef]
- Alharbi, T.M.D.; Alotaibi, A.E.H.; Chen, D.; Li, Q.; Raston, C.L. Unzipping Multiwalled Carbon Nanotubes under Vortex Fluidic Continuous Flow. ACS Appl. Nano Mater. 2022, 5, 12165–12173. [Google Scholar] [CrossRef]
- Volkov, V.A.; Yamskova, O.V.; Voronkov, M.V.; Kurilov, D.V.; Romanova, V.S.; Misin, V.M.; Gagarina, I.N.; Pavlovskaya, N.E.; Gorkova, I.V.; Lushnikov, A.V. New Plant Growth Stimulants Based on Water-Soluble Nanoparticles of N-Substituted Monoamino-Acid Derivatives of Fullerene C60 and the Study of Their Mechanisms of Action. Biophysics 2020, 65, 635–641. [Google Scholar] [CrossRef]
- Cui, L.; Ren, X.; Sun, M.; Liu, H.; Xia, L. Carbon Dots: Synthesis, Properties and Applications. Nanomaterials 2021, 11, 3419. [Google Scholar] [CrossRef] [PubMed]
- Idoudi, S.; Ismail, R.; Rachid, O.; Elhissi, A.; Alkilany, A.M. The Golden Liposomes: Preparation and Biomedical Applications of Gold-Liposome Nanocomposites. JNT 2023, 4, 201–227. [Google Scholar] [CrossRef]
- Khalid, K.; Tan, X.; Mohd Zaid, H.F.; Tao, Y.; Lye Chew, C.; Chu, D.-T.; Lam, M.K.; Ho, Y.-C.; Lim, J.W.; Chin Wei, L. Advanced in Developmental Organic and Inorganic Nanomaterial: A Review. Bioengineered 2020, 11, 328–355. [Google Scholar] [CrossRef]
- Liu, S.; He, X.; Hu, X.; Pu, Y.; Mao, X. Porous Nanomaterials for Biosensing and Related Biological Application in in Vitro/Vivo Usability. Mater. Adv. 2024, 5, 453–474. [Google Scholar] [CrossRef]
- Chavali, M.S.; Nikolova, M.P. Metal Oxide Nanoparticles and Their Applications in Nanotechnology. SN Appl. Sci. 2019, 1, 607. [Google Scholar] [CrossRef]
- Sánchez-Visedo, A.; Ferrero, F.J.; Costa-Fernández, J.M.; Fernández-Argüelles, M.T. Inorganic Nanoparticles Coupled to Nucleic Acid Enzymes as Analytical Signal Amplification Tools. Anal. Bioanal. Chem. 2022, 414, 5201–5215. [Google Scholar] [CrossRef]
- Ghosh, S.; Jayaram, P.; Kabekkodu, S.P.; Satyamoorthy, K. Targeted Drug Delivery in Cervical Cancer: Current Perspectives. Eur. J. Pharmacol. 2022, 917, 174751. [Google Scholar] [CrossRef]
- Yokchom, R.; Laiwejpithaya, S.; Maneeprakorn, W.; Tapaneeyakorn, S.; Rabablert, J.; Dharakul, T. Paper-Based Immunosensor with Signal Amplification by Enzyme-Labeled Anti-P16INK4a Multifunctionalized Gold Nanoparticles for Cervical Cancer Screening. Nanomedicine 2018, 14, 1051–1058. [Google Scholar] [CrossRef]
- Lin, J.; Hu, W.; Gao, F.; Qin, J.; Peng, C.; Lu, X. Folic Acid-Modified Diatrizoic Acid-Linked Dendrimer-Entrapped Gold Nanoparticles Enable Targeted CT Imaging of Human Cervical Cancer. J. Cancer 2018, 9, 564–577. [Google Scholar] [CrossRef] [PubMed]
- Tomoaia, G.; Horovitz, O.; Mocanu, A.; Nita, A.; Avram, A.; Racz, C.P.; Soritau, O.; Cenariu, M.; Tomoaia-Cotisel, M. Effects of Doxorubicin Mediated by Gold Nanoparticles and Resveratrol in Two Human Cervical Tumor Cell Lines. Colloids Surf. B Biointerfaces 2015, 135, 726–734. [Google Scholar] [CrossRef] [PubMed]
- Chen-Sandoval, J.; Perry, C.C.; Yun, J.; Chan, P.J. HPV-Associated Cervical Cancer Cells Targeted by Triblock Copolymer Gold Nanoparticle Curcumin Combination. Eur. J. Gynaecol. Oncol. 2017, 38, 413–417. [Google Scholar] [PubMed]
- Patankar, K.K.; Jadhav, P.; Gayakvad, K. Introduction and Applications of Magnetic Nanoparticles. In Fundamentals and Industrial Applications of Magnetic Nanoparticles; Patankar, K.K., Hussain, C.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; Volume 1, pp. 3–39. [Google Scholar]
- Shalaby, S.M.; Khater, M.K.; Perucho, A.M.; Mohamed, S.A.; Helwa, I.; Laknaur, A.; Lebedyeva, I.; Liu, Y.; Diamond, M.P.; Al-Hendy, A.A. Magnetic Nanoparticles as a New Approach to Improve the Efficacy of Gene Therapy against Differentiated Human Uterine Fibroid Cells and Tumor-Initiating Stem Cells. Fertil. Steril. 2016, 105, 1638–1648.e8. [Google Scholar] [CrossRef] [PubMed]
- Akintelu, S.A.; Folorunso, A.S. A Review on Green Synthesis of Zinc Oxide Nanoparticles Using Plant Extracts and Its Biomedical Applications. Bionanoscience 2020, 10, 848–863. [Google Scholar] [CrossRef]
- Anjum, S.; Hashim, M.; Malik, S.A.; Khan, M.; Lorenzo, J.M.; Abbasi, B.H.; Hano, C. Recent Advances in Zinc Oxide Nanoparticles (ZnO NPs) for Cancer Diagnosis, Target Drug Delivery, and Treatment. Cancers 2021, 13, 4570. [Google Scholar] [CrossRef]
- Mishra, P.K.; Mishra, H.; Ekielski, A.; Talegaonkar, S.; Vaidya, B. Zinc Oxide Nanoparticles: A Promising Nanomaterial for Biomedical Applications. Drug Discov. Today 2017, 22, 1825–1834. [Google Scholar] [CrossRef]
- Zhai, Q.-Y.; Ge, W.; Wang, J.-J.; Sun, X.-F.; Ma, J.-M.; Liu, J.-C.; Zhao, Y.; Feng, Y.-Z.; Dyce, P.W.; De Felici, M.; et al. Exposure to Zinc Oxide Nanoparticles during Pregnancy Induces Oocyte DNA Damage and Affects Ovarian Reserve of Mouse Offspring. Aging 2018, 10, 2170–2189. [Google Scholar] [CrossRef]
- Saber, M.; Hayaei-Tehrani, R.-S.; Mokhtari, S.; Hoorzad, P.; Esfandiari, F. In Vitro Cytotoxicity of Zinc Oxide Nanoparticles in Mouse Ovarian Germ Cells. Toxicol. Vitr. 2021, 70, 105032. [Google Scholar] [CrossRef]
- Fahaduddin; Bal, T. Invitro-Invivo Evaluations of Green Synthesized Zinc Oxide (ZnO) Nanoparticles Using Ipomoea Aquatica Leaf Extract as Matric and Fillers. J. Mech. Behav. Biomed. Mater. 2024, 150, 106330. [Google Scholar] [CrossRef]
- Zeghoud, S.; Hemmami, H.; Ben Seghir, B.; Ben Amor, I.; Kouadri, I.; Rebiai, A.; Messaoudi, M.; Ahmed, S.; Pohl, P.; Simal-Gandara, J. A Review on Biogenic Green Synthesis of ZnO Nanoparticles by Plant Biomass and Their Applications. Mater. Today Commun. 2022, 33, 104747. [Google Scholar] [CrossRef]
- Sayyad, P.W.; Park, S.-J.; Ha, T.-J. Recent Advances in Biosensors Based on Metal-Oxide Semiconductors System-Integrated into Bioelectronics. Biosens. Bioelectron. 2024, 259, 116407. [Google Scholar] [CrossRef] [PubMed]
- Pareek, S.; Jain, U.; Balayan, S.; Chauhan, N. Ultra-Sensitive Nano-Molecular Imprinting Polymer-Based Electrochemical Sensor for Follicle-Stimulating Hormone (FSH) Detection. Biochem. Eng. J. 2022, 180, 108329. [Google Scholar] [CrossRef]
- Li, G.; Dong, C.; Wang, R. Nickel Cobaltite Nanosheet Layer as Hole-Transporting Material in Inverted Perovskite Solar Cells. ChemistrySelect 2022, 7, e202201354. [Google Scholar] [CrossRef]
- Abid; Sehrawat, P.; Islam, S.S.; Mishra, P.; Ahmad, S. Reduced Graphene Oxide (RGO) Based Wideband Optical Sensor and the Role of Temperature, Defect States and Quantum Efficiency. Sci. Rep. 2018, 8, 3537. [Google Scholar] [CrossRef]
- Ghaffari, A.; Abazari, M.; Moghimi, H.R. Wound Healing and Nanotechnology: Opportunities and Challenges. In Bioengineered Nanomaterials for Wound Healing and Infection Control; Barabadi, H., Saravanan, M., Mostafavi, E., Vahidi, H., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; Volume 1, pp. 115–174. [Google Scholar]
- Şentürk, S.; Kaplan, Ö.; Bal, K.; Baş Topcu, K.S.; Gök, M.K. Thiolated Layered Double Hydroxide-Based Nanoparticles: A Study on Mucoadhesiveness and Cytotoxicity. Colloids Surf. A Physicochem. Eng. Asp. 2025, 704, 135461. [Google Scholar] [CrossRef]
- Wang, H.; Yu, Z.; Jing, G.; Wang, Z.; Niu, J.; Qian, Y.; Wang, S. Etoposide-Loaded Layered Double Hydroxide Achieves the Best of Both Worlds: Simultaneous Breast Carcinoma Inhibition and Embryo Protection via Selectively Regulating Caspase 3-GSDME Pyroptosis Pathway. Chem. Eng. J. 2024, 484, 149485. [Google Scholar] [CrossRef]
- Mazzotta, E.; De Santo, M.; Lombardo, D.; Leggio, A.; Pasqua, L. Mesoporous Silicas in Materials Engineering: Nanodevices for Bionanotechnologies. Mater. Today Bio 2022, 17, 100472. [Google Scholar] [CrossRef] [PubMed]
- Bose, S.; Sarkar, N.; Jo, Y. Natural Medicine Delivery from 3D Printed Bone Substitutes. JCR 2024, 365, 848–875. [Google Scholar] [CrossRef]
- Baeza, A.; Ruiz-Molina, D.; Vallet-Regí, M. Recent Advances in Porous Nanoparticles for Drug Delivery in Antitumoral Applications: Inorganic Nanoparticles and Nanoscale Metal-Organic Frameworks. Expert. Opin. Drug Deliv. 2017, 14, 783–796. [Google Scholar] [CrossRef]
- Atallah, G.A.; Abd. Aziz, N.H.; Teik, C.K.; Shafiee, M.N.; Kampan, N.C. New Predictive Biomarkers for Ovarian Cancer. Diagnostics 2021, 11, 465. [Google Scholar] [CrossRef] [PubMed]
- Bharti, C.; Gulati, N.; Nagaich, U.; Pal, A. Mesoporous Silica Nanoparticles in Target Drug Delivery System: A Review. Int. J. Pharm. Investig. 2015, 5, 124. [Google Scholar] [CrossRef] [PubMed]
- Mehta, M.; Bui, T.A.; Yang, X.; Aksoy, Y.; Goldys, E.M.; Deng, W. Lipid-Based Nanoparticles for Drug/Gene Delivery: An Overview of the Production Techniques and Difficulties Encountered in Their Industrial Development. ACS Mater. Au 2023, 3, 600–619. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Wang, X.; Liu, Y.; Yang, G.; Falconer, R.J.; Zhao, C.-X. Lipid Nanoparticles for Drug Delivery. Adv. Nanobiomed Res. 2022, 2, 2100109. [Google Scholar] [CrossRef]
- Arabestani, M.R.; Bigham, A.; Kamarehei, F.; Dini, M.; Gorjikhah, F.; Shariati, A.; Hosseini, S.M. Solid Lipid Nanoparticles and Their Application in the Treatment of Bacterial Infectious Diseases. Biomed. Pharmacother. 2024, 174, 116433. [Google Scholar] [CrossRef]
- Tenchov, R.; Bird, R.; Curtze, A.E.; Zhou, Q. Lipid Nanoparticles─From Liposomes to MRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement. ACS Nano 2021, 15, 16982–17015. [Google Scholar] [CrossRef]
- Sun, L.; Liu, H.; Ye, Y.; Lei, Y.; Islam, R.; Tan, S.; Tong, R.; Miao, Y.-B.; Cai, L. Smart Nanoparticles for Cancer Therapy. Signal Transduct. Target. Ther. 2023, 8, 418. [Google Scholar] [CrossRef]
- Fernandez-Fernandez, A.; Manchanda, R.; Kumari, M. Lipid-Engineered Nanotherapeutics for Cancer Management. Front. Pharmacol. 2023, 14, 1125093. [Google Scholar] [CrossRef]
- Liu, A.; Yang, G.; Liu, Y.; Liu, T. Research Progress in Membrane Fusion-Based Hybrid Exosomes for Drug Delivery Systems. Front. Bioeng. Biotechnol. 2022, 10, 939441. [Google Scholar] [CrossRef]
- Zhao, Z.; Saiding, Q.; Cai, Z.; Cai, M.; Cui, W. Ultrasound Technology and Biomaterials for Precise Drug Therapy. Mater. Today 2023, 63, 210–238. [Google Scholar] [CrossRef]
- Kansız, S.; Elçin, Y.M. Advanced Liposome and Polymersome-Based Drug Delivery Systems: Considerations for Physicochemical Properties, Targeting Strategies and Stimuli-Sensitive Approaches. Adv. Colloid. Interface Sci. 2023, 317, 102930. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Zhang, H.; Li, Q.; Yuan, G.; Zhou, Y.; Yin, R.; Wang, H.; Wang, C.; Huang, Y.; Wang, W.; et al. Efficacy and Safety of Paclitaxel Liposome versus Paclitaxel in Combination with Carboplatin in the First-Line Chemotherapy for Ovarian Cancer: A Multicenter, Open-Label, Non-Inferiority, Randomized Controlled Trial. JNCC 2024, 4, 135–141. [Google Scholar] [PubMed]
- Chen, J.; Hu, S.; Sun, M.; Shi, J.; Zhang, H.; Yu, H.; Yang, Z. Recent Advances and Clinical Translation of Liposomal Delivery Systems in Cancer Therapy. Eur. J. Pharm. Sci. 2024, 193, 106688. [Google Scholar] [CrossRef] [PubMed]
- Tienda-Vázquez, M.A.; Hanel, J.M.; Márquez-Arteaga, E.M.; Salgado-Álvarez, A.P.; Scheckhuber, C.Q.; Alanis-Gómez, J.R.; Espinoza-Silva, J.I.; Ramos-Kuri, M.; Hernández-Rosas, F.; Melchor-Martínez, E.M.; et al. Exosomes: A Promising Strategy for Repair, Regeneration and Treatment of Skin Disorders. Cells 2023, 12, 1625. [Google Scholar] [CrossRef] [PubMed]
- Wan, R.; Liu, S.; Feng, X.; Luo, W.; Zhang, H.; Wu, Y.; Chen, S.; Shang, X. The Revolution of Exosomes: From Biological Functions to Therapeutic Applications in Skeletal Muscle Diseases. J. Orthop. Transl. 2024, 45, 132–139. [Google Scholar] [CrossRef]
- Dilsiz, N. Exosomes as New Generation Vehicles for Drug Delivery Systems. J. Drug Deliv. Sci. Technol. 2024, 95, 105562. [Google Scholar] [CrossRef]
- Sen, S.; Xavier, J.; Kumar, N.; Ahmad, M.Z.; Ranjan, O.P. Exosomes as Natural Nanocarrier-Based Drug Delivery System: Recent Insights and Future Perspectives. 3 Biotech. 2023, 13, 101. [Google Scholar] [CrossRef]
- Zeng, H.; Guo, S.; Ren, X.; Wu, Z.; Liu, S.; Yao, X. Current Strategies for Exosome Cargo Loading and Targeting Delivery. Cells 2023, 12, 1416. [Google Scholar] [CrossRef]
- Gao, J.; Li, A.; Hu, J.; Feng, L.; Liu, L.; Shen, Z. Recent Developments in Isolating Methods for Exosomes. Front. Bioeng. Biotechnol. 2023, 10, 1100892. [Google Scholar] [CrossRef]
- Coughlan, C.; Bruce, K.D.; Burgy, O.; Boyd, T.D.; Michel, C.R.; Garcia-Perez, J.E.; Adame, V.; Anton, P.; Bettcher, B.M.; Chial, H.J.; et al. Exosome Isolation by Ultracentrifugation and Precipitation and Techniques for Downstream Analyses. Curr. Protoc. Cell Biol. 2020, 88, e110. [Google Scholar] [CrossRef]
- Luan, X.; Sansanaphongpricha, K.; Myers, I.; Chen, H.; Yuan, H.; Sun, D. Engineering Exosomes as Refined Biological Nanoplatforms for Drug Delivery. Acta Pharmacol. Sin. 2017, 38, 754–763. [Google Scholar] [CrossRef] [PubMed]
- Sykaras, A.G.; Christofidis, K.; Politi, E.; Theocharis, S. Exosomes on Endometrial Cancer: A Biomarkers Treasure Trove? Cancers 2022, 14, 1733. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Yang, Z.; Cui, J.; Tao, H.; Ma, R.; Zhao, Y. Mesenchymal Stem Cell-Derived Exosomes: A Promising Alternative in the Therapy of Preeclampsia. Stem Cell Res. Ther. 2024, 15, 30. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.-R.; Ma, Y.; Ma, Z.-M.; Dai, T.-S.; Wei, S.-H.; Chu, Y.-K.; Dan, X.-G. Exosomes: The Role in Mammalian Reproductive Regulation and Pregnancy-Related Diseases. Front. Physiol. 2023, 14, 1056905. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; You, Y.; Zhu, K.; Fang, C.; Chang, D.; Yu, X. Exosomes in the field of Reproduction: A Scientometric Study and Visualization Analysis. Front. Pharmacol. 2022, 13, 1001652. [Google Scholar] [CrossRef]
- Maitra, S.; Mukerjee, N.; Alharbi, H.M.; Ghosh, A.; Alexiou, A.; Thorat, N.D. Targeted Therapies for HPV-associated Cervical Cancer: Harnessing the Potential of Exosome-based Chipsets in Combating Leukemia and HPV-mediated Cervical Cancer. J. Med. Virol. 2024, 96, e29596. [Google Scholar] [CrossRef]
- Gong, X.; Chi, H.; Strohmer, D.F.; Teichmann, A.T.; Xia, Z.; Wang, Q. Exosomes: A Potential Tool for Immunotherapy of Ovarian Cancer. Front. Immunol. 2023, 13, 1089410. [Google Scholar] [CrossRef]
- Chu, X.; Hou, M.; Li, Y.; Zhang, Q.; Wang, S.; Ma, J. Extracellular Vesicles in Endometriosis: Role and Potential. Front. Endocrinol. 2024, 15, 1365327. [Google Scholar] [CrossRef]
- Wu, D.; Lu, P.; Mi, X.; Miao, J. Exosomal MiR-214 from Endometrial Stromal Cells Inhibits Endometriosis Fibrosis. MHR Basic Sci. Reprod. Med. 2018, 24, 357–365. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, B.; Su, P.; Chang, Q.; Li, P.; Song, A.; Zhao, X.; Yuan, Z.; Tan, J. Concentrated Exosomes from Menstrual Blood-Derived Stromal Cells Improves Ovarian Activity in a Rat Model of Premature Ovarian Insufficiency. Stem Cell Res. Ther. 2021, 12, 178. [Google Scholar] [CrossRef]
- Trigo, C.M.; Rodrigues, J.S.; Camões, S.P.; Solá, S.; Miranda, J.P. Mesenchymal Stem Cell Secretome for Regenerative Medicine: Where Do We Stand? J. Adv. Res. 2024, in press.
- Zielińska, A.; Carreiró, F.; Oliveira, A.M.; Neves, A.; Pires, B.; Venkatesh, D.N.; Durazzo, A.; Lucarini, M.; Eder, P.; Silva, A.M.; et al. Polymeric Nanoparticles: Production, Characterization, Toxicology and Ecotoxicology. Molecules 2020, 25, 3731. [Google Scholar] [CrossRef] [PubMed]
- Visan, A.I.; Popescu-Pelin, G.; Socol, G. Degradation Behavior of Polymers Used as Coating Materials for Drug Delivery—A Basic Review. Polymers 2021, 13, 1272. [Google Scholar] [CrossRef] [PubMed]
- Tsung, T.-H.; Tsai, Y.-C.; Lee, H.-P.; Chen, Y.-H.; Lu, D.-W. Biodegradable Polymer-Based Drug-Delivery Systems for Ocular Diseases. Int. J. Mol. Sci. 2023, 24, 12976. [Google Scholar] [CrossRef] [PubMed]
- Karimi, M.; Eslami, M.; Sahandi-Zangabad, P.; Mirab, F.; Farajisafiloo, N.; Shafaei, Z.; Ghosh, D.; Bozorgomid, M.; Dashkhaneh, F.; Hamblin, M.R. pH-Sensitive Stimulus-responsive Nanocarriers for Targeted Delivery of Therapeutic Agents. WIREs Nanom Nanobiotech 2016, 8, 696–716. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Nayak, P. pH-responsive Polymers for Drug Delivery: Trends and Opportunities. J. Polym. Sci. 2023, 61, 2828–2850. [Google Scholar] [CrossRef]
- Wells, C.M.; Harris, M.; Choi, L.; Murali, V.P.; Guerra, F.D.; Jennings, J.A. Stimuli-Responsive Drug Release from Smart Polymers. J. Funct. Biomater. 2019, 10, 34. [Google Scholar] [CrossRef]
- Li, J.; Wang, Q.; Xia, G.; Adilijiang, N.; Li, Y.; Hou, Z.; Fan, Z.; Li, J. Recent Advances in Targeted Drug Delivery Strategy for Enhancing Oncotherapy. Pharmaceutics 2023, 15, 2233. [Google Scholar] [CrossRef]
- Bayer, I.S. Hyaluronic Acid and Controlled Release: A Review. Molecules 2020, 25, 2649. [Google Scholar] [CrossRef]
- Salih, A.R.C.; Farooqi, H.M.U.; Amin, H.; Karn, P.R.; Meghani, N.; Nagendran, S. Hyaluronic Acid: Comprehensive Review of a Multifunctional Biopolymer. Futur. J. Pharm. Sci. 2024, 10, 63. [Google Scholar] [CrossRef]
- Shao, W.; Yang, Y.; Shen, W.; Ren, L.; Wang, W.; Zhu, P. Hyaluronic Acid-Conjugated Methotrexate and 5-Fluorouracil for Targeted Drug Delivery. Int. J. Biol. Macromol. 2024, 273, 132671. [Google Scholar] [CrossRef]
- Uthappa, U.T.; Suneetha, M.; Ajeya, K.V.; Ji, S.M. Hyaluronic Acid Modified Metal Nanoparticles and Their Derived Substituents for Cancer Therapy: A Review. Pharmaceutics 2023, 15, 1713. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Bi, H.; Wang, Z.; Li, C.; Wang, X.; Xu, J.; Zhu, H.; Zhao, R.; He, F.; Gai, S.; et al. Hyaluronic Acid-Targeted and pH-Responsive Drug Delivery System Based on Metal-Organic Frameworks for Efficient Antitumor Therapy. Biomaterials 2019, 223, 119473. [Google Scholar] [CrossRef] [PubMed]
- Kaltbeitzel, J.; Wich, P.R. Protein-based Nanoparticles: From Drug Delivery to Imaging, Nanocatalysis and Protein Therapy. Angew. Chem. Int. Ed. 2023, 62, e202216097. [Google Scholar] [CrossRef] [PubMed]
- Chu, S.; Wang, A.L.; Bhattacharya, A.; Montclare, J.K. Protein Based Biomaterials for Therapeutic and Diagnostic Applications. Prog. Biomed. Eng. 2022, 4, 012003. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, S.; Lee, W.K.; Kong, S.N.; Shetty, A.; Drum, C.L. Oral Administration of Protein Nanoparticles: An Emerging Route to Disease Treatment. Pharmacol. Res. 2020, 158, 104685. [Google Scholar] [CrossRef]
- Periti, P.; Mazzei, T.; Mini, E. Clinical Pharmacokinetics of Depot Leuprorelin. Clin. Pharmacokinet. 2002, 41, 485–504. [Google Scholar] [CrossRef]
- Shang, L.; Nienhaus, K.; Nienhaus, G.U. Engineered Nanoparticles Interacting with Cells: Size Matters. J. Nanobiotechnol. 2014, 12, 5. [Google Scholar] [CrossRef]
- Nagamune, T. Biomolecular Engineering for Nanobio/Bionanotechnology. Nano Converg. 2017, 4, 9. [Google Scholar] [CrossRef]
- Bai, Y.; Luo, Q.; Liu, J. Protein Self-Assembly via Supramolecular Strategies. Chem. Soc. Rev. 2016, 45, 2756–2767. [Google Scholar] [CrossRef]
- Lundahl, M.L.E.; Fogli, S.; Colavita, P.E.; Scanlan, E.M. Aggregation of Protein Therapeutics Enhances Their Immunogenicity: Causes and Mitigation Strategies. RSC Chem. Biol. 2021, 2, 1004–1020. [Google Scholar] [CrossRef]
- Khalili, L.; Dehghan, G.; Sheibani, N.; Khataee, A. Smart Active-Targeting of Lipid-Polymer Hybrid Nanoparticles for Therapeutic Applications: Recent Advances and Challenges. Int. J. Biol. Macromol. 2022, 213, 166–194. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.; Famta, P.; Raghuvanshi, R.S.; Singh, S.B.; Srivastava, S. Lipid Polymer Hybrid Nanocarriers: Insights into Synthesis Aspects, Characterization, Release Mechanisms, Surface Functionalization and Potential Implications. Colloid. Interface Sci. Commun. 2022, 46, 100570. [Google Scholar] [CrossRef]
- Shi, J.; Xiao, Z.; Votruba, A.R.; Vilos, C.; Farokhzad, O.C. Differentially Charged Hollow Core/Shell Lipid–Polymer–Lipid Hybrid Nanoparticles for Small Interfering RNA Delivery. Angew. Chem. Int. Ed. 2011, 50, 7027–7031. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, Y.; Nie, G. Multifunctional Biomolecule Nanostructures for Cancer Therapy. Nat. Rev. Mater. 2021, 6, 766–783. [Google Scholar] [CrossRef] [PubMed]
- Mourdikoudis, S.; Pallares, R.M.; Thanh, N.T.K. Characterization Techniques for Nanoparticles: Comparison and Complementarity upon Studying Nanoparticle Properties. Nanoscale 2018, 10, 12871–12934. [Google Scholar] [CrossRef]
- Stater, E.P.; Sonay, A.Y.; Hart, C.; Grimm, J. The Ancillary Effects of Nanoparticles and Their Implications for Nanomedicine. Nat. Nanotechnol. 2021, 16, 1180–1194. [Google Scholar] [CrossRef]
- Sivadasan, D.; Sultan, M.H.; Madkhali, O.; Almoshari, Y.; Thangavel, N. Polymeric Lipid Hybrid Nanoparticles (PLNs) as Emerging Drug Delivery Platform—A Comprehensive Review of Their Properties, Preparation Methods, and Therapeutic Applications. Pharmaceutics 2021, 13, 1291. [Google Scholar] [CrossRef]
- Ferreira Soares, D.C.; Domingues, S.C.; Viana, D.B.; Tebaldi, M.L. Polymer-Hybrid Nanoparticles: Current Advances in Biomedical Applications. Biomed. Pharmacother. 2020, 131, 110695. [Google Scholar] [CrossRef]
- Saesoo, S.; Bunthot, S.; Sajomsang, W.; Gonil, P.; Phunpee, S.; Songkhum, P.; Laohhasurayotin, K.; Wutikhun, T.; Yata, T.; Ruktanonchai, U.R.; et al. Phospholipid-Chitosan Hybrid Nanoliposomes Promoting Cell Entry for Drug Delivery against Cervical Cancer. J. Colloid. Interface Sci. 2016, 480, 240–248. [Google Scholar] [CrossRef]
- Medina-Alarcón, K.P.; Voltan, A.R.; Fonseca-Santos, B.; Moro, I.J.; de Oliveira Souza, F.; Chorilli, M.; Soares, C.P.; dos Santos, A.G.; Mendes-Giannini, M.J.S.; Fusco-Almeida, A.M. Highlights in Nanocarriers for the Treatment against Cervical Cancer. Mater. Sci. Eng. C 2017, 80, 748–759. [Google Scholar] [CrossRef]
- Bernat-Quesada, F.; Vallés-García, C.; Montero-Lanzuela, E.; López-Francés, A.; Ferrer, B.; Baldoví, H.G.; Navalón, S. Hybrid Sp2/Sp3 Nanodiamonds as Heterogeneous Metal-Free Ozonation Catalysts in Water. Appl. Catal. B 2021, 299, 120673. [Google Scholar] [CrossRef]
- Rodoshi Khan, N.; Bin Rashid, A. Carbon-Based Nanomaterials: A Paradigm Shift in Biofuel Synthesis and Processing for a Sustainable Energy Future. Energy Convers. Manag. X 2024, 22, 100590. [Google Scholar] [CrossRef]
- Lérida-Viso, A.; Estepa-Fernández, A.; García-Fernández, A.; Martí-Centelles, V.; Martínez-Máñez, R. Biosafety of Mesoporous Silica Nanoparticles; towards Clinical Translation. Adv. Drug Deliv. Rev. 2023, 201, 115049. [Google Scholar] [CrossRef] [PubMed]
- Murjani, B.O.; Kadu, P.S.; Bansod, M.; Vaidya, S.S.; Yadav, M.D. Carbon Nanotubes in Biomedical Applications: Current Status, Promises, and Challenges. Carbon. Lett. 2022, 32, 1207–1226. [Google Scholar] [CrossRef]
- Mahajan, S.; Patharkar, A.; Kuche, K.; Maheshwari, R.; Deb, P.K.; Kalia, K.; Tekade, R.K. Functionalized Carbon Nanotubes as Emerging Delivery System for the Treatment of Cancer. Int. J. Pharm. 2018, 548, 540–558. [Google Scholar] [CrossRef]
- Singh, M.P.; Singh, A.K.; Sarangi, P.K.; Pandey, B.; Prakash, A.; Singh, R.K. Drug Delivery Using Carbon Nanomaterials. In Carbon-Based Nanomaterials, 1st ed.; Springer Nature: London UK, 2024; Volume 1, pp. 159–183. [Google Scholar]
- Slepičková Kasálková, N.; Slepička, P.; Švorčík, V. Carbon Nanostructures, Nanolayers, and Their Composites. Nanomaterials 2021, 11, 2368. [Google Scholar] [CrossRef]
- Yahyazadeh, A.; Nanda, S.; Dalai, A.K. Carbon Nanotubes: A Review of Synthesis Methods and Applications. Reactions 2024, 5, 429–451. [Google Scholar] [CrossRef]
- Wang, X.-D.; Vinodgopal, K.; Dai, G.-P. Synthesis of Carbon Nanotubes by Catalytic Chemical Vapor Deposition. In Perspective of Carbon Nanotubes, 1st ed.; Saleh, H.E.D., El-Sheikh, S.M.M., Eds.; IntechOpen: London, UK, 2019; Volume 1, pp. 1–19. [Google Scholar]
- Yazdani, S.; Mozaffarian, M.; Pazuki, G.; Hadidi, N.; Villate-Beitia, I.; Zárate, J.; Puras, G.; Pedraz, J.L. Carbon-Based Nanostructures as Emerging Materials for Gene Delivery Applications. Pharmaceutics 2024, 16, 288. [Google Scholar] [CrossRef]
- Zare, H.; Ahmadi, S.; Ghasemi, A.; Ghanbari, M.; Rabiee, N.; Bagherzadeh, M.; Karimi, M.; Webster, T.J.; Hamblin, M.R.; Mostafavi, E. Carbon Nanotubes: Smart Drug/Gene Delivery Carriers. Int. J. Nanomed. 2021, 16, 1681–1706. [Google Scholar] [CrossRef]
- Serpell, C.J.; Kostarelos, K.; Davis, B.G. Can Carbon Nanotubes Deliver on Their Promise in Biology? Harnessing Unique Properties for Unparalleled Applications. ACS Cent. Sci. 2016, 2, 190–200. [Google Scholar] [CrossRef]
- Rezazade, M.; Ketabi, S.; Qomi, M. Effect of Functionalization on the Adsorption Performance of Carbon Nanotube as a Drug Delivery System for Imatinib: Molecular Simulation Study. BMC Chem. 2024, 18, 85. [Google Scholar] [CrossRef] [PubMed]
- Salah, L.S.; Ouslimani, N.; Bousba, D.; Huynen, I.; Danlée, Y.; Aksas, H. Carbon Nanotubes (CNTs) from Synthesis to Functionalized (CNTs) Using Conventional and New Chemical Approaches. J. Nanomater. 2021, 2021, 1–31. [Google Scholar] [CrossRef]
- Gonzalez, T.; Muminovic, M.; Nano, O.; Vulfovich, M. Folate Receptor Alpha—A Novel Approach to Cancer Therapy. Int. J. Mol. Sci. 2024, 25, 1046. [Google Scholar] [CrossRef]
- Tang, Z.-R.; Zhang, R.; Lian, Z.-X.; Deng, S.-L.; Yu, K. Estrogen-Receptor Expression and Function in Female Reproductive Disease. Cells 2019, 8, 1123. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liu, T.; Song, J.; Hai, Y.; Luan, F.; Zhang, H.; Yuan, Y.; Li, H.; Zhao, C. Understanding the Interaction of Single-Walled Carbon Nanotube (SWCNT) on Estrogen Receptor: A Combined Molecular Dynamics and Experimental Study. Ecotoxicol. Environ. Saf. 2019, 172, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Magne, T.M.; de Oliveira Vieira, T.; Alencar, L.M.R.; Junior, F.F.M.; Gemini-Piperni, S.; Carneiro, S.V.; Fechine, L.M.U.D.; Freire, R.M.; Golokhvast, K.; Metrangolo, P.; et al. Graphene and Its Derivatives: Understanding the Main Chemical and Medicinal Chemistry Roles for Biomedical Applications. J. Nanostruct. Chem. 2022, 12, 693–727. [Google Scholar] [CrossRef]
- Seifalian, A.; Stanciu, P.I.; Digesu, A.; Khullar, V. Graphene-Based Nanocomposite Materials to Provide a Surgical Solution for the Condition of Pelvic Organ Prolapse. Med. Hypotheses 2024, 189, 111398. [Google Scholar] [CrossRef]
- Alsannan, B.; Laganà, A.S.; Alhermi, J.; Almansoor, S.; Ayed, A.; Venezia, R.; Etrusco, A. Prevalence of Overactive Bladder among Overweight and Obese Women: A Prospective Cross-Sectional Cohort Study. Eur. J. Obstet. Gynecol. Reprod. Biol. 2024, 295, 59–64. [Google Scholar] [CrossRef]
- Rajeev, M.R.; Manjusha, V.; Anirudhan, T.S. Transdermal Delivery of Doxorubicin and Methotrexate from Polyelectrolyte Three Layer Nanoparticle of Graphene Oxide/Polyethyleneimine/Dextran Sulphate for Chemotherapy: In Vitro and In Vivo Studies. Chem. Eng. J. 2023, 466, 143244. [Google Scholar] [CrossRef]
- Sun, X.; Liu, Z.; Welsher, K.; Robinson, J.T.; Goodwin, A.; Zaric, S.; Dai, H. Nano-Graphene Oxide for Cellular Imaging and Drug Delivery. Nano Res. 2008, 1, 203–212. [Google Scholar] [CrossRef]
- Khakpour, E.; Salehi, S.; Naghib, S.M.; Ghorbanzadeh, S.; Zhang, W. Graphene-Based Nanomaterials for Stimuli-Sensitive Controlled Delivery of Therapeutic Molecules. Front. Bioeng. Biotechnol. 2023, 11, 1129768. [Google Scholar] [CrossRef] [PubMed]
- Bondon, N.; Raehm, L.; Charnay, C.; Boukherroub, R.; Durand, J.-O. Nanodiamonds for Bioapplications, Recent Developments. J. Mater. Chem. B 2020, 8, 10878–10896. [Google Scholar] [CrossRef]
- Gu, M.; Toh, T.B.; Hooi, L.; Lim, J.J.; Zhang, X.; Chow, E.K.-H. Nanodiamond-Mediated Delivery of a G9a Inhibitor for Hepatocellular Carcinoma Therapy. ACS Appl. Mater. Interfaces 2019, 11, 45427–45441. [Google Scholar] [CrossRef] [PubMed]
- Priyadarshni, N.; Singh, R.; Mishra, M.K. Nanodiamonds: Next Generation Nano-Theranostics for Cancer Therapy. Cancer Lett. 2024, 587, 216710. [Google Scholar] [CrossRef] [PubMed]
- Pan, F.; Khan, M.; Ragab, A.H.; Javed, E.; Alsalmah, H.A.; Khan, I.; Lei, T.; Hussain, A.; Mohamed, A.; Zada, A.; et al. Recent Advances in the Structure and Biomedical Applications of Nanodiamonds and Their Future Perspectives. Mater. Des. 2023, 233, 112179. [Google Scholar] [CrossRef]
- Boruah, A.; Saikia, B.K. Synthesis, Characterization, Properties, and Novel Applications of Fluorescent Nanodiamonds. J. Fluoresc. 2022, 32, 863–885. [Google Scholar] [CrossRef]
- Sotoma, S.; Okita, H.; Chuma, S.; Harada, Y. Quantum Nanodiamonds for Sensing of Biological Quantities: Angle, Temperature, and Thermal Conductivity. Biophys. Physicobiol 2022, 19, e190034. [Google Scholar] [CrossRef]
- Wang, N.; Cai, J. Hybrid Quantum Sensing in Diamond. Front. Phys. 2024, 12, 1320108. [Google Scholar] [CrossRef]
- Roy, U.; Drozd, V.; Durygin, A.; Rodriguez, J.; Barber, P.; Atluri, V.; Liu, X.; Voss, T.G.; Saxena, S.; Nair, M. Characterization of Nanodiamond-Based Anti-HIV Drug Delivery to the Brain. Sci. Rep. 2018, 8, 1603. [Google Scholar] [CrossRef]
- Tian, X.; Chen, J.; Wang, X.; Xie, Y.; Zhang, X.; Han, D.; Fu, H.; Yin, W.; Wu, N. Global, Regional, and National HIV/AIDS Disease Burden Levels and Trends in 1990–2019: A Systematic Analysis for the Global Burden of Disease 2019 Study. Front. Public Health 2023, 11, 1068664. [Google Scholar] [CrossRef]
- Osborne, O.; Peyravian, N.; Nair, M.; Daunert, S.; Toborek, M. The Paradox of HIV Blood–Brain Barrier Penetrance and Antiretroviral Drug Delivery Deficiencies. Trends Neurosci. 2020, 43, 695–708. [Google Scholar] [CrossRef] [PubMed]
- Aashish; Muheem, A.; Nehal, N.; Sartaj, A.; Baboota, S.; Ali, J. Importance of P-Gp Inhibitors and Nanoengineered Approaches for Effective Delivery of Anti-Retroviral Drugs across Barriers in HIV Management. J. Drug Deliv. Sci. Technol. 2023, 87, 104791. [Google Scholar] [CrossRef]
- Fernandes, N.B.; Shenoy, R.U.K.; Kajampady, M.K.; DCruz, C.E.M.; Shirodkar, R.K.; Kumar, L.; Verma, R. Fullerenes for the Treatment of Cancer: An Emerging Tool. ESPR 2022, 29, 58607–58627. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, W.; Wang, Y.-B. The Nature of the Noncovalent Interactions between Fullerene C60 and Aromatic Hydrocarbons. Comput. Theor. Chem. 2017, 1122, 34–39. [Google Scholar] [CrossRef]
- Keshri, S. Insights into the Structural and Thermodynamic Properties of Fullerols [C60(OH)n, n = 12, 14, 16, 18, 20, 22, 24] in Aqueous Media. Fluid. Phase Equilib. 2020, 525, 112805. [Google Scholar] [CrossRef]
- Radivoievych, A.; Kolp, B.; Grebinyk, S.; Prylutska, S.; Ritter, U.; Zolk, O.; Glökler, J.; Frohme, M.; Grebinyk, A. Silent Death by Sound: C60 Fullerene Sonodynamic Treatment of Cancer Cells. Int. J. Mol. Sci. 2023, 24, 1020. [Google Scholar] [CrossRef]
- Goodarzi, S.; Da Ros, T.; Conde, J.; Sefat, F.; Mozafari, M. Fullerene: Biomedical Engineers Get to Revisit an Old Friend. Mater. Today 2017, 20, 460–480. [Google Scholar] [CrossRef]
- Mehdipour-Ataei, S.; Aram, E. Mesoporous Carbon-Based Materials: A Review of Synthesis, Modification, and Applications. Catalysts 2022, 13, 2. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Q.; Han, N.; Bai, L.; Li, J.; Liu, J.; Che, E.; Hu, L.; Zhang, Q.; Jiang, T.; et al. Mesoporous Silica Nanoparticles in Drug Delivery and Biomedical Applications. Nanomedicine 2015, 11, 313–327. [Google Scholar] [CrossRef]
- Mamai, M.; Giasafaki, D.; Salvanou, E.-A.; Charalambopoulou, G.; Steriotis, T.; Bouziotis, P. Biodistribution of Mesoporous Carbon Nanoparticles via Technetium-99m Radiolabelling after Oral Administration to Mice. Nanomaterials 2021, 11, 3260. [Google Scholar] [CrossRef]
- Zhao, Y.; Lyu, H.; Liu, Y.; Liu, W.; Tian, Y.; Wang, X. Rational Design and Synthesis of Multimorphology Mesoporous Carbon@silica Nanoparticles with Tailored Structure. Carbon. N. Y. 2021, 183, 912–928. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, Q.; Yan, Y.; Yao, J.; Zhong, F.; Xie, S.; Zhang, M.; Zhang, H.; Jin, M.; Shui, L. A Multi-Unit Integrated Electrochemical Biosensor Array for Synergistic Signal Enhancing Carbohydrate Antigen 125 Detection. Sens. Actuators B Chem. 2023, 393, 134224. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, M.; Liu, X.; Jiang, R.; He, Y.; Yao, Q.; Chen, H.; Fu, C. Rapid and Sensitive Fluorescence Determination of Oxytocin Using Nitrogen-Doped Carbon Dots as Fluorophores. J. Pharm. Biomed. Anal. 2023, 229, 115344. [Google Scholar] [CrossRef] [PubMed]
- Miao, P.; Han, K.; Tang, Y.; Wang, B.; Lin, T.; Cheng, W. Recent Advances in Carbon Nanodots: Synthesis, Properties and Biomedical Applications. Nanoscale 2015, 7, 1586–1595. [Google Scholar] [CrossRef] [PubMed]
- Jing, H.; Bardakci, F.; Akgöl, S.; Kusat, K.; Adnan, M.; Alam, M.; Gupta, R.; Sahreen, S.; Chen, Y.; Gopinath, S.; et al. Green Carbon Dots: Synthesis, Characterization, Properties and Biomedical Applications. J. Funct. Biomater. 2023, 14, 27. [Google Scholar] [CrossRef]
- Ozyurt, D.; Al Kobaisi, M.; Hocking, R.K.; Fox, B. Properties, Synthesis, and Applications of Carbon Dots: A Review. Carbon. Trends 2023, 12, 100276. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, Z.; Shao, H.; Jiang, X. Hydrothermal Synthesis of Highly Fluorescent Carbon Nanoparticles from Sodium Citrate and Their Use for the Detection of Mercury Ions. Carbon N. Y. 2013, 52, 583–589. [Google Scholar] [CrossRef]
- Jana, P.; Dev, A. Carbon Quantum Dots: A Promising Nanocarrier for Bioimaging and Drug Delivery in Cancer. Mater. Today Commun. 2022, 32, 104068. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, Y.; Fu, Z.; Cui, F. Preparation of Lysosomal Targeted Fluorescent Carbon Dots and Its Applications in Multi-Color Cell Imaging and Information Encryption. Opt. Mater. 2022, 131, 112701. [Google Scholar] [CrossRef]
- Pang, X.; Li, L.; Wang, P.; Zhang, Y.; Dong, W.; Mei, Q. Adenine-Derived Carbon Dots for the Chemosensing of Hypochlorite Based on Fluorescence Enhancement. Microchem. J. 2021, 168, 106400. [Google Scholar] [CrossRef]
- Liu, L.; Qian, M.; Sun, H.; Yang, Z.; Xiao, L.; Gong, X.; Hu, Q. A Highly Sensitive Fluorescence Probe for Methyl Parathion Detection in Vegetable and Fruit Samples Based on N and S Co-Doped Carbon Dots. J. Food Compos. Anal. 2022, 107, 104374. [Google Scholar] [CrossRef]
- Chow, R.; Li, A.; Wu, N.; Martin, M.; Wessels, J.M.; Foster, W.G. Quality Appraisal of Systematic Reviews on Methods of Labour Induction: A Systematic Review. Arch. Gynecol. Obs. 2021, 304, 1417–1426. [Google Scholar] [CrossRef] [PubMed]
- Ray, P.; Haideri, N.; Haque, I.; Mohammed, O.; Chakraborty, S.; Banerjee, S.; Quadir, M.; Brinker, A.; Banerjee, S. The Impact of Nanoparticles on the Immune System: A Gray Zone of Nanomedicine. J. Immunol. Sci. 2021, 5, 19–33. [Google Scholar] [CrossRef]
- Zolnik, B.S.; González-Fernández, A.; Sadrieh, N.; Dobrovolskaia, M.A. Minireview: Nanoparticles and the Immune System. Endocrinology 2010, 151, 458–465. [Google Scholar] [CrossRef] [PubMed]
- Occhiutto, M.L.; Maranhão, R.C.; Costa, V.P.; Konstas, A.G. Nanotechnology for Medical and Surgical Glaucoma Therapy—A Review. Adv. Ther. 2020, 37, 155–199. [Google Scholar] [CrossRef]
- Talelli, M.; Hennink, W.E. Thermosensitive Polymeric Micelles for Targeted Drug Delivery. Nanomedicine 2011, 6, 1245–1255. [Google Scholar] [CrossRef]
- Chang, L.-H.; Hu, T.-M. Co-Delivery of Nitric Oxide and Camptothecin Using Organic-Inorganic Composite Colloidal Particles for Enhanced Anticancer Activity. Colloids Surf. A Physicochem. Eng. Asp. 2022, 632, 127740. [Google Scholar] [CrossRef]
- Gao, Q.; Feng, J.; Liu, W.; Wen, C.; Wu, Y.; Liao, Q.; Zou, L.; Sui, X.; Xie, T.; Zhang, J.; et al. Opportunities and Challenges for Co-Delivery Nanomedicines Based on Combination of Phytochemicals with Chemotherapeutic Drugs in Cancer Treatment. Adv. Drug Deliv. Rev. 2022, 188, 114445. [Google Scholar] [CrossRef]
- Pieretti, J.C.; Pelegrino, M.T.; Nascimento, M.H.M.; Tortella, G.R.; Rubilar, O.; Seabra, A.B. Small Molecules for Great Solutions: Can Nitric Oxide-Releasing Nanomaterials Overcome Drug Resistance in Chemotherapy? Biochem. Pharmacol. 2020, 176, 113740. [Google Scholar] [CrossRef]
- Bonavida, B. Sensitizing Activities of Nitric Oxide Donors for Cancer Resistance to Anticancer Therapeutic Drugs. Biochem. Pharmacol. 2020, 176, 113913. [Google Scholar] [CrossRef]
- Ajdary, M.; Keyhanfar, F.; Moosavi, M.A.; Shabani, R.; Mehdizadeh, M.; Varma, R.S. Potential Toxicity of Nanoparticles on the Reproductive System Animal Models: A Review. J. Reprod. Immunol. 2021, 148, 103384. [Google Scholar] [CrossRef] [PubMed]
- Xuan, L.; Ju, Z.; Skonieczna, M.; Zhou, P.; Huang, R. Nanoparticles-induced Potential Toxicity on Human Health: Applications, Toxicity Mechanisms, and Evaluation Models. MedComm 2023, 4, e327. [Google Scholar] [CrossRef] [PubMed]
- Vollenhoven, B.; Hunt, S. Ovarian Ageing and the Impact on Female Fertility. F1000Res 2018, 7, 1835. [Google Scholar] [CrossRef] [PubMed]
- Bai, W.; Zhang, Z.; Tian, W.; He, X.; Ma, Y.; Zhao, Y.; Chai, Z. Toxicity of Zinc Oxide Nanoparticles to Zebrafish Embryo: A Physicochemical Study of Toxicity Mechanism. J. Nanopart. Res. 2010, 12, 1645–1654. [Google Scholar] [CrossRef]
- Huang, Y.-W.; Cambre, M.; Lee, H.-J. The Toxicity of Nanoparticles Depends on Multiple Molecular and Physicochemical Mechanisms. Int. J. Mol. Sci. 2017, 18, 2702. [Google Scholar] [CrossRef]
- Abbasi, R.; Shineh, G.; Mobaraki, M.; Doughty, S.; Tayebi, L. Structural Parameters of Nanoparticles Affecting Their Toxicity for Biomedical Applications: A Review. J. Nanopart. Res. 2023, 25, 43. [Google Scholar] [CrossRef]
- Brohi, R.D.; Wang, L.; Talpur, H.S.; Wu, D.; Khan, F.A.; Bhattarai, D.; Rehman, Z.-U.; Farmanullah, F.; Huo, L.-J. Toxicity of Nanoparticles on the Reproductive System in Animal Models: A Review. Front. Pharmacol. 2017, 8, 606. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, S.; Gu, Z.; Chen, C.; Zhao, Y. Toxicity of Manufactured Nanomaterials. Particuology 2022, 69, 31–48. [Google Scholar] [CrossRef]
- Griffitt, R.J.; Luo, J.; Gao, J.; Bonzongo, J.; Barber, D.S. Effects of Particle Composition and Species on Toxicity of Metallic Nanomaterials in Aquatic Organisms. Env. Toxicol. Chem. 2008, 27, 1972–1978. [Google Scholar] [CrossRef]
- Tavassoli, M.; Montazerozohori, M.; Masoudiasl, A.; Akbari, Z.; Doert, T.; Vazquez Lopez, E.M.; Fatemi, S.J. Synthesis, Spectral Analysis, Crystal Structure, Hirshfeld Surface Analyses, Thermal Behavior of Two New Nickel Complexes and Usage as Precursor for Preparation of Ni/NiO Nanoparticles. Polyhedron 2020, 176, 114287. [Google Scholar] [CrossRef]
- Tran, T.-K.; Nguyen, M.-K.; Lin, C.; Hoang, T.-D.; Nguyen, T.-C.; Lone, A.M.; Khedulkar, A.P.; Gaballah, M.S.; Singh, J.; Chung, W.J.; et al. Review on Fate, Transport, Toxicity and Health Risk of Nanoparticles in Natural Ecosystems: Emerging Challenges in the Modern Age and Solutions toward a Sustainable Environment. Sci. Total Environ. 2024, 912, 169331. [Google Scholar] [CrossRef] [PubMed]
- Metselaar, J.M.; Lammers, T. Challenges in Nanomedicine Clinical Translation. Drug Deliv. Transl. Res. 2020, 10, 721–725. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Lowry, G.V. Progress towards Standardized and Validated Characterizations for Measuring Physicochemical Properties of Manufactured Nanomaterials Relevant to Nano Health and Safety Risks. NanoImpact 2018, 9, 14–30. [Google Scholar] [CrossRef]
- Ramos, T.I.; Villacis-Aguirre, C.A.; López-Aguilar, K.V.; Santiago Padilla, L.; Altamirano, C.; Toledo, J.R.; Santiago Vispo, N. The Hitchhiker’s Guide to Human Therapeutic Nanoparticle Development. Pharmaceutics 2022, 14, 247. [Google Scholar] [CrossRef] [PubMed]
- Aloisi, M.; Rossi, G.; Colafarina, S.; Guido, M.; Cecconi, S.; Poma, A.M.G. The Impact of Metal Nanoparticles on Female Reproductive System: Risks and Opportunities. Int. J. Environ. Res. Public Health 2022, 19, 13748. [Google Scholar] [CrossRef]
- Cheng, X.; Xie, Q.; Sun, Y. Advances in Nanomaterial-Based Targeted Drug Delivery Systems. Front. Bioeng. Biotechnol. 2023, 11, 1177151. [Google Scholar] [CrossRef]
- El-Khawaga, A.M.; Zidan, A.; El-Mageed, A.I.A.A. Preparation Methods of Different Nanomaterials for Various Potential Applications: A Review. J. Mol. Struct. 2023, 1281, 135148. [Google Scholar] [CrossRef]
- Đorđević, S.; Gonzalez, M.M.; Conejos-Sánchez, I.; Carreira, B.; Pozzi, S.; Acúrcio, R.C.; Satchi-Fainaro, R.; Florindo, H.F.; Vicent, M.J. Current Hurdles to the Translation of Nanomedicines from Bench to the Clinic. Drug Deliv. Transl. Res. 2022, 12, 500–525. [Google Scholar] [CrossRef]
- Lombardo, D.; Calandra, P.; Pasqua, L.; Magazù, S. Self-Assembly of Organic Nanomaterials and Biomaterials: The Bottom-Up Approach for Functional Nanostructures Formation and Advanced Applications. Materials 2020, 13, 1048. [Google Scholar] [CrossRef]
- Yadav, S.; Sharma, A.K.; Kumar, P. Nanoscale Self-Assembly for Therapeutic Delivery. Front. Bioeng. Biotechnol. 2020, 8, 127. [Google Scholar] [CrossRef]
- Lee, M.S.; Yee, D.W.; Ye, M.; Macfarlane, R.J. Nanoparticle Assembly as a Materials Development Tool. J. Am. Chem. Soc. 2022, 144, 3330–3346. [Google Scholar] [CrossRef] [PubMed]
- Saikia, A.; Newar, R.; Das, S.; Singh, A.; Deuri, D.J.; Baruah, A. Scopes and Challenges of Microfluidic Technology for Nanoparticle Synthesis, Photocatalysis and Sensor Applications: A Comprehensive Review. Chem. Eng. Res. Des. 2023, 193, 516–539. [Google Scholar] [CrossRef]
- Gimondi, S.; Ferreira, H.; Reis, R.L.; Neves, N.M. Microfluidic Devices: A Tool for Nanoparticle Synthesis and Performance Evaluation. ACS Nano 2023, 17, 14205–14228. [Google Scholar] [CrossRef] [PubMed]
- AboulFotouh, K.; Allam, A.A.; El-Badry, M. Self-Emulsifying Drug Delivery Systems: Easy to Prepare Multifunctional Vectors for Efficient Oral Delivery. In Current and Future Aspects of Nanomedicine, 1st ed.; Kahlik, I.A., Ed.; IntechOpen: London, UK, 2020. [Google Scholar]
- van Staden, D.; Haynes, R.K.; Viljoen, J.M. The Science of Selecting Excipients for Dermal Self-Emulsifying Drug Delivery Systems. Pharmaceutics 2023, 15, 1293. [Google Scholar] [CrossRef]
- Mahmood, A.; Bernkop-Schnürch, A. SEDDS: A Game Changing Approach for the Oral Administration of Hydrophilic Macromolecular Drugs. Adv. Drug Deliv. Rev. 2019, 142, 91–101. [Google Scholar] [CrossRef]
- Ponto, T.; Latter, G.; Luna, G.; Leite-Silva, V.R.; Wright, A.; Benson, H.A.E. Novel Self-Nano-Emulsifying Drug Delivery Systems Containing Astaxanthin for Topical Skin Delivery. Pharmaceutics 2021, 13, 649. [Google Scholar] [CrossRef]
- Anwer, M.K.; Iqbal, M.; Aldawsari, M.F.; Alalaiwe, A.; Ahmed, M.M.; Muharram, M.M.; Ezzeldin, E.; Mahmoud, M.A.; Imam, F.; Ali, R. Improved Antimicrobial Activity and Oral Bioavailability of Delafloxacin by Self-Nanoemulsifying Drug Delivery System (SNEDDS). J. Drug Deliv. Sci. Technol. 2021, 64, 102572. [Google Scholar] [CrossRef]
- Yin, H.-F.; Yin, C.-M.; Ouyang, T.; Sun, S.-D.; Chen, W.-G.; Yang, X.-L.; He, X.; Zhang, C.-F. Self-Nanoemulsifying Drug Delivery System of Genkwanin: A Novel Approach for Anti-Colitis-Associated Colorectal Cancer. Drug Des. Devel. Ther. 2021, 15, 557–576. [Google Scholar] [CrossRef]
- Salimi, E.; Le-Vinh, B.; Zahir-Jouzdani, F.; Matuszczak, B.; Ghaee, A.; Bernkop-Schnürch, A. Self-Emulsifying Drug Delivery Systems Changing Their Zeta Potential via a Flip-Flop Mechanism. Int. J. Pharm. 2018, 550, 200–206. [Google Scholar] [CrossRef]
- Nazir, I.; Fürst, A.; Lupo, N.; Hupfauf, A.; Gust, R.; Bernkop-Schnürch, A. Zeta Potential Changing Self-Emulsifying Drug Delivery Systems: A Promising Strategy to Sequentially Overcome Mucus and Epithelial Barrier. Eur. J. Pharm. Biopharm. 2019, 144, 40–49. [Google Scholar] [CrossRef]
Physiological System | Phase of Menstrual Cycle | Potential Pharmacokinetic Impact |
---|---|---|
Renal system | ||
Creatine clearance | ↑ late luteal phase/ | ↑ renal clearance |
Glomerular filtration rate | ↓ menstrual phase | ↓ renal clearance |
Vasopressin and aldosterone | ↑ luteal phase | |
Renin activity | ↑ luteal phase | ↓ renal clearance |
Urinary kallikrein excretion | ↑ luteal phase | |
Gastrointestinal system | ||
Esophageal emptying | ↓ luteal phase | ↓ AUC* luteal phase |
Gastric emptying | ↓ follicular phase | ↓ AUC* follicular phase |
Small intestine transit | ↑ luteal phase | ↑ AUC* luteal phase |
Cardiovascular system Heart rate Systolic and diastolic blood pressure | ↑ luteal phase ↑ luteal phase ↓ luteal phase | ↑ cardiac output ↑ drug absorption |
Metabolic variation Body weight | ↑ early menstruation and following ovulation | changes in volume of distribution |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Staden, D.; Gerber, M.; Lemmer, H.J.R. The Application of Nano Drug Delivery Systems in Female Upper Genital Tract Disorders. Pharmaceutics 2024, 16, 1475. https://doi.org/10.3390/pharmaceutics16111475
van Staden D, Gerber M, Lemmer HJR. The Application of Nano Drug Delivery Systems in Female Upper Genital Tract Disorders. Pharmaceutics. 2024; 16(11):1475. https://doi.org/10.3390/pharmaceutics16111475
Chicago/Turabian Stylevan Staden, Daniélle, Minja Gerber, and Hendrik J. R. Lemmer. 2024. "The Application of Nano Drug Delivery Systems in Female Upper Genital Tract Disorders" Pharmaceutics 16, no. 11: 1475. https://doi.org/10.3390/pharmaceutics16111475
APA Stylevan Staden, D., Gerber, M., & Lemmer, H. J. R. (2024). The Application of Nano Drug Delivery Systems in Female Upper Genital Tract Disorders. Pharmaceutics, 16(11), 1475. https://doi.org/10.3390/pharmaceutics16111475