How to Fabricate Hyaluronic Acid for Ocular Drug Delivery
Abstract
:1. General Biology of Hyaluronic Acid (HA)
1.1. Natural Biosynthesis of HA
1.2. Biologic Function of HA
1.3. Degradation of HA
1.4. Manufacturing Commercial HA
1.5. Chemical Modification of HA
2. HA in Drug Delivery
3. Limitations of Current Ocular Drug Delivery
4. Potential Benefit with HA-Based Ocular Drug Delivery System
5. Various HA Platforms for Ocular Drug Delivery Systems
5.1. Simple Viscous Solution
5.2. Nanofibers
5.3. Nanoparticles
5.4. Hydrogels
5.5. Membranes or Films
6. Candidate Ocular Diseases for HA-Based Ocular Drug Delivery System
6.1. Dry Eye Syndrome
6.2. Glaucoma
6.3. Retinal Diseases
6.4. Ocular Infection
7. Current Limitations of HA Fabrication for Ocular Drug Delivery System
8. Economic Implications and Commercialization Potential of HA-Based Ocular Drug Delivery System
9. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fallacara, A.; Baldini, E.; Manfredini, S.; Vertuani, S. Hyaluronic Acid in the Third Millennium. Polymers 2018, 10, 701. [Google Scholar] [CrossRef] [PubMed]
- Burdick, J.A.; Prestwich, G.D. Hyaluronic acid hydrogels for biomedical applications. Adv. Mater. 2011, 23, H41–H56. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wei, D.; Xu, Y.; Zhu, Q. Hyaluronic acid in ocular drug delivery. Carbohydr. Polym. 2021, 264, 118006. [Google Scholar] [CrossRef] [PubMed]
- Jabbari, F.; Babaeipour, V.; Saharkhiz, S. Comprehensive review on biosynthesis of hyaluronic acid with different molecular weights and its biomedical applications. Int. J. Biol. Macromol. 2023, 240, 124484. [Google Scholar] [CrossRef]
- Itano, N.; Sawai, T.; Yoshida, M.; Lenas, P.; Yamada, Y.; Imagawa, M.; Shinomura, T.; Hamaguchi, M.; Yoshida, Y.; Ohnuki, Y.; et al. Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties. J. Biol. Chem. 1999, 274, 25085–25092. [Google Scholar] [CrossRef]
- Tammi, R.H.; Passi, A.G.; Rilla, K.; Karousou, E.; Vigetti, D.; Makkonen, K.; Tammi, M.I. Transcriptional and post-translational regulation of hyaluronan synthesis. FEBS J. 2011, 278, 1419–1428. [Google Scholar] [CrossRef]
- Salih, A.R.C.; Farooqi, H.M.U.; Amin, H.; Karn, P.R.; Meghani, N.; Nagendran, S. Hyaluronic acid: Comprehensive review of a multifunctional biopolymer. Future J. Pharm. Sci. 2024, 10, 63. [Google Scholar] [CrossRef]
- DeAngelis, P.L.; Zimmer, J. Hyaluronan synthases; mechanisms, myths, & mysteries of three types of unique bifunctional glycosyltransferases. Glycobiology 2023, 33, 1117–1127. [Google Scholar] [CrossRef]
- Caon, I.; Parnigoni, A.; Viola, M.; Karousou, E.; Passi, A.; Vigetti, D. Cell Energy Metabolism and Hyaluronan Synthesis. J. Histochem. Cytochem. 2021, 69, 35–47. [Google Scholar] [CrossRef]
- Schulz, T.; Schumacher, U.; Prehm, P. Hyaluronan export by the ABC transporter MRP5 and its modulation by intracellular cGMP. J. Biol. Chem. 2007, 282, 20999–21004. [Google Scholar] [CrossRef]
- Maloney, F.P.; Kuklewicz, J.; Corey, R.A.; Bi, Y.; Ho, R.; Mateusiak, L.; Pardon, E.; Steyaert, J.; Stansfeld, P.J.; Zimmer, J. Structure, substrate recognition and initiation of hyaluronan synthase. Nature 2022, 604, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Buhren, B.A.; Schrumpf, H.; Gorges, K.; Reiners, O.; Bolke, E.; Fischer, J.W.; Homey, B.; Gerber, P.A. Dose- and time-dependent effects of hyaluronidase on structural cells and the extracellular matrix of the skin. Eur. J. Med. Res. 2020, 25, 60. [Google Scholar] [CrossRef] [PubMed]
- Camenisch, T.D.; Schroeder, J.A.; Bradley, J.; Klewer, S.E.; McDonald, J.A. Heart-valve mesenchyme formation is dependent on hyaluronan-augmented activation of ErbB2-ErbB3 receptors. Nat. Med. 2002, 8, 850–855. [Google Scholar] [CrossRef] [PubMed]
- Chow, G.; Tauler, J.; Mulshine, J.L. Cytokines and growth factors stimulate hyaluronan production: Role of hyaluronan in epithelial to mesenchymal-like transition in non-small cell lung cancer. J. Biomed. Biotechnol. 2010, 2010, 485468. [Google Scholar] [CrossRef]
- Lee, A. Size matters: Differential property of hyaluronan and its fragments in the skin- relation to pharmacokinetics, immune activity and wound healing. J. Pharm. Investig. 2023, 53, 357–376. [Google Scholar]
- Serra, M.; Casas, A.; Toubarro, D.; Barros, A.N.; Teixeira, J.A. Microbial Hyaluronic Acid Production: A Review. Molecules 2023, 28, 2084. [Google Scholar] [CrossRef]
- Widner, B.; Behr, R.; Von Dollen, S.; Tang, M.; Heu, T.; Sloma, A.; Sternberg, D.; Deangelis, P.L.; Weigel, P.H.; Brown, S. Hyaluronic acid production in Bacillus subtilis. Appl. Environ. Microbiol. 2005, 71, 3747–3752. [Google Scholar] [CrossRef]
- Yu, H.; Stephanopoulos, G. Metabolic engineering of Escherichia coli for biosynthesis of hyaluronic acid. Metab. Eng. 2008, 10, 24–32. [Google Scholar] [CrossRef]
- Iaconisi, G.N.; Lunetti, P.; Gallo, N.; Cappello, A.R.; Fiermonte, G.; Dolce, V.; Capobianco, L. Hyaluronic Acid: A Powerful Biomolecule with Wide-Ranging Applications—A Comprehensive Review. Int. J. Mol. Sci. 2023, 24, 10296. [Google Scholar] [CrossRef]
- Monslow, J.; Govindaraju, P.; Pure, E. Hyaluronan—A functional and structural sweet spot in the tissue microenvironment. Front. Immunol. 2015, 6, 231. [Google Scholar] [CrossRef]
- Gupta, R.C.; Lall, R.; Srivastava, A.; Sinha, A. Hyaluronic Acid: Molecular Mechanisms and Therapeutic Trajectory. Front. Vet. Sci. 2019, 6, 192. [Google Scholar] [CrossRef] [PubMed]
- Sprott, H.; Fleck, C. Hyaluronic Acid in Rheumatology. Pharmaceutics 2023, 15, 2247. [Google Scholar] [CrossRef] [PubMed]
- Gholamali, I.; Vu, T.T.; Jo, S.H.; Park, S.H.; Lim, K.T. Exploring the Progress of Hyaluronic Acid Hydrogels: Synthesis, Characteristics, and Wide-Ranging Applications. Materials 2024, 17, 2439. [Google Scholar] [CrossRef] [PubMed]
- Marinho, A.; Nunes, C.; Reis, S. Hyaluronic Acid: A Key Ingredient in the Therapy of Inflammation. Biomolecules 2021, 11, 1518. [Google Scholar] [CrossRef]
- Kim, D.J.; Jung, M.Y.; Pak, H.J.; Park, J.H.; Kim, M.; Chuck, R.S.; Park, C.Y. Development of a novel hyaluronic acid membrane for the treatment of ocular surface diseases. Sci. Rep. 2021, 11, 2351. [Google Scholar] [CrossRef]
- Jiang, D.; Liang, J.; Noble, P.W. Hyaluronan as an immune regulator in human diseases. Physiol. Rev. 2011, 91, 221–264. [Google Scholar] [CrossRef]
- Machado, V.; Morais, M.; Medeiros, R. Hyaluronic Acid-Based Nanomaterials Applied to Cancer: Where Are We Now? Pharmaceutics 2022, 14, 2092. [Google Scholar] [CrossRef]
- Bayer, I.S. Hyaluronic Acid and Controlled Release: A Review. Molecules 2020, 25, 2649. [Google Scholar] [CrossRef]
- Stern, R.; Asari, A.A.; Sugahara, K.N. Hyaluronan fragments: An information-rich system. Eur. J. Cell Biol. 2006, 85, 699–715. [Google Scholar] [CrossRef]
- Muller-Lierheim, W.G.K. Why Chain Length of Hyaluronan in Eye Drops Matters. Diagnostics 2020, 10, 511. [Google Scholar] [CrossRef]
- Schmidt, J.; Pavlik, V.; Suchanek, J.; Nesporova, K.; Soukup, T.; Kapitan, M.; Pilbauerova, N. Low, medium, and high molecular weight hyaluronic acid effects on human dental pulp stem cells in vitro. Int. J. Biol. Macromol. 2023, 253, 127220. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.M.; Park, S.J.; Noh, I.; Kim, C.H. The effects of the molecular weights of hyaluronic acid on the immune responses. Biomater. Res. 2021, 25, 27. [Google Scholar] [CrossRef] [PubMed]
- Pandey, M.S.; Harris, E.N.; Weigel, J.A.; Weigel, P.H. The cytoplasmic domain of the hyaluronan receptor for endocytosis (HARE) contains multiple endocytic motifs targeting coated pit-mediated internalization. J. Biol. Chem. 2008, 283, 21453–21461. [Google Scholar] [CrossRef] [PubMed]
- Kaul, A.; Short, W.D.; Wang, X.; Keswani, S.G. Hyaluronidases in Human Diseases. Int. J. Mol. Sci. 2021, 22, 3204. [Google Scholar] [CrossRef]
- Kobayashi, T.; Chanmee, T.; Itano, N. Hyaluronan: Metabolism and Function. Biomolecules 2020, 10, 1525. [Google Scholar] [CrossRef]
- Kim, M.H.; Park, J.H.; Nguyen, D.T.; Kim, S.; Jeong, D.I.; Cho, H.J.; Kim, D.D. Hyaluronidase Inhibitor-Incorporated Cross-Linked Hyaluronic Acid Hydrogels for Subcutaneous Injection. Pharmaceutics 2021, 13, 170. [Google Scholar] [CrossRef]
- Hynnekleiv, L.; Magno, M.; Vernhardsdottir, R.R.; Moschowits, E.; Tonseth, K.A.; Dartt, D.A.; Vehof, J.; Utheim, T.P. Hyaluronic acid in the treatment of dry eye disease. Acta Ophthalmol. 2022, 100, 844–860. [Google Scholar] [CrossRef]
- Chien, L.J.; Lee, C.K. Enhanced hyaluronic acid production in Bacillus subtilis by coexpressing bacterial hemoglobin. Biotechnol. Prog. 2007, 23, 1017–1022. [Google Scholar] [CrossRef]
- Bokatyi, A.N.; Dubashynskaya, N.V.; Skorik, Y.A. Chemical modification of hyaluronic acid as a strategy for the development of advanced drug delivery systems. Carbohydr. Polym. 2024, 337, 122145. [Google Scholar] [CrossRef]
- Hintze, V.; Schnabelrauch, M.; Rother, S. Chemical Modification of Hyaluronan and Their Biomedical Applications. Front. Chem. 2022, 10, 830671. [Google Scholar] [CrossRef]
- Collins, M.N.; Birkinshaw, C. Physical properties of crosslinked hyaluronic acid hydrogels. J. Mater. Sci. Mater. Med. 2008, 19, 3335–3343. [Google Scholar] [CrossRef] [PubMed]
- Knopf-Marques, H.; Pravda, M.; Wolfova, L.; Velebny, V.; Schaaf, P.; Vrana, N.E.; Lavalle, P. Hyaluronic Acid and Its Derivatives in Coating and Delivery Systems: Applications in Tissue Engineering, Regenerative Medicine and Immunomodulation. Adv. Healthc. Mater. 2016, 5, 2841–2855. [Google Scholar] [CrossRef] [PubMed]
- Huerta-Angeles, G.; Bobek, M.; Prikopova, E.; Smejkalova, D.; Velebny, V. Novel synthetic method for the preparation of amphiphilic hyaluronan by means of aliphatic aromatic anhydrides. Carbohydr. Polym. 2014, 111, 883–891. [Google Scholar] [CrossRef] [PubMed]
- Griesser, J.; Hetenyi, G.; Bernkop-Schnurch, A. Thiolated Hyaluronic Acid as Versatile Mucoadhesive Polymer: From the Chemistry Behind to Product Developments-What Are the Capabilities? Polymers 2018, 10, 243. [Google Scholar] [CrossRef]
- Kafedjiiski, K.; Jetti, R.K.; Foger, F.; Hoyer, H.; Werle, M.; Hoffer, M.; Bernkop-Schnurch, A. Synthesis and in vitro evaluation of thiolated hyaluronic acid for mucoadhesive drug delivery. Int. J. Pharm. 2007, 343, 48–58. [Google Scholar] [CrossRef]
- Moriyama, K.; Ooya, T.; Yui, N. Hyaluronic acid grafted with poly(ethylene glycol) as a novel peptide formulation. J. Control Release 1999, 59, 77–86. [Google Scholar] [CrossRef]
- Zhu, J.; Li, F.; Wang, X.; Yu, J.; Wu, D. Hyaluronic Acid and Polyethylene Glycol Hybrid Hydrogel Encapsulating Nanogel with Hemostasis and Sustainable Antibacterial Property for Wound Healing. ACS Appl. Mater. Interfaces 2018, 10, 13304–13316. [Google Scholar] [CrossRef]
- Gonzales, G.; Hoque, J.; Kaeo, C.; Zauscher, S.; Varghese, S. Grafting of cationic molecules to hyaluronic acid improves adsorption and cartilage lubrication. Biomater. Sci. 2024, 12, 4747–4758. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, R.; Wang, Q.; Wu, Z.; Zhang, H.; Gan, L. Cationic Hyaluronic Acid-Modified Cyclosporin Micelles Used for Ocular Drug Delivery. Indian. J. Pharm. Sci. 2024, 86, 64–74. [Google Scholar] [CrossRef]
- Battistini, F.D.; Tartara, L.I.; Boiero, C.; Guzman, M.L.; Luciani-Giaccobbe, L.C.; Palma, S.D.; Allemandi, D.A.; Manzo, R.H.; Olivera, M.E. The role of hyaluronan as a drug carrier to enhance the bioavailability of extended release ophthalmic formulations. Hyaluronan-timolol ionic complexes as a model case. Eur. J. Pharm. Sci. 2017, 105, 188–194. [Google Scholar] [CrossRef]
- Jiang, H.; Xu, Z. Hyaluronic acid-based nanoparticles to deliver drugs to the ocular posterior segment. Drug Deliv. 2023, 30, 2204206. [Google Scholar] [CrossRef] [PubMed]
- Vasvani, S.; Kulkarni, P.; Rawtani, D. Hyaluronic acid: A review on its biology, aspects of drug delivery, route of administrations and a special emphasis on its approved marketed products and recent clinical studies. Int. J. Biol. Macromol. 2020, 151, 1012–1029. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Tang, X.; Jia, Y.; Ho, C.T.; Huang, Q. Applications and delivery mechanisms of hyaluronic acid used for topical/transdermal delivery—A review. Int. J. Pharm. 2020, 578, 119127. [Google Scholar] [CrossRef] [PubMed]
- Apaolaza, P.S.; Busch, M.; Asin-Prieto, E.; Peynshaert, K.; Rathod, R.; Remaut, K.; Dunker, N.; Gopferich, A. Hyaluronic acid coating of gold nanoparticles for intraocular drug delivery: Evaluation of the surface properties and effect on their distribution. Exp. Eye Res. 2020, 198, 108151. [Google Scholar] [CrossRef]
- Jacinto, T.A.; Oliveira, B.; Miguel, S.P.; Ribeiro, M.P.; Coutinho, P. Ciprofloxacin-Loaded Zein/Hyaluronic Acid Nanoparticles for Ocular Mucosa Delivery. Pharmaceutics 2022, 14, 1557. [Google Scholar] [CrossRef]
- Laradji, A.; Karakocak, B.B.; Kolesnikov, A.V.; Kefalov, V.J.; Ravi, N. Hyaluronic Acid-Based Gold Nanoparticles for the Topical Delivery of Therapeutics to the Retina and the Retinal Pigment Epithelium. Polymers 2021, 13, 3324. [Google Scholar] [CrossRef]
- Pereira, G.G.; Detoni, C.B.; Balducci, A.G.; Rondelli, V.; Colombo, P.; Guterres, S.S.; Sonvico, F. Hyaluronate nanoparticles included in polymer films for the prolonged release of vitamin E for the management of skin wounds. Eur. J. Pharm. Sci. 2016, 83, 203–211. [Google Scholar] [CrossRef]
- De la Fuente, M.; Seijo, B.; Alonso, M.J. Novel hyaluronic acid-chitosan nanoparticles for ocular gene therapy. Invest. Ophthalmol. Vis. Sci. 2008, 49, 2016–2024. [Google Scholar] [CrossRef]
- Kalam, M.A. The potential application of hyaluronic acid coated chitosan nanoparticles in ocular delivery of dexamethasone. Int. J. Biol. Macromol. 2016, 89, 559–568. [Google Scholar] [CrossRef]
- Jaudoin, C.; Maue Gehrke, M.; Grillo, I.; Cousin, F.; Ouldali, M.; Arteni, A.A.; Ferrary, E.; Siepmann, F.; Siepmann, J.; Simeliere, F.; et al. Release of liposomes from hyaluronic acid-based hybrid systems: Effects of liposome surface and size. Int. J. Pharm. 2023, 648, 123560. [Google Scholar] [CrossRef]
- Arpicco, S.; Lerda, C.; Dalla Pozza, E.; Costanzo, C.; Tsapis, N.; Stella, B.; Donadelli, M.; Dando, I.; Fattal, E.; Cattel, L.; et al. Hyaluronic acid-coated liposomes for active targeting of gemcitabine. Eur. J. Pharm. Biopharm. 2013, 85, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Xiao, B.; Han, M.K.; Viennois, E.; Wang, L.; Zhang, M.; Si, X.; Merlin, D. Hyaluronic acid-functionalized polymeric nanoparticles for colon cancer-targeted combination chemotherapy. Nanoscale 2015, 7, 17745–17755. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhao, S.; Karnad, A.; Freeman, J.W. The biology and role of CD44 in cancer progression: Therapeutic implications. J. Hematol. Oncol. 2018, 11, 64. [Google Scholar] [CrossRef] [PubMed]
- Cirillo, N. The Hyaluronan/CD44 Axis: A Double-Edged Sword in Cancer. Int. J. Mol. Sci. 2023, 24, 15812. [Google Scholar] [CrossRef]
- Michalczyk, M.; Humeniuk, E.; Adamczuk, G.; Korga-Plewko, A. Hyaluronic Acid as a Modern Approach in Anticancer Therapy-Review. Int. J. Mol. Sci. 2022, 24, 103. [Google Scholar] [CrossRef]
- Zhang, T.; Abdelaziz, M.M.; Cai, S.; Yang, X.; Aires, D.J.; Forrest, M.L. Hyaluronic acid carrier-based photodynamic therapy for head and neck squamous cell carcinoma. Photodiagnosis Photodyn. Ther. 2022, 37, 102706. [Google Scholar] [CrossRef]
- Luo, Z.; Dai, Y.; Gao, H. Development and application of hyaluronic acid in tumor targeting drug delivery. Acta Pharm. Sin. B 2019, 9, 1099–1112. [Google Scholar] [CrossRef]
- Maleki, A.; Kjøniksen, A.L.; Nyström, B. Effect of pH on the Behavior of Hyaluronic Acid in Dilute and Semidilute Aqueous Solutions. Macromol. Symp. 2008, 274, 131–140. [Google Scholar] [CrossRef]
- Bachu, R.D.; Chowdhury, P.; Al-Saedi, Z.H.F.; Karla, P.K.; Boddu, S.H.S. Ocular Drug Delivery Barriers-Role of Nanocarriers in the Treatment of Anterior Segment Ocular Diseases. Pharmaceutics 2018, 10, 28. [Google Scholar] [CrossRef]
- Sah, A.K.; Suresh, P.K. Recent Advances in Ocular Drug Delivery, with Special Emphasis on Lipid Based Nanocarriers. Recent. Pat. Nanotechnol. 2015, 9, 94–105. [Google Scholar] [CrossRef]
- Lynch, C.R.; Kondiah, P.P.D.; Choonara, Y.E.; Du Toit, L.C.; Ally, N.; Pillay, V. Hydrogel Biomaterials for Application in Ocular Drug Delivery. Front. Bioeng. Biotechnol. 2020, 8, 228. [Google Scholar] [CrossRef] [PubMed]
- Gumbiner, B. Structure, biochemistry, and assembly of epithelial tight junctions. Am. J. Physiol. 1987, 253, C749–C758. [Google Scholar] [CrossRef] [PubMed]
- Agrahari, V.; Mandal, A.; Agrahari, V.; Trinh, H.M.; Joseph, M.; Ray, A.; Hadji, H.; Mitra, R.; Pal, D.; Mitra, A.K. A comprehensive insight on ocular pharmacokinetics. Drug Deliv. Transl. Res. 2016, 6, 735–754. [Google Scholar] [CrossRef] [PubMed]
- Prausnitz, M.R.; Noonan, J.S. Permeability of cornea, sclera, and conjunctiva: A literature analysis for drug delivery to the eye. J. Pharm. Sci. 1998, 87, 1479–1488. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.D.; Lindsley, K.; Vedula, S.S.; Krzystolik, M.G.; Hawkins, B.S. Anti-vascular endothelial growth factor for neovascular age-related macular degeneration. Cochrane Database Syst. Rev. 2014, 8, CD005139. [Google Scholar] [CrossRef]
- Leinonen, S.; Immonen, I.; Kotaniemi, K. Fluocinolone acetonide intravitreal implant (Retisert®) in the treatment of sight threatening macular oedema of juvenile idiopathic arthritis-related uveitis. Acta Ophthalmol. 2018, 96, 648–651. [Google Scholar] [CrossRef]
- Rosenblatt, A.; Udaondo, P.; Cunha-Vaz, J.; Sivaprasad, S.; Bandello, F.; Lanzetta, P.; Kodjikian, L.; Goldstein, M.; Habot-Wilner, Z.; Loewenstein, A.; et al. A Collaborative Retrospective Study on the Efficacy and Safety of Intravitreal Dexamethasone Implant (Ozurdex) in Patients with Diabetic Macular Edema: The European DME Registry Study. Ophthalmology 2020, 127, 377–393. [Google Scholar] [CrossRef]
- Kim, H.M.; Woo, S.J. Ocular Drug Delivery to the Retina: Current Innovations and Future Perspectives. Pharmaceutics 2021, 13, 108. [Google Scholar] [CrossRef]
- Chang, W.H.; Liu, P.Y.; Lin, M.H.; Lu, C.J.; Chou, H.Y.; Nian, C.Y.; Jiang, Y.T.; Hsu, Y.H. Applications of Hyaluronic Acid in Ophthalmology and Contact Lenses. Molecules 2021, 26, 2485. [Google Scholar] [CrossRef]
- Mochimaru, H.; Takahashi, E.; Tsukamoto, N.; Miyazaki, J.; Yaguchi, T.; Koto, T.; Kurihara, T.; Noda, K.; Ozawa, Y.; Ishimoto, T.; et al. Involvement of hyaluronan and its receptor CD44 with choroidal neovascularization. Invest. Ophthalmol. Vis. Sci. 2009, 50, 4410–4415. [Google Scholar] [CrossRef]
- Inoue, M.; Katakami, C. The effect of hyaluronic acid on corneal epithelial cell proliferation. Invest. Ophthalmol. Vis. Sci. 1993, 34, 2313–2315. [Google Scholar]
- Yang, Y.J.; Lee, W.Y.; Kim, Y.J.; Hong, Y.P. A Meta-Analysis of the Efficacy of Hyaluronic Acid Eye Drops for the Treatment of Dry Eye Syndrome. Int. J. Environ. Res. Public. Health 2021, 18, 2383. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, I.; Vazquez, J.A.; Pastrana, L.; Khutoryanskiy, V.V. Enhancement and inhibition effects on the corneal permeability of timolol maleate: Polymers, cyclodextrins and chelating agents. Int. J. Pharm. 2017, 529, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Guillaumie, F.; Furrer, P.; Felt-Baeyens, O.; Fuhlendorff, B.L.; Nymand, S.; Westh, P.; Gurny, R.; Schwach-Abdellaoui, K. Comparative studies of various hyaluronic acids produced by microbial fermentation for potential topical ophthalmic applications. J. Biomed. Mater. Res. A 2010, 92, 1421–1430. [Google Scholar] [CrossRef] [PubMed]
- Salzillo, R.; Schiraldi, C.; Corsuto, L.; D’Agostino, A.; Filosa, R.; De Rosa, M.; La Gatta, A. Optimization of hyaluronan-based eye drop formulations. Carbohydr. Polym. 2016, 153, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Snetkov, P.; Morozkina, S.; Uspenskaya, M.; Olekhnovich, R. Hyaluronan-Based Nanofibers: Fabrication, Characterization and Application. Polymers 2019, 11, 2036. [Google Scholar] [CrossRef]
- Hiwrale, A.; Bharati, S.; Pingale, P.; Rajput, A. Nanofibers: A current era in drug delivery system. Heliyon 2023, 9, e18917. [Google Scholar] [CrossRef]
- Siddhi Lokhande, Y.B.; Ansari, M.; Khairnar, S.; Singh, K. Development and evaluation of biodegradable nanofiber insert containing hyaluronic acid for treatment of dry eye syndrome. J. Drug Deliv. Sci. Technol. 2023, 87, 104847. [Google Scholar] [CrossRef]
- Grimaudo, M.A.; Concheiro, A.; Alvarez-Lorenzo, C. Crosslinked Hyaluronan Electrospun Nanofibers for Ferulic Acid Ocular Delivery. Pharmaceutics 2020, 12, 274. [Google Scholar] [CrossRef]
- Humaira; Raza Bukhari, S.A.; Shakir, H.A.; Khan, M.; Saeed, S.; Ahmad, I.; Muzammil, K.; Franco, M.; Irfan, M.; Li, K. Hyaluronic acid-based nanofibers: Electrospun synthesis and their medical applications; recent developments and future perspective. Front. Chem. 2022, 10, 1092123. [Google Scholar] [CrossRef]
- Huang, H.Y.; Wang, M.C.; Chen, Z.Y.; Chiu, W.Y.; Chen, K.H.; Lin, I.C.; Yang, W.V.; Wu, C.C.; Tseng, C.L. Gelatin-epigallocatechin gallate nanoparticles with hyaluronic acid decoration as eye drops can treat rabbit dry-eye syndrome effectively via inflammatory relief. Int. J. Nanomed. 2018, 13, 7251–7273. [Google Scholar] [CrossRef] [PubMed]
- Silva, B.; Goncalves, L.M.; Sao Braz, B.; Delgado, E. Topical ocular delivery of nanoparticles with epoetin beta in Wistar Hannover rats. Sci. Rep. 2023, 13, 1559. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Chen, Y.S.; Rupenthal, I.D. Hyaluronic Acid Coated Albumin Nanoparticles for Targeted Peptide Delivery to the Retina. Mol. Pharm. 2017, 14, 533–545. [Google Scholar] [CrossRef]
- Rubenicia, A.M.L.; Cubillan, L.D.P.; Sicam, V.; Macabeo, A.P.G.; Villaflores, O.B.; Castillo, A.L. Intraocular Pressure Reduction Effect of 0.005% Latanoprost Eye Drops in a Hyaluronic Acid-Chitosan Nanoparticle Drug Delivery System in Albino Rabbits. Transl. Vis. Sci. Technol. 2021, 10, 2. [Google Scholar] [CrossRef]
- Crane, R.; Makia, M.S.; Zeibak, S.; Tebbe, L.; Ikele, L.; Woods, C.R.; Conley, S.M.; Acharya, G.; Naash, M.I.; Al-Ubaidi, M.R. Effective intravitreal gene delivery to retinal pigment epithelium with hyaluronic acid nanospheres. Mol. Ther. Nucleic Acids 2024, 35, 102222. [Google Scholar] [CrossRef]
- Tsai, C.H.; Hoang, L.N.; Lin, C.C.; Pan, L.C.; Wu, C.L.; Lin, I.C.; Wang, P.Y.; Tseng, C.L. Evaluation of Topical and Subconjunctival Injection of Hyaluronic Acid-Coated Nanoparticles for Drug Delivery to Posterior Eye. Pharmaceutics 2022, 14, 1253. [Google Scholar] [CrossRef]
- Wadhwa, S.; Paliwal, R.; Paliwal, S.R.; Vyas, S.P. Hyaluronic acid modified chitosan nanoparticles for effective management of glaucoma: Development, characterization, and evaluation. J. Drug Target. 2010, 18, 292–302. [Google Scholar] [CrossRef]
- Ger, Z.Y.; Yang, C.J.; Ghosh, S.; Lai, J.Y. Biofunctionalization of nanoceria with sperminated hyaluronan enhances drug delivery performance for corneal alkali burn therapy. Chem. Eng. J. 2023, 476, 146864. [Google Scholar] [CrossRef]
- Maulvi, F.A.; Soni, T.G.; Shah, D.O. Extended release of hyaluronic acid from hydrogel contact lenses for dry eye syndrome. J. Biomater. Sci. Polym. Ed. 2015, 26, 1035–1050. [Google Scholar] [CrossRef]
- Zhu, M.; Wang, J.; Li, N. A novel thermo-sensitive hydrogel-based on poly(N-isopropylacrylamide)/hyaluronic acid of ketoconazole for ophthalmic delivery. Artif. Cells Nanomed. Biotechnol. 2018, 46, 1282–1287. [Google Scholar] [CrossRef]
- Chen, H.A.; Tai, Y.N.; Hsieh, E.H.; Thacker, M.; Lin, I.C.; Tseng, C.L.; Lin, F.H. Injectable cross-linked hyaluronic acid hydrogels with epigallocatechin gallate loading as vitreous substitutes. Int. J. Biol. Macromol. 2024, 275, 133467. [Google Scholar] [CrossRef] [PubMed]
- Sohani, Z.; Jamshidi, S.; Koohi, M.K.; Malakootikhah, J.; Abarkar, M.; Golchin, D.; Roshani, S.; Naghdi, H.; Aghajanpour-Moghaddam-Gazafroudi, N.; Gazafroudi Amjadi, N. Novel ophthalmic hyaluronic acid-hydrogel with curcumin nanoparticles for enhanced healing of ulcerative keratitis in rabbit model. Sci. Rep. 2024, 14, 23046. [Google Scholar] [CrossRef] [PubMed]
- Bora, M.; Mundargi, R.C.; Chee, Y.; Wong, T.T.; Venkatraman, S.S. Venkatraman. 5-Flurouracil microencapsulation and impregnation in hyaluronic acid hydrogel as composite drug delivery system for ocular fibrosis. Cogent Med. 2016, 3, 1182108. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, R.; Zarembinski, T.I.; Doty, N.; Jiang, C.; Regatieri, C.; Zhang, X.; Young, M.J. The application of hyaluronic acid hydrogels to retinal progenitor cell transplantation. Tissue Eng. Part A 2013, 19, 135–142. [Google Scholar] [CrossRef]
- Widjaja, L.K.; Bora, M.; Chan, P.N.; Lipik, V.; Wong, T.T.; Venkatraman, S.S. Hyaluronic acid-based nanocomposite hydrogels for ocular drug delivery applications. J. Biomed. Mater. Res. A 2014, 102, 3056–3065. [Google Scholar] [CrossRef]
- Kim, D.J.; Jung, M.Y.; Park, J.H.; Pak, H.J.; Kim, M.; Chuck, R.S.; Park, C.Y. Moxifloxacin releasing intraocular implant based on a cross-linked hyaluronic acid membrane. Sci. Rep. 2021, 11, 24115. [Google Scholar] [CrossRef]
- Foglarova, M.; Chmelar, J.; Huerta-Angeles, G.; Vagnerova, H.; Kulhanek, J.; Barton Tomankova, K.; Minarik, A.; Velebny, V. Water-insoluble thin films from palmitoyl hyaluronan with tunable properties. Carbohydr. Polym. 2016, 144, 68–75. [Google Scholar] [CrossRef]
- Chmelar, J.; Mrazek, J.; Hermannova, M.; Kubala, L.; Ambrozova, G.; Kocurkova, A.; Drmota, T.; Nesporova, K.; Grusova, L.; Velebny, V. Biodegradable free-standing films from lauroyl derivatives of hyaluronan. Carbohydr. Polym. 2019, 224, 115162. [Google Scholar] [CrossRef]
- Ghezzi, M.; Ferraboschi, I.; Fantini, A.; Pescina, S.; Padula, C.; Santi, P.; Sissa, C.; Nicoli, S. Hyaluronic acid-PVA films for the simultaneous delivery of dexamethasone and levofloxacin to ocular tissues. Int. J. Pharm. 2023, 638, 122911. [Google Scholar] [CrossRef]
- Mondal, H.; Kim, H.J.; Mohanto, N.; Jee, J.P. A Review on Dry Eye Disease Treatment: Recent Progress, Diagnostics, and Future Perspectives. Pharmaceutics 2023, 15, 990. [Google Scholar] [CrossRef]
- Ali, M.; Byrne, M.E. Controlled release of high molecular weight hyaluronic Acid from molecularly imprinted hydrogel contact lenses. Pharm. Res. 2009, 26, 714–726. [Google Scholar] [CrossRef] [PubMed]
- Weinreb, R.N.; Aung, T.; Medeiros, F.A. The pathophysiology and treatment of glaucoma: A review. JAMA 2014, 311, 1901–1911. [Google Scholar] [CrossRef] [PubMed]
- Alviset, G.; Corvis, Y.; Hammad, K.; Lemut, J.; Maury, M.; Mignet, N.; Boudy, V. New Preservative-Free Formulation for the Enhanced Ocular Bioavailability of Prostaglandin Analogues in Glaucoma. Pharmaceutics 2022, 14, 453. [Google Scholar] [CrossRef]
- Samoila, L.; Vostinaru, O.; Dinte, E.; Bodoki, A.E.; Iacob, B.C.; Bodoki, E.; Samoila, O. Topical Treatment for Retinal Degenerative Pathologies: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 8045. [Google Scholar] [CrossRef]
- Awwad, S.; Abubakre, A.; Angkawinitwong, U.; Khaw, P.T.; Brocchini, S. In situ antibody-loaded hydrogel for intravitreal delivery. Eur. J. Pharm. Sci. 2019, 137, 104993. [Google Scholar] [CrossRef]
- Yu, Y.; Lau, L.C.; Lo, A.C.; Chau, Y. Injectable Chemically Crosslinked Hydrogel for the Controlled Release of Bevacizumab in Vitreous: A 6-Month In Vivo Study. Transl. Vis. Sci. Technol. 2015, 4, 5. [Google Scholar] [CrossRef]
- Egbu, R.; Brocchini, S.; Khaw, P.T.; Awwad, S. Antibody loaded collapsible hyaluronic acid hydrogels for intraocular delivery. Eur. J. Pharm. Biopharm. 2018, 124, 95–103. [Google Scholar] [CrossRef]
- Conrady, C.D.; Yeh, S. A Review of Ocular Drug Delivery Platforms and Drugs for Infectious and Noninfectious Uveitis: The Past, Present, and Future. Pharmaceutics 2021, 13, 1224. [Google Scholar] [CrossRef]
- Astley, R.A.; Mursalin, M.H.; Coburn, P.S.; Livingston, E.T.; Nightengale, J.W.; Bagaruka, E.; Hunt, J.J.; Callegan, M.C. Ocular Bacterial Infections: A Ten-Year Survey and Review of Causative Organisms Based on the Oklahoma Experience. Microorganisms 2023, 11, 1802. [Google Scholar] [CrossRef]
- Xie, J.; Wang, C.; Ning, Q.; Gao, Q.; Gao, C.; Gou, Z.; Ye, J. A new strategy to sustained release of ocular drugs by one-step drug-loaded microcapsule manufacturing in hydrogel punctal plugs. Graefe’s Arch. Clin. Exp. Ophthalmol. 2017, 255, 2173–2184. [Google Scholar] [CrossRef]
- Mayer, G.; Michaelson, I.C.; Herz, N. Hyaluronidase in ocular tissues. II. Hyaluronidase in the tissues of the rabbit’s eye. Br. J. Ophthalmol. 1956, 40, 53–56. [Google Scholar] [CrossRef] [PubMed]
- Govindaraju, P.; Todd, L.; Shetye, S.; Monslow, J.; Pure, E. CD44-dependent inflammation, fibrogenesis, and collagenolysis regulates extracellular matrix remodeling and tensile strength during cutaneous wound healing. Matrix Biol. 2019, 75-76, 314–330. [Google Scholar] [CrossRef] [PubMed]
- Allyn, M.M.; Luo, R.H.; Hellwarth, E.B.; Swindle-Reilly, K.E. Considerations for Polymers Used in Ocular Drug Delivery. Front. Med. 2021, 8, 787644. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Li, P.; Beachley, V.; McDonnell, P.; Elisseeff, J.H. A hyaluronic acid-binding contact lens with enhanced water retention. Cont. Lens Anterior Eye 2015, 38, 79–84. [Google Scholar] [CrossRef]
In Vitro Production | Bacterial Production | Extraction from Animal Tissue | |
---|---|---|---|
Process | Utilizes enzymes derived from Streptococcus pyogenes, Pasteurella multocida, and Lactococcus lactis to synthesize HA in a controlled laboratory environment. | Involves using various bacterial strains, including Streptococcus, Enterococcus faecalis, Escherichia coli, Bacillus subtilis, and Lactococcus lactis. | Isolates HA from various animal sources, including rooster comb, human umbilical cord, bovine synovial fluid, and vitreous humor of cattle. |
Advantage | Allows for the production of HA with precise molecular weight and purity. | This method is relatively inexpensive and scalable, making it ideal for large-scale production. | Provides an essential source of HA for specific applications. |
Challenge | Endotoxins produced by bacteria and the cost of expensive growth media pose challenges. | Often contains significant amounts of endotoxins and elevated bacterial levels, requiring additional purification steps to remove these impurities. | The risk of viral contamination necessitates complex purification procedures. The harsh extraction process often results in poor yield and polydispersity of molecular weights. |
Application | Ideal for pharmaceutical and biomedical applications due to its high quality. | Suitable for commercial and industrial purposes due to its cost-effectiveness and scalability. | Used in specific applications where animal-derived HA is preferred or required. |
Conventional Eye Drop Therapy | HA-Based Ocular Drug Delivery System | |
---|---|---|
Drug loading capacity | Limited | High using nanotechnology and chemical modification |
Ocular surface retention time | Short | Prolonged due to mucoadhesive property and cell receptor binding |
Drug delivery efficiency to intraocular target | Moderate | High by increasing drug loading, retention, and penetration through ocular barriers |
Target disease spectrum | Limited to ocular surface diseases and glaucoma | Broad including ocular surface diseases, glaucoma, and retinal diseases |
Safety | Generally safe | Probably safe, but individual drug delivery systems need to be evaluated |
Economic cost | Low | Moderate |
Manufacturing | Easy | Complex |
Nanoparticles | Role of HA | Purpose | Finding | Refs. |
---|---|---|---|---|
HA-based gold nanoparticles | Surface coating | Topically applied hyaluronic acid-coated gold nanoparticles as drug delivery vehicles to the posterior region of the eye | Hyaluronic acid-coated gold nanoparticles exhibit higher distribution in the posterior segment of the eye compared to uncoated gold nanoparticles | [54,56] |
Ciprofloxacin-loaded zein/hyaluronic acid nanoparticles | Mucoadhesion | To enhance the topical delivery of antibiotics to the ocular surface | A high encapsulation efficiency was achieved, with the release profile characterized by an initial burst followed by a sustained release of ciprofloxacin over 24 h | [55] |
Gelatin–epigallocatechin gallate nanoparticles (GEH NPs) with surface decoration by hyaluronic acid (HA) | Surface coating | To topically deliver anti-inflammatory medication for the treatment of dry eye syndrome | Large quantities of GEH NPs accumulated in the cytoplasm of ocular surface cells, demonstrating the nanoparticles’ efficacy in ocular medication delivery | [91] |
Epoetin beta-containing chitosan–hyaluronic acid nanoparticles | Mucoadhesion | For topical delivery of epoetin beta to the retina | Identification of epoetin beta in the retina 12 h post-administration, with its presence still detectable on day 21 | [92] |
Hyaluronic acid-coated albumin nanoparticles | CD44-mediated interaction | Targeted Connexin43 mimetic peptide delivery to the retina | HA-coated albumin NPs showed enhanced in vitro cellular uptake and ex vivo retinal penetration through HA-CD44 receptor-mediated interactions | [93] |
Hyaluronic acid–chitosan–latanoprost-linked nanoparticles | Mucoadhesion | Topical administration to deliver IOP-lowering drugs | Daily IOP reduction during the treatment period was 24% for plain latanoprost, 23% for Xalatan, and 29% for HA–chitosan–latanoprost-linked nanoparticles | [94] |
DNA-filled hyaluronic-acid nanospheres | Drug encapsulation | To deliver therapeutic genes to the outer retina via intravitreal injection | Follow-up at 4 weeks showed widespread gene expression in the outer retina, with reduced expression still present at 8 weeks post-injection | [95] |
Gelatin–epigallocatechin gallate (EGCG) nanoparticles surface-decorated with HA and possessing a positive surface charge | Surface coating | To deliver drugs topically or via subconjunctival injection to the posterior segment of the eye | Fluorescent signals from nanoparticles were observed in the posterior eyes following topical and subconjunctival applications | [96] |
Hyaluronic acid-modified chitosan nanoparticles (CS-HA-NPs) loaded with timolol and dorzolamide | Mucoadehsion | Topical administration to deliver IOP-lowering drugs | A significant reduction in IOP levels was achieved using CS-HA-NPs compared to a plain solution of the drugs | [97] |
Sperminated HA-functionalized nanoceria (Ce-sH NPs) with insulin-like growth factor 1 (IGF1) | Drug encapsulation | Topical delivery of IGF1 for the healing of corneal wound | IGF1 loaded Ce-sH NPs showed high drug entrapment and controlled release resulting in better wound healing effect in a corneal alkali burn animal model | [98] |
Hydrogel | Description | Purpose | Findings | References |
---|---|---|---|---|
Hyaluronic acid hydrogel with curcumin nanoparticles | Curcumin nanoparticles were prepared using β-cyclodextrin as the encapsulating agent, and were incorporated into the hyaluronic acid-based hydrogel matrix. | To enhance keratitis healing | Curcumin nanoparticles with β-cyclodextrin in a hyaluronic acid hydrogel significantly reduced the frequency of medication administration compared to conventional therapies, enhanced the quality of healed structures, and effectively treated ulcerative keratitis. | [102] |
5-Flurouracil (5-FU) microencapsulation and impregnation in hyaluronic acid hydrogel | 5-FU was encapsulated in poly (d,l-lactide-co-glycolide) (PLGA) microspheres for sustained release and impregnated into a hyaluronic acid hydrogel. | For the sustained delivery of 5-FU to prevent ocular fibrosis | The release rate of 5-FU was retarded for a period of 6 days, and the overall release period was extended by 2 days, indicating sustained release. | [103] |
HA-based hydrogels to encapsulate mouse retinal progenitor cells (RPCs) | In three-dimensional HA hydrogels, RPCs maintained their undifferentiated state and readily formed neurospheres. | To deliver RPCs to the retina to restore retinal function | Hydrogels were completely degraded, and RPCs were evenly distributed in the subretinal space by week 3, expressing the mature photoreceptor marker recoverin. | [104] |
Chemically modified HA hydrogel with latanoprost-loaded liposome | HA was first chemically modified using adipic dihydrazide or methacrylic anhydride, mixed with latanoprost-loaded liposomes, and then cross-linked to produce nanocomposite hydrogels. | For the sustained release of latanoprost through topical application | Composite hydrogels provided a longer sustained release of latanoprost compared to liposomes or hydrogels alone. | [105] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.; Jung, M.-Y.; Lee, D.-Y.; Ahn, S.M.; Lee, G.M.; Park, C.Y. How to Fabricate Hyaluronic Acid for Ocular Drug Delivery. Pharmaceutics 2024, 16, 1604. https://doi.org/10.3390/pharmaceutics16121604
Kim M, Jung M-Y, Lee D-Y, Ahn SM, Lee GM, Park CY. How to Fabricate Hyaluronic Acid for Ocular Drug Delivery. Pharmaceutics. 2024; 16(12):1604. https://doi.org/10.3390/pharmaceutics16121604
Chicago/Turabian StyleKim, Martha, Mi-Young Jung, Do-Yeon Lee, So Min Ahn, Gyeong Min Lee, and Choul Yong Park. 2024. "How to Fabricate Hyaluronic Acid for Ocular Drug Delivery" Pharmaceutics 16, no. 12: 1604. https://doi.org/10.3390/pharmaceutics16121604
APA StyleKim, M., Jung, M.-Y., Lee, D.-Y., Ahn, S. M., Lee, G. M., & Park, C. Y. (2024). How to Fabricate Hyaluronic Acid for Ocular Drug Delivery. Pharmaceutics, 16(12), 1604. https://doi.org/10.3390/pharmaceutics16121604