Effect of Molecules’ Physicochemical Properties on Whey Protein/Alginate Hydrogel Rheology, Microstructure and Release Profile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Model Molecules
2.3. Preparation and Characterization of Polymeric Solutions
2.3.1. Stock Solution
2.3.2. Molecules Added to Polymer Solution
2.3.3. Zeta Potential Measurements
2.3.4. Viscosity Study
2.3.5. Rheological Study
2.4. Microparticle Preparation and Coating
2.5. Characterization of Microparticles
2.5.1. Interaction of Encapsulated Substance with Reticulated Polymers by FTIR Analysis
2.5.2. Microparticle Size and Morphology
2.5.3. Molecules’ Encapsulation Efficiency
2.5.4. Swelling Studies of Uncoated Microparticles
2.5.5. Calcium Content Determination
2.5.6. In Vitro Dissolution Studies
2.5.7. Release Kinetic Model
2.6. Statistical Analysis
3. Results and Discussion
3.1. Influence of Model Molecules on Hydrogels
3.1.1. Model Molecules Influenced pH and Polymeric Viscosity and Rheology
3.1.2. Model Molecules Did Not Influence Functional Groups of the Polymeric Solution
3.2. Influence of Model Molecules on Microparticle and Coating Formation
3.2.1. Model Molecules Influenced Reticulation Step
3.2.2. Model Molecules Influenced Encapsulation Efficiency and WP Coating
3.3. Influence of Model Molecules on Controlled Release
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lefèvre, T.; Subirade, M. Molecular Differences in the Formation and Structure of Fine-Stranded and Particulate Beta-Lactoglobulin Gels. Biopolymers 2000, 54, 578–586. [Google Scholar] [CrossRef]
- Wichchukit, S.; Oztop, M.H.; McCarthy, M.J.; McCarthy, K.L. Whey Protein/Alginate Beads as Carriers of a Bioactive Component. Food Hydrocoll. 2013, 33, 66–73. [Google Scholar] [CrossRef]
- Kharlamova, A.; Nicolai, T.; Chassenieux, C. Calcium-Induced Gelation of Whey Protein Aggregates: Kinetics, Structure and Rheological Properties. Food Hydrocoll. 2018, 79, 145–157. [Google Scholar] [CrossRef]
- Pedrali, D.; Scarafoni, A.; Giorgi, A.; Lavelli, V. Binary Alginate-Whey Protein Hydrogels for Antioxidant Encapsulation. Antioxidants 2023, 12, 1192. [Google Scholar] [CrossRef]
- Espinaco, B.Y.; Niizawa, I.; Zorrilla, S.E.; Sihufe, G.A. Whey Protein Aggregates-Alginate Composite Gel for Astaxanthin-Chia Oil Encapsulation. Eur. J. Lipid Sci. Technol. 2023, 125, 2300010. [Google Scholar] [CrossRef]
- Rosenberg, M.; Lee, S.J. Calcium-Alginate Coated, Whey Protein-Based Microspheres: Preparation, Some Properties and Opportunities. J. Microencapsul. 2004, 21, 263–281. [Google Scholar] [CrossRef] [PubMed]
- Hébrard, G.; Hoffart, V.; Cardot, J.-M.; Subirade, M.; Alric, M.; Beyssac, E. Investigation of Coated Whey Protein/Alginate Beads as Sustained Release Dosage Form in Simulated Gastrointestinal Environment. Drug Dev. Ind. Pharm. 2009, 35, 1103–1112. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Fan, S.; He, Z.; Ni, F.; Liu, C.; Huang, M.; Cai, L.; Ren, G.; Zhu, X.; Lei, Q.; et al. Preparation of Alginate-Whey Protein Isolate and Alginate-Pectin-Whey Protein Isolate Composites for Protection and Delivery of Lactobacillus Plantarum. Food Res. Int. 2022, 161, 111794. [Google Scholar] [CrossRef] [PubMed]
- Klein, M.; Poverenov, E. Natural Biopolymer-Based Hydrogels for Use in Food and Agriculture. J. Sci. Food Agric. 2020, 100, 2337–2347. [Google Scholar] [CrossRef]
- Ye, H.; Chen, T.; Huang, M.; Ren, G.; Lei, Q.; Fang, W.; Xie, H. Exploration of the Microstructure and Rheological Properties of Sodium Alginate-Pectin-Whey Protein Isolate Stabilized Β-Carotene Emulsions: To Improve Stability and Achieve Gastrointestinal Sustained Release. Foods 2021, 10, 1991. [Google Scholar] [CrossRef]
- Paulo, F.; Santos, L. Design of Experiments for Microencapsulation Applications: A Review. Mater. Sci. Eng. C 2017, 77, 1327–1340. [Google Scholar] [CrossRef]
- Choudhury, N.; Meghwal, M.; Das, K. Microencapsulation: An Overview on Concepts, Methods, Properties and Applications in Foods. Food Front. 2021, 2, 426–442. [Google Scholar] [CrossRef]
- Hébrard, G.; Hoffart, V.; Beyssac, E.; Cardot, J.-M.; Alric, M.; Subirade, M. Coated Whey Protein/Alginate Microparticles as Oral Controlled Delivery Systems for Probiotic Yeast. J. Microencapsul. 2010, 27, 292–302. [Google Scholar] [CrossRef] [PubMed]
- Hébrard, G.; Hoffart, V.; Cardot, J.-M.; Subirade, M.; Beyssac, E. Development and Characterization of Coated-Microparticles Based on Whey Protein/Alginate Using the Encapsulator Device. Drug Dev. Ind. Pharm. 2013, 39, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Kelly, A.L.; Maidannyk, V.; Miao, S. Effect of Structuring Emulsion Gels by Whey or Soy Protein Isolate on the Structure, Mechanical Properties, and in-Vitro Digestion of Alginate-Based Emulsion Gel Beads. Food Hydrocoll. 2021, 110, 106165. [Google Scholar] [CrossRef]
- Madsen, M.; Rønne, M.E.; Li, R.; Greco, I.; Ipsen, R.; Svensson, B. Simulated Gastrointestinal Digestion of Protein Alginate Complexes: Effects of Whey Protein Cross-Linking and the Composition and Degradation of Alginate. Food Funct. 2022, 13, 8375–8387. [Google Scholar] [CrossRef] [PubMed]
- Déat-Lainé, E.; Hoffart, V.; Cardot, J.-M.; Subirade, M.; Beyssac, E. Development and in Vitro Characterization of Insulin Loaded Whey Protein and Alginate Microparticles. Int. J. Pharm. 2012, 439, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Qin, X.; Wang, Y.; Zhong, J. Physicochemical Properties and Formation Mechanism of Whey Protein Isolate-Sodium Alginate Complexes: Experimental and Computational Study. Food Hydrocoll. 2022, 131, 107786. [Google Scholar] [CrossRef]
- Han, C.; Xiao, Y.; Liu, E.; Su, Z.; Meng, X.; Liu, B. Preparation of Ca-Alginate-Whey Protein Isolate Microcapsules for Protection and Delivery of L. Bulgaricus and L. Paracasei. Int. J. Biol. Macromol. 2020, 163, 1361–1368. [Google Scholar] [CrossRef] [PubMed]
- Dehkordi, S.S.; Alemzadeh, I.; Vaziri, A.S.; Vossoughi, A. Optimization of Alginate-Whey Protein Isolate Microcapsules for Survivability and Release Behavior of Probiotic Bacteria. Appl. Biochem. Biotechnol. 2020, 190, 182–196. [Google Scholar] [CrossRef]
- Zandi, M. Vitamin Protection by Alginate-Whey Protein Micro Gel (AL-WPC MG) as a Novel Microcapsule against Gastrointestinal Condition; Case Study: B-Complex Vitamins. Iran. Food Sci. Technol. Res. J. 2020, 16, 37–50. [Google Scholar] [CrossRef]
- Wu, S.; Wang, L.; Zhao, Y.; Chen, B.; Qiu, D.; Sun, P.; Shao, P.; Feng, S. Fabrication of High Strength Cold-Set Sodium Alginate/Whey Protein Nanofiber Double Network Hydrogels and Their Interaction with Curcumin. Food Res. Int. 2023, 165, 112490. [Google Scholar] [CrossRef]
- Peanparkdee, M.; Iwamoto, S.; Yamauchi, R. Microencapsulation: A Review of Applications in the Food and Pharmaceutical Industries. Rev. Agric. Sci. 2016, 4, 56–65. [Google Scholar] [CrossRef]
- Huang, K.; Yuan, Y.; Baojun, X. A Critical Review on the Microencapsulation of Bioactive Compounds and Their Application. Food Rev. Int. 2023, 39, 2594–2634. [Google Scholar] [CrossRef]
- Vennat, B.; Lardy, F.; Arvouet-Grand, A.; Pourrat, A. Comparative Texturometric Analysis of Hydrogels Based on Cellulose Derivatives, Carraghenates, and Alginates: Evaluation of Adhesiveness. Drug Dev. Ind. Pharm. 1998, 24, 27–35. [Google Scholar] [CrossRef]
- Madsen, F.; Eberth, K.; Smart, J.D. A Rheological Assessment of the Nature of Interactions between Mucoadhesive Polymers and a Homogenised Mucus Gel. Biomaterials 1998, 19, 1083–1092. [Google Scholar] [CrossRef]
- Verney, V.; Michel, A. Representation of the Rheological Properties of Polymer Melts in Terms of Complex Fluidity. Rheol. Acta 1989, 28, 54–60. [Google Scholar] [CrossRef]
- Kumar, A.; Commereuc, S.; Verney, V. Ageing of Elastomers: A Molecular Approach Based on Rheological Characterization. Polym. Degrad. Stab. 2004, 85, 751–757. [Google Scholar] [CrossRef]
- Zhang, C.-X.; von Heeren, F.; Thormann, W. Separation of Hydrophobic, Positively Chargeable Substances by Capillary Electrophoresis. Anal. Chem. 1995, 67, 2070–2077. [Google Scholar] [CrossRef]
- Minnick, L.J.; Kilpatrick, M. Acid–Base Equilibria in Aqueous and Non-Aqueous Solutions. J. Phys. Chem. 1939, 43, 259–274. [Google Scholar] [CrossRef]
- Pamies, R.; Rodríguez Schmidt, R.; Martínez, M.; Torre, J. The Influence of Mono and Divalent Cations on Dilute and Non-Dilute Aqueous Solutions of Sodium Alginates. Carbohydr. Polym. 2010, 80, 248–253. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, F.; Carvajal, M.T.; Harris, M.T. Interactions between Bovine Serum Albumin and Alginate: An Evaluation of Alginate as Protein Carrier. J. Colloid Interface Sci. 2009, 332, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Brange, J.; Skelbaek-Pedersen, B.; Langkjaer, L.; Damgaard, U.; Ege, H.; Havelund, S.; Heding, L.G.; Joergensen, K.H.; Lykkeberg, J.; Markussen, J.; et al. Galenics of Insulin: The Physico-Chemical and Pharmaceutical Aspects of Insulin and Insulin Preparations; Softcover reprint of the original 1st ed. 1987 ed.; Springer: London, UK, 2012; ISBN 978-3-662-02528-4. [Google Scholar]
- Harland, R.S.; Gazzaniga, A.; Sangalli, M.E.; Colombo, P.; Peppas, N.A. Drug/Polymer Matrix Swelling and Dissolution. Pharm. Res. 1988, 5, 488–494. [Google Scholar] [CrossRef] [PubMed]
- Alizadehfard, M.; Wiley, D. Viscosity of Whey Protein Solutions. Iran. J. Sci. Technol. Trans. Sci. 1995, 4, 126–133. [Google Scholar]
- Foegeding, A.; Ikeda, S. Dynamic Viscoelastic Properties of Thermally Induced Whey Protein Isolate Gels with Added Lecithin. Food Hydrocoll. 1999, 13, 245–254. [Google Scholar]
- Rezende, R.A.; Bártolo, P.J.; Mendes, A.; Filho, R.M. Rheological Behavior of Alginate Solutions for Biomanufacturing. Available online: https://www.escholar.manchester.ac.uk/jrul/item/?pid=uk-ac-man-scw:254006 (accessed on 8 January 2024).
- Bourouis, I.; Pang, Z.; Liu, X. Recent Advances on Uses of Protein and/or Polysaccharide as Fat Replacers: Textural and Tribological Perspectives: A Review. J. Agric. Food Res. 2023, 11, 100519. [Google Scholar] [CrossRef]
- Chen, H.; Wang, P.; Wu, F.; Xu, J.; Tian, Y.; Yang, N.; Cissouma, A.I.; Jin, Z.; Xu, X. Preparation of Phosvitin-Dextran Conjugates under High Temperature in a Liquid System. Int. J. Biol. Macromol. 2013, 55, 258–263. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Pitkänen, L.; Maina, N.H.; Coda, R.; Katina, K.; Tenkanen, M. Interactions between Fava Bean Protein and Dextrans Produced by Leuconostoc Pseudomesenteroides DSM 20193 and Weissella Cibaria Sj 1b. Carbohydr. Polym. 2018, 190, 315–323. [Google Scholar] [CrossRef]
- Celebioglu, H.Y. Investigation of the Molecular Level Interactions between Mucins and Food Proteins: Spectroscopic, Tribological and Rheological Studies; National Food Institute, Technical University of Denmark: Kgs. Lyngby, Denmark, 2017. [Google Scholar]
- Nwokocha, L. Solution Characteristics and Thermorheology of Prosopis Africana Seed Polysaccharide. Food Hydrocoll. 2015, 56, 201–206. [Google Scholar] [CrossRef]
- Ikeda, S.; Nishinari, K. “Weak Gel”-Type Rheological Properties of Aqueous Dispersions of Nonaggregated Kappa-Carrageenan Helices. J. Agric. Food Chem. 2001, 49, 4436–4441. [Google Scholar] [CrossRef]
- Picout, D.R.; Ross-Murphy, S.B. Rheology of Biopolymer Solutions and Gels. Sci. World J. 2003, 3, 105–121. [Google Scholar] [CrossRef] [PubMed]
- Seo, C.-W.; Yoo, B. Steady and Dynamic Shear Rheological Properties of Gum-Based Food Thickeners Used for Diet Modification of Patients with Dysphagia: Effect of Concentration. Dysphagia 2013, 28, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Hsein, H.; Garrait, G.; Mumin, M.A.; Beyssac, E.; Hoffart, V. Atomization of Denatured Whey Proteins as a Novel and Simple Way to Improve Oral Drug Delivery System Properties. Int. J. Biol. Macromol. 2017, 105, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Helmiyati; Aprilliza, M. Characterization and Properties of Sodium Alginate from Brown Algae Used as an Ecofriendly Superabsorbent. IOP Conf. Ser. Mater. Sci. Eng. 2017, 188, 012019. [Google Scholar] [CrossRef]
- Liang, X.; Ma, C.; Yan, X.; Zeng, H.; McClements, D.J.; Liu, X.; Liu, F. Structure, Rheology and Functionality of Whey Protein Emulsion Gels: Effects of Double Cross-Linking with Transglutaminase and Calcium Ions. Food Hydrocoll. 2020, 102, 105569. [Google Scholar] [CrossRef]
- Nastaj, J.; Przewłocka, A.; Rajkowska-Myśliwiec, M. Biosorption of Ni(II), Pb(II) and Zn(II) on calcium alginate beads: Equilibrium, kinetic and mechanism studies. Pol. J. Chem. Technol. 2016, 18, 81–87. [Google Scholar] [CrossRef]
- Cai, X.; Zhao, L.; Wang, S.; Rao, P. Fabrication and Characterization of the Nano-Composite of Whey Protein Hydrolysate Chelated with Calcium. Food Funct. 2015, 6, 816–823. [Google Scholar] [CrossRef]
- Iannuccelli, V.; Montanari, M.; Bertelli, D.; Pellati, F.; Coppi, G. Microparticulate Polyelectrolyte Complexes for Gentamicin Transport across Intestinal Epithelia. Drug Deliv. 2011, 18, 26–37. [Google Scholar] [CrossRef]
- Moebus, K.; Siepmann, J.; Bodmeier, R. Novel Preparation Techniques for Alginate-Poloxamer Microparticles Controlling Protein Release on Mucosal Surfaces. Eur. J. Pharm. Sci. 2012, 45, 358–366. [Google Scholar] [CrossRef]
- Yi, J.; Peng, G.; Zheng, S.; Wen, Z.; Gan, C.; Fan, Y. Fabrication of Whey Protein Isolate-Sodium Alginate Nanocomplex for Curcumin Solubilization and Stabilization in a Model Fat-Free Beverage. Food Chem. 2021, 348, 129102. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; Fan, Q.; Teng, C.; Xie, W.; Shi, Y.; Su, Y.; Yang, Y. Combination Effects of NaOH and NaCl on the Rheology and Gel Characteristics of Hen Egg White Proteins. Food Chem. 2018, 250, 1–6. [Google Scholar] [CrossRef]
- Zhuang, X.; Wang, L.; Jiang, X.; Chen, Y.; Zhou, G. Insight into the Mechanism of Myofibrillar Protein Gel Influenced by Konjac Glucomannan: Moisture Stability and Phase Separation Behavior. Food Chem. 2021, 339, 127941. [Google Scholar] [CrossRef] [PubMed]
- Østberg, T.; Lund, E.M.; Graffner, C. Calcium Alginate Matrices for Oral Multiple Unit Administration: IV. Release Characteristics in Different Media. Int. J. Pharm. 1994, 112, 241–248. [Google Scholar] [CrossRef]
- Sultana, S.; Ahmed, I.; Islam, R.; Rahman, H. Development of Salbutamol Sulphate Sustained Release Pellets Using Acrylic Polymer and Polyvinyl Acetate Polymer and Evaluation of In Vitro Release Kinetics. Dhaka Univ. J. Pharm. Sci. 2011, 9, 109–118. [Google Scholar] [CrossRef]
- Chen, J.; Li, X.; Chen, L.; Xie, F. Starch Film-Coated Microparticles for Oral Colon-Specific Drug Delivery. Carbohydr. Polym. 2018, 191, 242–254. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.-J.; Min, G.-H.; Kim, T.-W. Preparation Andin Vitro Release of Melatonin-Loaded Multivalent Cationic Alginate Beads. Arch. Pharm. Res. 1996, 19, 280–285. [Google Scholar] [CrossRef]
- Fathy, M.; Safwat, S.M.; el-Shanawany, S.M.; Shawky Tous, S.; Otagiri, M. Preparation and Evaluation of Beads Made of Different Calcium Alginate Compositions for Oral Sustained Release of Tiaramide. Pharm. Dev. Technol. 1998, 3, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Sarmento, B.; Ribeiro, A.; Veiga, F.; Sampaio, P.; Neufeld, R.; Ferreira, D. Alginate/Chitosan Nanoparticles Are Effective for Oral Insulin Delivery. Pharm. Res. 2007, 24, 2198–2206. [Google Scholar] [CrossRef]
- Wells, L.A.; Sheardown, H. Extended Release of High pI Proteins from Alginate Microspheres via a Novel Encapsulation Technique. Eur. J. Pharm. Biopharm. 2007, 65, 329–335. [Google Scholar] [CrossRef]
- Teimouri, S.; Kasapis, S.; Dokouhaki, M. Diffusional Characteristics of Food Protein-Based Materials as Nutraceutical Delivery Systems: A Review. Trends Food Sci. Technol. 2022, 122, 201–210. [Google Scholar] [CrossRef]
- Pasparakis, G.; Bouropoulos, N. Swelling Studies and in Vitro Release of Verapamil from Calcium Alginate and Calcium Alginate–Chitosan Beads. Int. J. Pharm. 2006, 323, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Remondetto, G.E.; Beyssac, E.; Subirade, M. Iron Availability from Whey Protein Hydrogels: An in Vitro Study. J. Agric. Food Chem. 2004, 52, 8137–8143. [Google Scholar] [CrossRef] [PubMed]
- Teimouri, S.; Dekiwadia, C.; Kasapis, S. Decoupling Diffusion and Macromolecular Relaxation in the Release of Vitamin B6 from Genipin-Crosslinked Whey Protein Networks. Food Chem. 2021, 346, 128886. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Kelly, A.L.; Maidannyk, V.; Miao, S. Effect of Concentrations of Alginate, Soy Protein Isolate and Sunflower Oil on Water Loss, Shrinkage, Elastic and Structural Properties of Alginate-Based Emulsion Gel Beads during Gelation. Food Hydrocoll. 2020, 108, 105998. [Google Scholar] [CrossRef]
Properties | None | Theophylline C7H8N4O2 | Blue Dextran (C6H10O5)n | Salicylic Acid C7H6O3 | Insulin C257H383N65O77S6 |
---|---|---|---|---|---|
Molecular weight (g/mol) | - | 180 | 2 × 106 | 138 | 5807 |
Solubility (g/L) in water | - | 11.8 | 50 | 2.5 | 0.0347 |
pKa | - | 8.81 | Neutral | 3.0 | 5.4 |
polymeric solutions pH | 7.0 | 7.1 | 6.9 | 4.9 | 6.9 |
Ionic charge of molecule during MP formation | - | + | + | - | - |
Zeta Potentials (mV) of polymeric solution | −70 | −66 | −64 | −32 | −65 |
Dissolution Medium | Formulation | Harland Equation | Correlation Coefficient | Mechanism of Release | |
---|---|---|---|---|---|
A | B | r | |||
pH 1.2 buffer | TPH | 0.691 | 0.000 | 0.987 | Diffusion |
BD | 0.006 | 0.000 | 0.672 | Diffusion | |
SA | 0.563 | 0.000 | 0.936 | Diffusion | |
INS | 0.516 | 0.000 | 0.971 | Diffusion | |
WP-coated TPH | 0.000 | 0.002 | 0.950 | Erosion | |
WP-coated BD | 0.000 | 0.000 | 0.809 | No release | |
WP-coated SA | 0.451 | 0.000 | 0.970 | Diffusion | |
WP-coated INS | 0.551 | 0.000 | 0.986 | Diffusion | |
pH 6.8 buffer | TPH | 0.771 | 0.000 | 0.876 | Diffusion |
BD | 0.000 | 0.324 | 0.952 | Erosion | |
SA | 0.416 | 0.000 | 0.988 | Diffusion | |
INS | 0.810 | 0.000 | 0.962 | Diffusion | |
WP-coated TPH | 0.008 | 0.024 | 0.996 | Erosion | |
WP-coated BD | 0.000 | 0.091 | 0.982 | Erosion | |
WP-coated SA | 0.389 | 0.000 | 0.982 | Diffusion | |
WP-coated INS | 0.485 | 0.000 | 0.993 | Diffusion |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delanne-Cuménal, A.; Lainé, E.; Hoffart, V.; Verney, V.; Garrait, G.; Beyssac, E. Effect of Molecules’ Physicochemical Properties on Whey Protein/Alginate Hydrogel Rheology, Microstructure and Release Profile. Pharmaceutics 2024, 16, 258. https://doi.org/10.3390/pharmaceutics16020258
Delanne-Cuménal A, Lainé E, Hoffart V, Verney V, Garrait G, Beyssac E. Effect of Molecules’ Physicochemical Properties on Whey Protein/Alginate Hydrogel Rheology, Microstructure and Release Profile. Pharmaceutics. 2024; 16(2):258. https://doi.org/10.3390/pharmaceutics16020258
Chicago/Turabian StyleDelanne-Cuménal, A., E. Lainé, V. Hoffart, V. Verney, G. Garrait, and E. Beyssac. 2024. "Effect of Molecules’ Physicochemical Properties on Whey Protein/Alginate Hydrogel Rheology, Microstructure and Release Profile" Pharmaceutics 16, no. 2: 258. https://doi.org/10.3390/pharmaceutics16020258
APA StyleDelanne-Cuménal, A., Lainé, E., Hoffart, V., Verney, V., Garrait, G., & Beyssac, E. (2024). Effect of Molecules’ Physicochemical Properties on Whey Protein/Alginate Hydrogel Rheology, Microstructure and Release Profile. Pharmaceutics, 16(2), 258. https://doi.org/10.3390/pharmaceutics16020258