Quality by Design (QbD)-Driven Development and Optimization of Tacrolimus-Loaded Microemulsion for the Treatment of Skin Inflammation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Production of Microemulsions: Application of Low Energy
2.2.2. High Energy Processing of Microemulsions: Sonication and Microfluidization
2.2.3. Optimized Manufacturing Process Applied in DoE
2.2.4. Tacrolimus-Loaded Microemulsion
2.3. CQA Specification Studies
2.3.1. Droplet Size and Size Distribution Measurements
2.3.2. Filtration Study
2.3.3. Serum Study
2.4. Design of Experiments
2.5. Statistical Analysis
2.6. Drug Quantification
2.7. In Vitro Analysis of TAC Release from TAC-ME
3. Results
3.1. Critical Quality Attributes (CQAs) Identification
3.2. Screening: Pre-Formulation and Process
3.2.1. Pre-Formulation Screening
3.2.2. Process Screening
3.3. Risk Assessment
3.4. Design of Experiments: D-Optimal Design
3.5. Assessment of DoE Trials
3.6. Multiple Linear Regression (MLR) Analysis
3.7. Selected Microemulsion Formulation
3.8. Scale Up
3.9. Drug-Loaded and Drug-Free Microemulsion
3.10. Drug Loading and In Vitro Drug Release Study
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gatmaitan, J.G.; Lee, J.H. Challenges and Future Trends in Atopic Dermatitis. Int. J. Mol. Sci. 2023, 24, 11380. [Google Scholar] [CrossRef] [PubMed]
- Shin, M.J.; Kim, H.S.; Lee, P.; Yang, N.G.; Kim, J.Y.; Eun, Y.S.; Lee, W.; Kim, D.; Lee, Y.; Jung, K.E.; et al. Mechanistic Investigation of WWOX Function in NF-kB-Induced Skin Inflammation in Psoriasis. Int. J. Mol. Sci. 2023, 25, 167. [Google Scholar] [CrossRef] [PubMed]
- Yakupu, A.; Aimaier, R.; Yuan, B.; Chen, B.; Cheng, J.; Zhao, Y.; Peng, Y.; Dong, J.; Lu, S. The burden of skin and subcutaneous diseases: Findings from the global burden of disease study 2019. Front. Public Health 2023, 11, 1145513. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.W.; Jee, S.H. Strategies to Develop a Suitable Formulation for Inflammatory Skin Disease Treatment. Int. J. Mol. Sci. 2021, 22, 6078. [Google Scholar] [CrossRef]
- Kortekaas Krohn, I.; Aerts, J.L.; Breckpot, K.; Goyvaerts, C.; Knol, E.; Van Wijk, F.; Gutermuth, J. T-cell subsets in the skin and their role in inflammatory skin disorders. Allergy 2022, 77, 827–842. [Google Scholar] [CrossRef]
- Sabat, R.; Wolk, K.; Loyal, L.; Docke, W.D.; Ghoreschi, K. T cell pathology in skin inflammation. Semin. Immunopathol. 2019, 41, 359–377. [Google Scholar] [CrossRef]
- Malecic, N.; Young, H. Tacrolimus for the management of psoriasis: Clinical utility and place in therapy. Psoriasis Targets Ther. 2016, 6, 153–163. [Google Scholar] [CrossRef]
- Du, X.; Che, D.; Peng, B.; Zheng, Y.; Hao, Y.; Jia, T.; Zhang, X.; Geng, S. Dual effect of tacrolimus on mast cell-mediated allergy and inflammation through Mas-related G protein-coupled receptor X2. J. Dermatol. Sci. 2023, 112, 128–137. [Google Scholar] [CrossRef]
- Lee, H.; Myoung, H.; Kim, S.M. Review of two immunosuppressants: Tacrolimus and cyclosporine. J. Korean Assoc. Oral Maxillofac. Surg. 2023, 49, 311–323. [Google Scholar] [CrossRef]
- Ohtsuki, M.; Morimoto, H.; Nakagawa, H. Tacrolimus ointment for the treatment of adult and pediatric atopic dermatitis: Review on safety and benefits. J. Dermatol. 2018, 45, 936–942. [Google Scholar] [CrossRef]
- Scott, L.J.; McKeage, K.; Keam, S.J.; Plosker, G.L. Tacrolimus A Further Update of its Use in the Management of Organ Transplantation. Drugs 2003, 63, 1247–1297. [Google Scholar] [CrossRef] [PubMed]
- Dheer, D.; Jyoti; Gupta, P.N.; Shankar, R. Tacrolimus: An updated review on delivering strategies for multifarious diseases. Eur. J. Pharm. Sci. 2018, 114, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Suhail, N.; Alzahrani, A.K.; Basha, W.J.; Kizilbash, N.; Zaidi, A.; Ambreen, J.; Khachfe, H.M. Microemulsions: Unique Properties, Pharmacological Applications, and Targeted Drug Delivery. Front. Nanotechnol. 2021, 3, 754889. [Google Scholar] [CrossRef]
- Pingale, P.; Kendre, P.; Pardeshi, K.; Rajput, A. An emerging era in manufacturing of drug delivery systems: Nanofabrication techniques. Heliyon 2023, 9, e14247. [Google Scholar] [CrossRef]
- Dunn, C.J.; Wagstaff, A.J.; Perry, C.M.; Plosker, G.L.; Goa, K.L. Cyclosporin: An Updated Review of the Pharmacokinetic Properties, Clinical Efficacy and Tolerability of a Microemulsion-Based Formulation (Neoral®)1 in Organ Transplantation. Drugs 2001, 61, 1957–2016. [Google Scholar] [CrossRef]
- Abbaszadeh, S.; Nosrati-Siahmazgi, V.; Musaie, K.; Rezaei, S.; Qahremani, M.; Xiao, B.; Santos, H.A.; Shahbazi, M.A. Emerging strategies to bypass transplant rejection via biomaterial-assisted immunoengineering: Insights from islets and beyond. Adv. Drug Deliv. Rev. 2023, 200, 115050. [Google Scholar] [CrossRef]
- Bhonge, A. Microemulsion-Based Drug Delivery Systems: Harnessing Nanostructures for Enhanced Therapeutic Efficacy. J. Drug Deliv. Biother. 2023, 1, 31–43. [Google Scholar]
- FDA. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use: ICH Harmonised Tripartite Guideline—Pharmaceutical Development Q8(R2). 2009. Available online: https://database.ich.org/sites/default/files/Q8_R2_Guideline.pdf (accessed on 30 September 2024).
- FDA. International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use: ICH Harmonised Guideline—Quality Risk Management Q9(R1). 2023. Available online: https://database.ich.org/sites/default/files/ICH_Q9%28R1%29_Guideline_Step4_2022_1219.pdf (accessed on 30 September 2024).
- FDA. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use: ICH Harmonised Tripartite Guideline—Pharmaceutical Quality System Q10. 2008. Available online: https://database.ich.org/sites/default/files/Q10%20Guideline.pdf (accessed on 30 September 2024).
- FDA. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use: ICH Harmonised Tripartite Guideline—Development and Manufacture of Drug Substances (chemical entities and Biotechnological/Biological Entities) Q11. 2012. Available online: https://database.ich.org/sites/default/files/Q11%20Guideline.pdf (accessed on 30 September 2024).
- Bonaccorso, A.; Russo, G.; Pappalardo, F.; Carbone, C.; Puglisi, G.; Pignatello, R.; Musumeci, T. Quality by design tools reducing the gap from bench to bedside for nanomedicine. Eur. J. Pharm. Biopharm. 2021, 169, 144–155. [Google Scholar] [CrossRef]
- Li, J.; Qiao, Y.; Wu, Z. Nanosystem trends in drug delivery using quality-by-design concept. J. Control. Release 2017, 256, 9–18. [Google Scholar] [CrossRef]
- Herneisey, M.; Lambert, E.; Kachel, A.; Shychuck, E.; Drennen, J.K., III; Janjic, J.M. Quality by design approach using multiple linear and logistic regression modeling enables microemulsion scale up. Molecules 2019, 24, 2066. [Google Scholar] [CrossRef]
- Baghaei, M.; Tekie, F.S.M.; Khoshayand, M.R.; Varshochian, R.; Hajiramezanali, M.; Kachousangi, M.J.; Dinarvand, R.; Atyabi, F. Optimization of chitosan-based polyelectrolyte nanoparticles for gene delivery, using design of experiment: In vitro and in vivo study. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 118, 111036. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Fu, X.L.; Dong, Y.Y.; Ma, J.; Hua, J.; Li, J.T.; Liu, K.X.; Yang, J.; Yu, C.X. D-Optimal Design and Development of a Koumine-Loaded Microemulsion for Rheumatoid Arthritis Treatment: In vivo and in vitro Evaluation. Int. J. Nanomed. 2023, 18, 2973–2988. [Google Scholar] [CrossRef] [PubMed]
- Rampado, R.; Peer, D. Design of experiments in the optimization of nanoparticle-based drug delivery systems. J. Control. Release 2023, 358, 398–419. [Google Scholar] [CrossRef] [PubMed]
- Vichare, R.; Crelli, C.; Liu, L.; Das, A.C.; McCallin, R.; Zor, F.; Kulahci, Y.; Gorantla, V.S.; Janjic, J.M. A Reversibly Thermoresponsive, Theranostic Nanoemulgel for Tacrolimus Delivery to Activated Macrophages: Formulation and In Vitro Validation. Pharmaceutics 2023, 15, 2372. [Google Scholar] [CrossRef] [PubMed]
- Ait-Touchente, Z.; Zine, N.; Jaffrezic-Renault, N.; Errachid, A.; Lebaz, N.; Fessi, H.; Elaissari, A. Exploring the Versatility of Microemulsions in Cutaneous Drug Delivery: Opportunities and Challenges. Nanomaterials 2023, 13, 1688. [Google Scholar] [CrossRef]
- Sahu, G.K.; Sharma, H.; Gupta, A.; Kaur, C.D. Advancements in Microemulsion Based Drug Delivery Systems for Better Therapeutic Effects. Int. J. Pharm. Sci. Dev. Res. 2015, 1, 8–15. [Google Scholar] [CrossRef]
- Sarheed, O.; Dibi, M.; Ramesh, K. Studies on the Effect of Oil and Surfactant on the Formation of Alginate-Based O/W Lidocaine Nanocarriers Using Nanoemulsion Template. Pharmaceutics 2020, 12, 1223. [Google Scholar] [CrossRef]
- Adena, S.K.R.; Herneisey, M.; Pierce, E.; Hartmeier, P.R.; Adlakha, S.; Hosfeld, M.A.; Drennen, J.K.; Janjic, J.M. Quality by design methodology applied to process optimization and scale up of curcumin nanoemulsions produced by catastrophic phase inversion. Pharmaceutics 2021, 13, 880. [Google Scholar] [CrossRef]
- Lambert, E.; Janjic, J.M. Quality by design approach identifies critical parameters driving oxygen delivery performance in vitro for perfluorocarbon based artificial oxygen carriers. Sci. Rep. 2021, 11, 5569. [Google Scholar] [CrossRef]
- Qi, Y.; Zhou, Y.; Yang, X.; Li, J.; Bai, L.; Wu, Z.; Qin, Z. Formulation and stability study of vitamin E microemulsion with green surfactant. Sustain. Chem. Pharm. 2023, 36, 101334. [Google Scholar] [CrossRef]
- Liu, L.; Bagia, C.; Janjic, J.M. The First Scale-Up Production of Theranostic Nanoemulsions. BioRes. Open Access 2015, 4, 218–228. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.X.; Amidon, G.; Khan, M.A.; Hoag, S.W.; Polli, J.; Raju, G.K.; Woodcock, J. Understanding pharmaceutical quality by design. AAPS J. 2014, 16, 771–783. [Google Scholar] [CrossRef] [PubMed]
- Subongkot, T.; Charernsriwilaiwat, N.; Chanasongkram, R.; Rittem, K.; Ngawhirunpat, T.; Opanasopit, P. Development and Skin Penetration Pathway Evaluation Using Confocal Laser Scanning Microscopy of Microemulsions for Dermal Delivery Enhancement of Finasteride. Pharmaceutics 2022, 14, 2784. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Liu, P.; Shi, D.; Gao, Y.; Hei, Y.; Guo, F.; Li, X.; Leng, W.; Xie, Q.; Lv, Q.; et al. Revealing the microscopic formation mechanism and stability characteristics of anionic surfactant microemulsions using coarse-grained simulations. Chem. Eng. Sci. 2024, 285, 119570. [Google Scholar] [CrossRef]
- Prajapati, H.N.; Dalrymple, D.M.; Serajuddin, A.T. A comparative evaluation of mono-, di- and triglyceride of medium chain fatty acids by lipid/surfactant/water phase diagram, solubility determination and dispersion testing for application in pharmaceutical dosage form development. Pharm. Res. 2012, 29, 285–305. [Google Scholar] [CrossRef]
- Chen, J.; Ma, X.-H.; Yao, G.-L.; Zhang, W.-T.; Zhao, Y. Microemulsion-based anthocyanin systems: Effect of surfactants, cosurfactants, and its stability. Int. J. Food Prop. 2018, 21, 1152–1165. [Google Scholar] [CrossRef]
- Cho, H.Y.; Choi, J.H.; Oh, I.J.; Lee, Y.B. Self-Emulsifying Drug Delivery System for Enhancing Bioavailability and Lymphatic Delivery of Tacrolimus. J. Nanosci. Nanotechnol. 2015, 15, 1831–1841. [Google Scholar] [CrossRef]
- Patel, P.V.; Patel, H.K.; Panchal, S.S.; Mehta, T.A. Self micro-emulsifying drug delivery system of tacrolimus: Formulation, in vitro evaluation and stability studies. Int. J. Pharm. Investig. 2013, 3, 95–104. [Google Scholar] [CrossRef]
- Pawar, S.K.; Vavia, P.R. Rice germ oil as multifunctional excipient in preparation of self-microemulsifying drug delivery system (SMEDDS) of tacrolimus. AAPS PharmSciTech 2012, 13, 254–261. [Google Scholar] [CrossRef]
- Morales-Medina, R.; Dong, D.; Schalow, S.; Drusch, S. Impact of microfluidization on the microstructure and functional properties of pea hull fibre. Food Hydrocoll. 2020, 103, 105660. [Google Scholar] [CrossRef]
- Özdemir, S.; Üner, B.; Karaküçük, A.; Çelik, B.; Sümer, E.; Taş, Ç. Nanoemulsions as a Promising Carrier for Topical Delivery of Etodolac: Formulation Development and Characterization. Pharmaceutics 2023, 15, 2510. [Google Scholar] [CrossRef] [PubMed]
- Rathod, M.; Suthar, D.; Patel, H.; Shelat, P.; Parejiya, P. Microemulsion based nasal spray: A systemic approach for non-CNS drug, its optimization, characterization and statistical modelling using QbD principles. J. Drug Deliv. Sci. Technol. 2019, 49, 286–300. [Google Scholar] [CrossRef]
- Mohanan, J.; Subramaniyan, G.; Kuttalingam, A.; Narayanasamy, D. Pharmacokinetic Exploration of Sublingual Route for the Enhanced Bioavailability of Tacrolimus with Rabbit as Animal Model. Int. J. Pharm. Investig. 2023, 14, 180–185. [Google Scholar] [CrossRef]
- Scomoroscenco, C.; Teodorescu, M.; Raducan, A.; Stan, M.; Voicu, S.N.; Trica, B.; Ninciuleanu, C.M.; Nistor, C.L.; Mihaescu, C.I.; Petcu, C.; et al. Novel Gel Microemulsion as Topical Drug Delivery System for Curcumin in Dermatocosmetics. Pharmaceutics 2021, 13, 505. [Google Scholar] [CrossRef]
- Herneisey, M.; Williams, J.; Mirtic, J.; Liu, L.; Potdar, S.; Bagia, C.; Cavanaugh, J.E.; Janjic, J.M. Development and characterization of resveratrol nanoemulsions carrying dual-imaging agents. Ther. Deliv. 2016, 7, 795–808. [Google Scholar] [CrossRef]
- Cheng, T.; Tai, Z.; Shen, M.; Li, Y.; Yu, J.; Wang, J.; Zhu, Q.; Chen, Z. Advance and Challenges in the Treatment of Skin Diseases with the Transdermal Drug Delivery System. Pharmaceutics 2023, 15, 2165. [Google Scholar] [CrossRef]
Critical Quality Attributes (CQAs) | Specification |
---|---|
Day 1 Microemulsion diameter | 30–50 nm |
Day 1 DI | ≤0.3 |
Diameter change after filtration | <10% |
DI change after filtration | ≤0.3 |
Diameter change after serum stability | <10% |
DI change after serum stability | ≤0.3 |
7-day diameter change | <10% |
7-day DI | ≤0.3 |
Drug loading | ≥50% |
Trial | Type of Oil | % (w/v) of Oil | Type of Surfactants | % (w/v) of Surfactants | Type of Co-Surfactant | % (w/v) of Co-Surfactant | Type of Aqueous Phase | Particle Size (nm) | DI | Homogeneity (Visual Inspection) |
---|---|---|---|---|---|---|---|---|---|---|
Trial A | Safflower Oil | 6% | Cremophor EL | 27.5% | Transcutol | 7.5% | PBS | 254 | 0.217 | Homogeneous |
Trial B | Safflower Oil | 6% | Cremophor EL: PEG 400 (1:1) | Surfactant A (13.75%) and Surfactant B (13.75%) | Transcutol | 7.5% | PBS | 711 | 0.094 | Phase separated |
Trial C | Safflower Oil | 3% | Cremophor EL | 13.75% | Transcutol | 3.75% | PBS | 339 | 0.275 | Phase separated |
Trial D | Miglyol 812N | 6% | Cremophor EL | 27.5% | Transcutol | 7.5% | PBS | 19.26 | 0.043 | (Gel-like consistency) |
Trial E | Safflower Oil | 6% | Cremophor EL | 27.5% | Transcutol | 7.5% | Water | 264.4 | 0.219 | Homogeneous |
Scale | 1 | 2 | 3 | 4 | 5 |
Level | Too Low | Low | Medium | High | Too High |
Severity (S) | No consequences to batch quality | Minor deviations that cause insignificant consequences to batch quality and batch recoverable | Consequences that require actions occur, and the batch is recoverable | Major deviations that cause significant consequences to batch quality and difficulty in batch recovery | Total batch loss |
Frequency of occurrence (O) | Risks that do not happen | Risks that happen rarely | Risks that happen sporadically | Risks that occur frequently | Risks that happen most of the time |
Detectability (D) | Readily detected | Moderately detected | Detected but not always or not promptly | Difficult to detect | Not detectable within the current manufacturing operation |
CQAs | Risk Factors | |||||||
---|---|---|---|---|---|---|---|---|
% (w/v) of Oil | % (w/v) of Surfactant | % (w/v) of Co-Surfactant | Water Addition Rate (mL/min) | Stirring Time (h) | Stirring Rate (rpm) | Pressure of Microfluidizer (psi) | Temperature | |
Particle Size/ Droplet Diameter | High | High | High | High | Low | Low | High | Low |
Dispersity Index | High | High | High | High | Low | Low | High | Low |
Drug Loading | High | High | High | High | Low | Low | High | Low |
Homogeneity | High | High | High | High | Medium | Medium | High | Low |
S | O | D | RPN | Method of Failure | CQA Impacted | Cause of Failure |
---|---|---|---|---|---|---|
5 | 3 | 5 | 75 |
|
| Too fast or too slow titration rate |
4 | 4 | 5 | 80 |
|
| Too high or too low percentage of oil |
5 | 3 | 5 | 75 |
|
| Too high or too low percentage of surfactant |
5 | 3 | 5 | 75 |
|
| Too high or too low percentage of cosurfactant |
5 | 3 | 5 | 75 |
|
| Too high or too low pressure in Microfluidizer |
Run | Day 1 Diameter (30–50 nm) | Day 1 DI (<0.30) | Diameter Change After Filtration (<10%) | DI After Filtration (<0.3) | Diameter Change After Serum Stability Test (<10%) | DI After Serum Stability Test DI (<0.3) | Day 7 Diameter Change (<10%) | Day-7 DI (<0.30) |
---|---|---|---|---|---|---|---|---|
1 | 39.89 | 0.21 | −8.09 | 0.197 | 13.79 | 0.302 | 0.23 | 0.206 |
2 | 50.79 | 0.24 | 2.66 | 0.220 | −1.9 | 0.336 | 0.28 | 0.236 |
3 | 45.02 | 0.22 | 8.6 | 0.191 | −3.09 | 0.287 | 1.91 | 0.212 |
4 | 54.78 | 0.23 | 3.53 | 0.228 | −0.3 | 0.385 | 1.96 | 0.238 |
5 | 41.32 | 0.23 | 3.8 | 0.204 | 1.59 | 0.328 | 1.28 | 0.220 |
6 | 43.15 | 0.20 | 3.47 | 0.194 | 13.18 | 0.362 | −3.38 | 0.228 |
7 | 50.01 | 0.22 | 3.64 | 0.200 | 3.65 | 0.315 | 1.03 | 0.224 |
8 | 52.95 | 0.22 | 2.96 | 0.200 | 1.86 | 0.315 | −2.68 | 0.221 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srishti, S.A.; Pinky, P.P.; Taylor, R.; Guess, J.; Karlik, N.; Janjic, J.M. Quality by Design (QbD)-Driven Development and Optimization of Tacrolimus-Loaded Microemulsion for the Treatment of Skin Inflammation. Pharmaceutics 2024, 16, 1487. https://doi.org/10.3390/pharmaceutics16121487
Srishti SA, Pinky PP, Taylor R, Guess J, Karlik N, Janjic JM. Quality by Design (QbD)-Driven Development and Optimization of Tacrolimus-Loaded Microemulsion for the Treatment of Skin Inflammation. Pharmaceutics. 2024; 16(12):1487. https://doi.org/10.3390/pharmaceutics16121487
Chicago/Turabian StyleSrishti, Sanjida Ahmed, Paromita Paul Pinky, Ryan Taylor, Jacob Guess, Natasha Karlik, and Jelena M. Janjic. 2024. "Quality by Design (QbD)-Driven Development and Optimization of Tacrolimus-Loaded Microemulsion for the Treatment of Skin Inflammation" Pharmaceutics 16, no. 12: 1487. https://doi.org/10.3390/pharmaceutics16121487
APA StyleSrishti, S. A., Pinky, P. P., Taylor, R., Guess, J., Karlik, N., & Janjic, J. M. (2024). Quality by Design (QbD)-Driven Development and Optimization of Tacrolimus-Loaded Microemulsion for the Treatment of Skin Inflammation. Pharmaceutics, 16(12), 1487. https://doi.org/10.3390/pharmaceutics16121487