The Status Quo of Pharmacogenomics of Tyrosine Kinase Inhibitors in Precision Oncology: A Bibliometric Analysis of the Literature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy and Data Collection
2.2. Scientific Literature Bibliometric Indicators
2.3. Visualization Techniques
3. Results
3.1. Bibliometric Analysis of All Articles
3.2. Annual Publications and Citations Trend
3.3. The Most Prolific Countries and International Collaborations
3.4. The Most Prolific Institutions, Journals, and Authors
3.5. The Most Cited Articles
3.6. Keywords Analysis, Trend Topics, and Thematic Evolution
3.7. Thematic Map of the Field
4. Discussion
- Clusters 1 and 3 (pharmacogenetics and NSCLC) were identified as motor themes, due to their high occurrence in research studies, and were thus perceived to be making rapid advancements in the TKI domain. The most recent studies in those clusters investigated the impact of concurrent drug–drug-interactions on imatinib response in patients with gastrointestinal stromal tumors [45] and the mechanisms of drug resistance in patients with advanced or refractory lung cancer [46].
- Clusters 5 and 6 (targeted therapy and lapatinib) were identified as emerging/declining themes, suggesting a somewhat limited and marginalized position. The most recent studies in those clusters explored novel tools to predicts drug responses in pancreatic ductal adenocarcinoma [47] and colorectal cancer [48].
- Clusters 2 and 4 (PGx and antineoplastic agents) were identified as basic themes, due to their potential importance to the field; however, they were perceived to need more tangible development. The most recent studies in those clusters lay the foundation for future integrative analyses of PGx data in different tumor contexts for the generation of a ‘pancancer’ treatment [49], and the utilization of PGx in the identification of new antineoplastic treatments for head and neck squamous cell carcinoma [50].
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- PAHO/WHO. World Cancer Day 2023: Close the Care Gap. 2023. Available online: https://www.paho.org/en/campaigns/world-cancer-day-2023-close-care-gap#:~:text=Globally%2C%20there%20were%20an%20estimated,10%20million%20deaths%20from%20cancer (accessed on 21 October 2023).
- Bray, F.; Laversanne, M.; Weiderpass, E.; Soerjomataram, I. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer 2021, 127, 3029–3030. [Google Scholar] [CrossRef] [PubMed]
- Schwaederle, M.; Daniels, G.A.; Piccioni, D.E.; Fanta, P.T.; Schwab, R.B.; Shimabukuro, K.A.; Parker, B.A.; Kurzrock, R. On the Road to Precision Cancer Medicine: Analysis of Genomic Biomarker Actionability in 439 Patients. Mol. Cancer Ther. 2015, 14, 1488–1494. [Google Scholar] [CrossRef] [PubMed]
- Robinson, D.R.; Wu, Y.M.; Lin, S.F. The protein tyrosine kinase family of the human genome. Oncogene 2000, 19, 5548–5557. [Google Scholar] [CrossRef] [PubMed]
- Broekman, F.; Giovannetti, E.; Peters, G.J. Tyrosine kinase inhibitors: Multi-targeted or single-targeted? World J. Clin. Oncol. 2011, 2, 80–93. [Google Scholar] [CrossRef] [PubMed]
- Madhusudan, S.; Ganesan, T.S. Tyrosine kinase inhibitors in cancer therapy. Clin. Biochem. 2004, 37, 618–635. [Google Scholar] [CrossRef] [PubMed]
- Winkler, G.C.; Barle, E.L.; Galati, G.; Kluwe, W.M. Functional differentiation of cytotoxic cancer drugs and targeted cancer therapeutics. Regul. Toxicol. Pharmacol. 2014, 70, 46–53. [Google Scholar] [CrossRef]
- Tirumani, S.H.; Jagannathan, J.P.; Krajewski, K.M.; Shinagare, A.B.; Jacene, H.; Ramaiya, N.H. Imatinib and beyond in gastrointestinal stromal tumors: A radiologist’s perspective. AJR Am. J. Roentgenol. 2013, 201, 801–810. [Google Scholar] [CrossRef]
- Hu, J.; Xing, K.; Zhang, Y.; Liu, M.; Wang, Z. Global Research Trends in Tyrosine Kinase Inhibitors: Coword and Visualization Study. JMIR Med. Inform. 2022, 10, e34548. [Google Scholar] [CrossRef]
- Kabbani, D.; Akika, R.; Wahid, A.; Daly, A.K.; Cascorbi, I.; Zgheib, N.K. Pharmacogenomics in practice: A review and implementation guide. Front. Pharmacol. 2023, 14, 1189976. [Google Scholar] [CrossRef]
- Ventola, C.L. Pharmacogenomics in clinical practice: Reality and expectations. Pharm. Ther. 2011, 36, 412–450. [Google Scholar]
- de Leon, J.; Susce, M.T.; Murray-Carmichael, E. The AmpliChip CYP450 genotyping test: Integrating a new clinical tool. Mol. Diagn. Ther. 2006, 10, 135–151. [Google Scholar] [CrossRef]
- Subasri, M.; Barrett, D.; Sibalija, J.; Bitacola, L.; Kim, R.B. Pharmacogenomic-based personalized medicine: Multistakeholder perspectives on implementational drivers and barriers in the Canadian healthcare system. Clin. Transl. Sci. 2021, 14, 2231–2241. [Google Scholar] [CrossRef] [PubMed]
- FDA. Table of Pharmacogenomic Biomarkers in Drug Labeling. 2023. Available online: https://www.fda.gov/drugs/science-and-research-drugs/table-pharmacogenomic-biomarkers-drug-labeling (accessed on 8 October 2023).
- Kim, J.A.; Ceccarelli, R.; Lu, C.Y. Pharmacogenomic Biomarkers in US FDA-Approved Drug Labels (2000–2020). J. Pers. Med. 2021, 11, 179. [Google Scholar] [CrossRef] [PubMed]
- PharmGKB. Drug Label Annotations. 2023. Available online: https://www.pharmgkb.org/ (accessed on 22 November 2023).
- Pritchard, D.; Patel, J.N.; Stephens, L.E.; McLeod, H.L. Comparison of FDA Table of Pharmacogenetic Associations and Clinical Pharmacogenetics Implementation Consortium guidelines. Am. J. Health Syst. Pharm. 2022, 79, 993–1005. [Google Scholar] [CrossRef]
- Alzoubi, A.; Kanaan, H.; Alhazaimeh, D.; Gharaibeh, S.; Mukattash, T.L.; Kheirallah, K. Knowledge, attitude, future expectations and perceived barriers of medical students and physicians regarding pharmacogenomics in Jordan. Int. J. Clin. Pract. 2021, 75, e13658. [Google Scholar] [CrossRef] [PubMed]
- Ayati, N.; Afzali, M.; Hasanzad, M.; Kebriaeezadeh, A.; Rajabzadeh, A.; Nikfar, S. Pharmacogenomics Implementation and Hurdles to Overcome; In the Context of a Developing Country. Iran. J. Pharm. Res. 2021, 20, 92–106. [Google Scholar] [CrossRef]
- Jarrar, Y.; Lee, S.J. Demand for Pharmacogenomics and Personalized Medicine in the United Arab Emirates. J. Pers. Med. 2022, 12, 104. [Google Scholar] [CrossRef]
- CPIC. The Clinical Pharmacogenetics Implementation Consortium Guidelines. 2023. Available online: https://cpicpgx.org/ (accessed on 22 November 2023).
- Zhang, B.; Ao, B.; Lu, X.; Yang, S.; Bao, P.; Wang, H.; Li, R.; Huang, Y. Global research trends on precision oncology: A systematic review, bibliometrics, and visualized study. Medicine 2022, 101, e31380. [Google Scholar] [CrossRef]
- Falagas, M.E.; Pitsouni, E.I.; Malietzis, G.A.; Pappas, G. Comparison of PubMed, Scopus, Web of Science, and Google Scholar: Strengths and weaknesses. FASEB J. 2008, 22, 338–342. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. VOSviewer Manual; Leiden, U., Ed.; CWTS, University of Leiden: Leiden, The Netherlands, 2020. [Google Scholar]
- Callon, M.; Courtial, J.-P.; Turner, W.A.; Bauin, S. From translations to problematic networks: An introduction to co-word analysis. Soc. Sci. Inf. 1983, 22, 191–235. [Google Scholar] [CrossRef]
- Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. Science mapping software tools: Review, analysis, and cooperative study among tools. J. Am. Soc. Inf. Sci. Technol. 2011, 62, 1382–1402. [Google Scholar] [CrossRef]
- Tanwar, A.S.; Chaudhry, H.; Srivastava, M.K. Trends in Influencer Marketing: A Review and Bibliometric Analysis. J. Interact. Advert. 2022, 22, 1–27. [Google Scholar] [CrossRef]
- Trent, R.J. Pathology practice and pharmacogenomics. Pharmacogenomics 2010, 11, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Pirmohamed, M. Pharmacogenomics: Current status and future perspectives. Nat. Rev. Genet. 2023, 24, 350–362. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, L.F.; Moldrup, C. The diffusion of innovation: Factors influencing the uptake of pharmacogenetics. Community Genet 2007, 10, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Drake, J.M.; Lee, J.K.; Witte, O.N. Clinical targeting of mutated and wild-type protein tyrosine kinases in cancer. Mol. Cell Biol. 2014, 34, 1722–1732. [Google Scholar] [CrossRef] [PubMed]
- Haznedaroglu, I.C. Monitoring the Response to Tyrosine Kinase Inhibitor (TKI) Treatment in Chronic Myeloid Leukemia (CML). Mediterr. J. Hematol. Infect. Dis. 2014, 6, e2014009. [Google Scholar] [CrossRef]
- Burotto, M.; Manasanch, E.E.; Wilkerson, J.; Fojo, T. Gefitinib and erlotinib in metastatic non-small cell lung cancer: A meta-analysis of toxicity and efficacy of randomized clinical trials. Oncologist 2015, 20, 400–410. [Google Scholar] [CrossRef]
- Pusztai, L.; Moulder, S.; Altan, M.; Kwiatkowski, D.; Valero, V.; Ueno, N.T.; Esteva, F.J.; Avritscher, R.; Qi, Y.; Strauss, L.; et al. Gene signature-guided dasatinib therapy in metastatic breast cancer. Clin. Cancer Res. 2014, 20, 5265–5271. [Google Scholar] [CrossRef]
- Jiao, Q.; Bi, L.; Ren, Y.; Song, S.; Wang, Q.; Wang, Y.S. Advances in studies of tyrosine kinase inhibitors and their acquired resistance. Mol. Cancer 2018, 17, 36. [Google Scholar] [CrossRef]
- Kuiper, J.L.; Heideman, D.A.; Thunnissen, E.; Paul, M.A.; van Wijk, A.W.; Postmus, P.E.; Smit, E.F. Incidence of T790M mutation in (sequential) rebiopsies in EGFR-mutated NSCLC-patients. Lung Cancer 2014, 85, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Xu, C.; Wu, J.; Zhang, Y.; Fang, M. A comparison of consistency of detecting c-MET gene amplification in peripheral blood and tumor tissue of nonsmall cell lung cancer patients. J. Cancer Res. Ther. 2015, 11 (Suppl. S1), C63–C67. [Google Scholar] [CrossRef] [PubMed]
- Zahavi, D.; Weiner, L. Monoclonal Antibodies in Cancer Therapy. Antibodies 2020, 9, 34. [Google Scholar] [CrossRef]
- Xue, Y.; Feng, S.; Li, G.; Zhang, C. Safety profile of vascular endothelial growth factor receptor tyrosine-kinase inhibitors in pediatrics: A pharmacovigilance disproportionality analysis. Front. Pharmacol. 2023, 14, 1160117. [Google Scholar] [CrossRef]
- Shyam Sunder, S.; Sharma, U.C.; Pokharel, S. Adverse effects of tyrosine kinase inhibitors in cancer therapy: Pathophysiology, mechanisms and clinical management. Signal Transduct. Target. Ther. 2023, 8, 262. [Google Scholar] [CrossRef] [PubMed]
- Xiong, S.; Liu, K.; Yang, F.; Dong, Y.; Zhang, H.; Wu, P.; Zhou, Y.; Zhang, L.; Wu, Q.; Zhao, X.; et al. Global research trends on inflammatory bowel diseases and colorectal cancer: A bibliometric and visualized study from 2012 to 2021. Front. Oncol. 2022, 12, 943294. [Google Scholar] [CrossRef]
- Song, Y.; Ma, P.; Gao, Y.; Xiao, P.; Xu, L.; Liu, H. A Bibliometrics Analysis of Metformin Development from 1980 to 2019. Front. Pharmacol. 2021, 12, 645810. [Google Scholar] [CrossRef]
- Chai, A.W.Y.; Tan, A.C.; Cheong, S.C. Uncovering drug repurposing candidates for head and neck cancers: Insights from systematic pharmacogenomics data analysis. Sci. Rep. 2021, 11, 23933. [Google Scholar] [CrossRef]
- Zhu, M.; Li, Y.; Wang, Y.; Lin, P.; Mi, J.; Zhong, W. Multi-omics analysis uncovers clinical, immunological, and pharmacogenomic implications of cuproptosis in clear cell renal cell carcinoma. Eur. J. Med. Res. 2023, 28, 248. [Google Scholar] [CrossRef]
- Dalle Fratte, C.; Gagno, S.; Roncato, R.; Polesel, J.; Zanchetta, M.; Buzzo, M.; Posocco, B.; De Mattia, E.; Borsatti, R.; Puglisi, F.; et al. CYP2D6 and CYP2C8 pharmacogenetics and pharmacological interactions to predict imatinib plasmatic exposure in GIST patients. Br. J. Clin. Pharmacol. 2023, 89, 1089–1098. [Google Scholar] [CrossRef]
- Yu, N.; Hwang, M.; Lee, Y.; Song, B.R.; Kang, E.H.; Sim, H.; Ahn, B.C.; Hwang, K.H.; Kim, J.; Hong, S.; et al. Patient-derived cell-based pharmacogenomic assessment to unveil underlying resistance mechanisms and novel therapeutics for advanced lung cancer. J. Exp. Clin. Cancer Res. 2023, 42, 37. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Zhang, B.; Cloyd, J.M.; Xu, G.; Du, S.; Mao, Y.; Pawlik, T.M. Gene signature and connectivity mapping to assist with drug prediction for pancreatic ductal adenocarcinoma. Surg. Oncol. 2022, 44, 101849. [Google Scholar] [CrossRef] [PubMed]
- Sveen, A.; Johannessen, B.; Eilertsen, I.A.; Rosok, B.I.; Gulla, M.; Eide, P.W.; Bruun, J.; Kryeziu, K.; Meza-Zepeda, L.A.; Myklebost, O.; et al. The expressed mutational landscape of microsatellite stable colorectal cancers. Genome Med. 2021, 13, 142. [Google Scholar] [CrossRef] [PubMed]
- Douglass, E.F., Jr.; Allaway, R.J.; Szalai, B.; Wang, W.; Tian, T.; Fernandez-Torras, A.; Realubit, R.; Karan, C.; Zheng, S.; Pessia, A.; et al. A community challenge for a pancancer drug mechanism of action inference from perturbational profile data. Cell Rep. Med. 2022, 3, 100492. [Google Scholar] [CrossRef]
- Gu, Z.; Yao, Y.; Yang, G.; Zhu, G.; Tian, Z.; Wang, R.; Wu, Q.; Wang, Y.; Wu, Y.; Chen, L.; et al. Pharmacogenomic landscape of head and neck squamous cell carcinoma informs precision oncology therapy. Sci. Transl. Med. 2022, 14, eabo5987. [Google Scholar] [CrossRef]
Metric | All Publications | Closed-Access Journals | Open-Access Journals |
---|---|---|---|
Total publications | 448 | 183 | 265 |
Productivity per active year | 37.33 | 15.25 | 22.08 |
Total citations | 21,156 | 6062 | 15,094 |
Average citations | 47.22 | 33.13 | 56.96 |
Number of cited publications | 421 | 166 | 255 |
Citations per cited publication | 50.25 | 36.52 | 59.19 |
h-index | 70 | 40 | 56 |
g-index | 130 | 116 | 71 |
Sole-authored publications | 25 | 18 | 7 |
Co-authored publications | 423 | 165 | 258 |
Number of contributing authors | 4232 | 1425 | 2804 |
Annual collaboration index | 8.45 | 6.79 | 9.58 |
Collaboration index | 9.45 | 7.79 | 10.58 |
Collaboration coefficient | 0.89 | 0.87 | 0.91 |
Rank | Country | TP | TC | AC | TLS |
---|---|---|---|---|---|
1 | United States | 166 | 13,724 | 82.67 | 93 |
2 | Italy | 53 | 1846 | 34.83 | 20 |
3 | China | 50 | 2801 | 56.02 | 22 |
4 | Japan | 46 | 2224 | 48.35 | 12 |
5 | Germany | 39 | 2998 | 76.87 | 20 |
6 | France | 36 | 2934 | 81.50 | 16 |
7 | Spain | 36 | 3233 | 89.81 | 20 |
8 | Netherlands | 23 | 1891 | 82.22 | 12 |
9 | United Kingdom | 23 | 2670 | 116.09 | 18 |
10 | Republic of Korea | 22 | 1155 | 52.50 | 11 |
Rank | Institution | Number of Articles (%TP) | Country |
---|---|---|---|
1 | Ohio State University | 61 (13.6) | United States |
2 | National Cancer Institute | 52 (11.6) | United States |
3 | University of Chicago | 43 (9.6) | United States |
4 | Dana-Farber Cancer Institute | 41 (9.2) | United States |
5 | Harvard Medical School | 37 (8.3) | United States |
6 | Mayo Clinic | 36 (8.0) | United States |
7 | University of Pisa | 33 (7.4) | Italy |
8 | University of Bologna | 33 (7.4) | Italy |
9 | Sungkyunkwan University School of Medicine | 32 (7.1) | Republic of Korea |
10 | Oslo University Hospital | 31 (6.9) | Norway |
Rank | Journal | TP | TC | AC | SA | CA | NCA | ACI | NCP | CCP | CI | CC | h | g | NAY | PAY |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Clinical Cancer Research | 21 | 2826 | 134.57 | 21 | 252 | 11.00 | 21 | 134.57 | 12.00 | 0.92 | 19 | 21 | 11 | 1.91 | |
2 | Cancer Chemotherapy and Pharmacology | 15 | 714 | 47.60 | 15 | 144 | 8.60 | 15 | 47.60 | 9.60 | 0.90 | 12 | 15 | 11 | 1.36 | |
3 | Oncotarget | 13 | 357 | 27.46 | 13 | 152 | 10.69 | 13 | 27.46 | 11.69 | 0.91 | 11 | 13 | 6 | 2.17 | |
4 | Lung Cancer | 12 | 349 | 29.08 | 12 | 111 | 8.25 | 12 | 29.08 | 9.25 | 0.89 | 10 | 12 | 9 | 1.33 | |
5 | Pharmacogenomics | 10 | 224 | 22.40 | 1 | 9 | 77 | 6.70 | 9 | 24.89 | 7.70 | 0.87 | 6 | 10 | 8 | 1.25 |
6 | Journal of Thoracic Oncology | 9 | 460 | 51.11 | 9 | 97 | 9.78 | 9 | 51.11 | 10.78 | 0.91 | 9 | 9 | 9 | 1.00 | |
7 | Pharmacogenomics Journal | 8 | 263 | 32.88 | 8 | 69 | 7.63 | 8 | 32.88 | 8.63 | 0.88 | 6 | 8 | 8 | 1.00 | |
8 | PLoS ONE | 8 | 494 | 61.75 | 8 | 95 | 10.88 | 8 | 61.75 | 11.88 | 0.92 | 6 | 8 | 5 | 1.60 | |
9 | European Journal of Cancer | 6 | 180 | 30.00 | 6 | 67 | 10.17 | 6 | 30.00 | 11.17 | 0.91 | 5 | 6 | 5 | 1.20 | |
10 | Investigational New Drugs | 6 | 139 | 23.17 | 6 | 74 | 11.33 | 6 | 23.17 | 12.33 | 0.92 | 5 | 6 | 4 | 1.50 |
Rank | Authors | TP | TC | AC | h-Index | g-Index | m-Index | PY-Start |
---|---|---|---|---|---|---|---|---|
1 | Li, Y. | 9 | 335 | 37.22 | 5 | 9 | 0.333 | 2009 |
2 | Mathijssen, R.H.J. | 8 | 374 | 46.75 | 7 | 8 | 0.389 | 2006 |
3 | Zhang, Z. | 8 | 381 | 47.63 | 5 | 8 | 0.714 | 2017 |
4 | Kim, S. | 7 | 121 | 17.29 | 5 | 7 | 0.333 | 2009 |
5 | Hamada, A. | 6 | 279 | 46.50 | 5 | 6 | 0.385 | 2011 |
6 | Miura, M. | 6 | 210 | 35.00 | 5 | 6 | 0.357 | 2010 |
7 | Wang, Y. | 6 | 41 | 6.83 | 3 | 6 | 0.375 | 2016 |
8 | Gelderblom, H. | 5 | 271 | 54.20 | 5 | 5 | 0.333 | 2009 |
9 | Guchelaar, H.J. | 5 | 276 | 55.20 | 5 | 5 | 0.333 | 2009 |
10 | Kamel-Reid, S. | 5 | 435 | 87.00 | 5 | 5 | 0.333 | 2009 |
Rank | First Author | Journal | Year | TC | TC/Y | NCA | Normalized TC |
---|---|---|---|---|---|---|---|
1 | Collisson, E.A. | Nature Medicine | 2011 | 1131 | 87.00 | 18 | 8.35 |
2 | Iorio, F. | Cell | 2016 | 1043 | 130.38 | 39 | 12.54 |
3 | Gainor, J.F. | Clinical Cancer Research | 2016 | 884 | 110.50 | 21 | 10.63 |
4 | Yang, J.C-H. | Lancet Oncology | 2015 | 707 | 78.56 | 13 | 13.47 |
5 | Carvajal, R.D. | JAMA | 2011 | 664 | 51.08 | 18 | 4.90 |
6 | Crystal, A.S. | Science | 2014 | 550 | 55.00 | 26 | 13.47 |
7 | Yauch, R.L. | Clinical Cancer Research | 2005 | 473 | 24.89 | 14 | 4.95 |
8 | Luo, B. | PNAS | 2008 | 431 | 26.94 | 24 | 5.22 |
9 | Heiser, L.M. | PNAS | 2012 | 344 | 28.67 | 43 | 4.91 |
10 | Hidalgo, M. | Molecular Cancer Therapeutics | 2011 | 321 | 24.69 | 10 | 2.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alzoubi, A.; Shirazi, H.; Alrawashdeh, A.; AL-Dekah, A.M.; Ibraheem, N.; Kheirallah, K.A. The Status Quo of Pharmacogenomics of Tyrosine Kinase Inhibitors in Precision Oncology: A Bibliometric Analysis of the Literature. Pharmaceutics 2024, 16, 167. https://doi.org/10.3390/pharmaceutics16020167
Alzoubi A, Shirazi H, Alrawashdeh A, AL-Dekah AM, Ibraheem N, Kheirallah KA. The Status Quo of Pharmacogenomics of Tyrosine Kinase Inhibitors in Precision Oncology: A Bibliometric Analysis of the Literature. Pharmaceutics. 2024; 16(2):167. https://doi.org/10.3390/pharmaceutics16020167
Chicago/Turabian StyleAlzoubi, Abdallah, Hassan Shirazi, Ahmad Alrawashdeh, Arwa M. AL-Dekah, Nadia Ibraheem, and Khalid A. Kheirallah. 2024. "The Status Quo of Pharmacogenomics of Tyrosine Kinase Inhibitors in Precision Oncology: A Bibliometric Analysis of the Literature" Pharmaceutics 16, no. 2: 167. https://doi.org/10.3390/pharmaceutics16020167
APA StyleAlzoubi, A., Shirazi, H., Alrawashdeh, A., AL-Dekah, A. M., Ibraheem, N., & Kheirallah, K. A. (2024). The Status Quo of Pharmacogenomics of Tyrosine Kinase Inhibitors in Precision Oncology: A Bibliometric Analysis of the Literature. Pharmaceutics, 16(2), 167. https://doi.org/10.3390/pharmaceutics16020167